1
|
Liu D, Wang M, Gent JI, Sun P, Dawe RK, Umen J. Two CENH3 paralogs in the green alga Chlamydomonas reinhardtii have a redundantly essential function and associate with ZeppL-LINE1 elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70153. [PMID: 40289909 DOI: 10.1111/tpj.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Centromeres in eukaryotes are defined by the presence of histone H3 variant CENP-A/CENH3. Chlamydomonas encodes two predicted CENH3 paralogs, CENH3.1 and CENH3.2, that have not been previously characterized. We generated peptide antibodies to unique N-terminal epitopes for each of the two predicted Chlamydomonas CENH3 paralogs as well as an antibody against a shared CENH3 epitope. All three CENH3 antibodies recognized proteins of the expected size on immunoblots and had punctate nuclear immunofluorescence staining patterns. These results are consistent with both paralogs being expressed and localized to centromeres. CRISPR-Cas9-mediated insertional mutagenesis was used to generate predicted null mutations in either CENH3.1 or CENH3.2. Single mutants were viable but cenh3.1 cenh3.2 double mutants were not recovered, confirming that the function of CENH3 is essential. We sequenced and assembled two chromosome-scale Chlamydomonas genomes from strains CC-400 and UL-1690 (a derivative of CC-1690) with complete centromere sequences for 17/17 and 14/17 chromosomes respectively, enabling us to compare centromere evolution across four isolates with near complete assemblies. These data revealed significant changes across isolates between homologous centromeres including mobility and degeneration of ZeppL-LINE1 (ZeppL) transposons that comprise the major centromere repeat sequence in Chlamydomonas. We used cleavage under targets and tagmentation (CUT&Tag) to purify and map CENH3-bound genomic sequences and found enrichment of CENH3-binding almost exclusively at predicted centromere regions. An interesting exception was chromosome 2 in UL-1690, which had enrichment at its genetically mapped centromere repeat region as well as a second, distal location, centered around a single recently acquired ZeppL insertion. The CENH3-bound regions of the 17 Chlamydomonas centromeres ranged from 63.5 kb (average lower estimate) to 175 kb (average upper estimate). The relatively small size of its centromeres suggests that Chlamydomonas may be a useful organism for testing and deploying artificial chromosome technologies.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - Mingyu Wang
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Peipei Sun
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - R Kelly Dawe
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| |
Collapse
|
2
|
Dudka D, Nguyen AL, Boese KG, Marescal O, Akins RB, Black BE, Cheeseman IM, Lampson MA. Adaptive evolution of CENP-T modulates centromere binding. Curr Biol 2025; 35:1012-1022.e5. [PMID: 39947176 PMCID: PMC11903153 DOI: 10.1016/j.cub.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Centromeric DNA and proteins evolve rapidly despite conserved function in mediating kinetochore-microtubule attachments during cell division. This paradox is explained by selfish DNA sequences preferentially binding centromeric proteins to disrupt attachments and bias their segregation into the egg (drive) during female meiosis. Adaptive centromeric protein evolution is predicted to prevent preferential binding to these sequences and suppress drive. Here, we test this prediction by defining the impact of adaptive evolution of the DNA-binding histone fold domain of CENP-T, a major link between centromeric DNA and microtubules. We reversed adaptive changes by creating chimeric variants of mouse CENP-T with the histone fold domain from closely related species, expressed exogenously in mouse oocytes or in a transgenic mouse model. We show that adaptive evolution of mouse CENP-T reduced centromere binding, which supports robust female gametogenesis. However, this innovation is independent of the centromeric DNA sequence, as shown by comparing the binding of divergent CENP-T variants to distinct centromere satellite arrays in mouse oocytes and in somatic cells from other species. Overall, our findings support a model in which selfish sequences drive to fixation, disrupting attachments of all centromeres to the spindle. DNA sequence-specific innovations are not needed to mitigate fitness costs in this model, so centromeric proteins adapt by modulating their binding to all centromeres in the aftermath of drive.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra L Nguyen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Katelyn G Boese
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Océane Marescal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Wang ML, Lin XJ, Mo BX, Kong WW. Plant Artificial Chromosomes: Construction and Transformation. ACS Synth Biol 2024; 13:15-24. [PMID: 38163256 DOI: 10.1021/acssynbio.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
With the decline of cultivated land and increase of the population in recent years, an agricultural revolution is urgently needed to produce more food to improve the living standards of humans. As one of the foundations of synthetic biology, artificial chromosomes hold great potential for advancing crop improvement. They offer opportunities to increase crop yield and quality, while enhancing crop resistance to disease. The progress made in plant artificial chromosome technology enables selective modification of existing chromosomes or the synthesis of new ones to improve crops and study gene function. However, current artificial chromosome technologies still face limitations, particularly in the synthesis of repeat sequences and the transformation of large DNA fragments. In this review, we will introduce the structure of plant centromeres, the construction of plant artificial chromosomes, and possible methods for transforming large fragments into plant cells.
Collapse
Affiliation(s)
- Ming L Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiao J Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bei X Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wen W Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Xue J, Zhang H, Zhao Q, Cui S, Yu K, Sun R, Yu Y. Construction of Yeast One-Hybrid Library of Alternaria oxytropis and Screening of Transcription Factors Regulating swnK Gene Expression. J Fungi (Basel) 2023; 9:822. [PMID: 37623593 PMCID: PMC10455089 DOI: 10.3390/jof9080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional complex enzyme encoding gene in fungal SW biosynthesis, and its encoding product plays a key role in the multistep catalytic synthesis of SW by fungi using pipecolic acid as a precursor. However, the transcriptional regulation mechanism of the swnK gene is still unclear. To identify the transcriptional regulators involved in the swnK gene in endophytic fungi of locoweeds, we first analyzed the upstream non-coding region of the swnK gene in the A. oxytropis UA003 strain and predicted its high transcriptional activity region combined with dual-luciferase reporter assay. Then, a yeast one-hybrid library of A. oxytropis UA003 strain was constructed, and the transcriptional regulatory factors that may bind to the high-transcriptional activity region of the upstream non-coding region of the swnK gene were screened by this system. The results showed that the high transcriptional activity region was located at -656 bp and -392 bp of the upstream regulatory region of the swnK gene. A total of nine candidate transcriptional regulator molecules, including a C2H2 type transcription factor, seven annotated proteins, and an unannotated protein, were screened out through the Y1H system, which were bound to the upstream high transcriptional activity region of the swnK gene. This study provides new insight into the transcriptional regulation of the swnK gene and lays the foundation for further exploration of the regulatory mechanisms of SW biosynthesis in fungal endophytic locoweeds.
Collapse
Affiliation(s)
- Jiaqi Xue
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haodong Zhang
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmei Zhao
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Cui
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Kun Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruohan Sun
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Talbert P, Henikoff S. Centromere drive: chromatin conflict in meiosis. Curr Opin Genet Dev 2022; 77:102005. [PMID: 36372007 DOI: 10.1016/j.gde.2022.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Centromeres are essential loci in eukaryotes that are necessary for the faithful segregation of chromosomes in mitosis and meiosis. Centromeres organize the kinetochore, the protein machine that attaches sister chromatids or homologous chromosomes to spindle microtubules and regulates their disjunction. Centromeres have both genetic and epigenetic determinants, which can come into conflict in asymmetric female meiosis in seed plants and animals. The centromere drive model was proposed to describe this conflict and explain how it leads to the rapid evolution of both centromeres and kinetochores. Recent studies confirm key aspects of the centromere drive model, clarify its mechanisms, and implicate rapid centromere/kinetochore evolution in hybrid inviability between species.
Collapse
Affiliation(s)
- Paul Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
7
|
Abstract
Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat-packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
8
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
9
|
Thondehaalmath T, Kulaar DS, Bondada R, Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4646-4662. [PMID: 33851980 DOI: 10.1093/jxb/erab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Uniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE. Hence, its successful adoption in agronomic crops for in planta (in vivo) haploid production remains implausible. Recently, Arabidopsis thaliana has emerged as a model system to unravel the molecular basis of UGE. It is now possible to simulate the genetic consequences of distant crosses in an A. thaliana intraspecific cross by a simple modification of centromeres, via the manipulation of the centromere-specific histone H3 variant gene, CENH3. Thus, the experimental advantages conferred by A. thaliana have been used to elucidate and exploit the benefits of UGE in crop breeding. In this review, we discuss developments and prospects of CENH3 gene-mediated UGE and other in planta haploid induction strategies to illustrate its potential in expediting plant breeding and genetics in A. thaliana and other model plants.
Collapse
Affiliation(s)
- Tejas Thondehaalmath
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| |
Collapse
|
10
|
Despot-Slade E, Mravinac B, Širca S, Castagnone-Sereno P, Plohl M, Meštrović N. The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes. Mol Biol Evol 2021; 38:1943-1965. [PMID: 33399875 PMCID: PMC8097292 DOI: 10.1093/molbev/msaa336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla. We identified duplication of the CenH3 gene in a putative sexual ancestral Meloidogyne. We found that one CenH3 (αCenH3) remained conserved in all extant species, including in distant Meloidogyne hapla, whereas the other evolved rapidly and under positive selection into four different CenH3 variants. This pattern of CenH3 evolution in Meloidogyne species suggests the subspecialization of CenH3s in ancestral sexual species. Immunofluorescence performed on mitotic Meloidogyne incognita revealed a dominant role of αCenH3 on its centromere, whereas the other CenH3s have lost their function in mitosis. The observed αCenH3 chromosome distribution disclosed cluster-like centromeric organization. The ChIP-Seq analysis revealed that in M. incognita αCenH3-associated DNA dominantly comprises tandem repeats, composed of divergent monomers which share a completely conserved 19-bp long box. Conserved αCenH3-associated DNA is also confirmed in the related mitotic Meloidogyne incognita group species suggesting preservation of both centromere protein and DNA constituents. We hypothesize that the absence of centromere drive in mitosis might allow for CenH3 and its associated DNA to achieve an equilibrium in which they can persist for long periods of time.
Collapse
Affiliation(s)
| | | | - Saša Širca
- Agricultural Institute Slovenia, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
11
|
CENP-A nucleosome-a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 2021; 64:205-221. [PMID: 32720682 PMCID: PMC7475651 DOI: 10.1042/ebc20190074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.
Collapse
|
12
|
Tek AL, Kara Öztürk SD. High allelic diversity of the centromere-specific histone H3 (CENH3) in the legume sainfoin (Onobrychis viciifolia). Mol Biol Rep 2020; 47:8789-8795. [PMID: 33104994 DOI: 10.1007/s11033-020-05926-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
The centromere is a structurally and functionally specialized region on each eukaryotic chromosome and is essential for accurate and complete segregation of chromosomes during cell division. Centromeric nucleosomes differ from canonical nucleosomes by replacement of the histone H3 with its centromere-specific variant CENH3. CENH3 is essential for active centromeres in most eukaryotes. Homologs of CENH3 are identified in many organisms. Sainfoin (Onobrychis viciifolia) is an agriculturally important perennial forage and is a legume of the Fabaceae family. There is very limited information on the structure of the sainfoin genome and no data are available on its centromere structure. Here, we aim to characterize the sainfoin CENH3 homolog (OvCENH3). Using a sequence homology-based strategy with gene-specific primers, we were able to clone transcripts from sainfoin total RNA. The amplified clones were sequenced and compared by bioinformatics tools. Four distinct alleles of OvCENH3 were detected. Our study provides the first structural features on sainfoin centromeres with a possible allotetraploid origin for sainfoin. We discuss and compare our findings with that for other important legume species.
Collapse
Affiliation(s)
- Ahmet L Tek
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey.
| | - Sevim D Kara Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| |
Collapse
|
13
|
Kuppu S, Ron M, Marimuthu MP, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2068-2080. [PMID: 32096293 PMCID: PMC7540420 DOI: 10.1111/pbi.13365] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non-transgenic approaches to the generation of haploid inducers.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mily Ron
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mohan P.A. Marimuthu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Glenda Li
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Amy Huddleson
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | | | - Joshua Terry
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Ryan Buchner
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Nitzan Shabek
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Luca Comai
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Anne B. Britt
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
14
|
Arunkumar G, Melters DP. Centromeric Transcription: A Conserved Swiss-Army Knife. Genes (Basel) 2020; 11:E911. [PMID: 32784923 PMCID: PMC7463856 DOI: 10.3390/genes11080911] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
In most species, the centromere is comprised of repetitive DNA sequences, which rapidly evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally accepted that centromeres are transcribed, and that such transcription is associated with a broad range of functions. More than a decade of work on this topic has shown that centromeric transcripts are found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure, kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review, we discuss the conservation of small and long non-coding centromeric RNAs, their associations with various centromeric functions, and their potential roles in disease.
Collapse
Affiliation(s)
| | - Daniël P. Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
15
|
Ávila Robledillo L, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Mol Biol Evol 2020; 37:2341-2356. [PMID: 32259249 PMCID: PMC7403623 DOI: 10.1093/molbev/msaa090] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.
Collapse
Affiliation(s)
- Laura Ávila Robledillo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Iva Vrbová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Saint-Leandre B, Levine MT. The Telomere Paradox: Stable Genome Preservation with Rapidly Evolving Proteins. Trends Genet 2020; 36:232-242. [PMID: 32155445 DOI: 10.1016/j.tig.2020.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
Telomeres ensure chromosome length homeostasis and protection from catastrophic end-to-end chromosome fusions. All eukaryotes require this essential, strictly conserved telomere-dependent genome preservation. However, recent evolutionary analyses of mammals, plants, and flies report pervasive rapid evolution of telomere proteins. The causes of this paradoxical observation - that unconserved machinery underlies an essential, conserved function - remain enigmatic. Indeed, these fast-evolving telomere proteins bind, extend, and protect telomeric DNA, which itself evolves slowly in most systems. We hypothesize that the universally fast-evolving subtelomere - the telomere-adjacent, repetitive sequence - is a primary driver of the 'telomere paradox'. Under this model, radical sequence changes in the subtelomere perturb subtelomere-dependent, telomere functions. Compromised telomere function then spurs adaptation of telomere proteins to maintain telomere length homeostasis and protection. We propose an experimental framework that leverages both protein divergence and subtelomeric sequence divergence to test the hypothesis that subtelomere sequence evolution shapes recurrent innovation of telomere machinery.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res 2020; 389:111895. [PMID: 32035948 DOI: 10.1016/j.yexcr.2020.111895] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022]
Abstract
Centromeres are the eukaryotic chromosomal sites at which the kinetochore forms and attaches to spindle microtubules to orchestrate chromosomal segregation in mitosis and meiosis. Although centromeres are essential for cell division, their sequences are not conserved and evolve rapidly. Centromeres vary dramatically in size and organization. Here we categorize their diversity and explore the evolutionary forces shaping them. Nearly all centromeres favor AT-rich DNA that is gene-free and transcribed at a very low level. Repair of frequent centromere-proximal breaks probably contributes to their rapid sequence evolution. Point centromeres are only ~125 bp and are specified by common protein-binding motifs, whereas short regional centromeres are 1-5 kb, typically have unique sequences, and may have pericentromeric repeats adapted to facilitate centromere clustering. Transposon-rich centromeres are often ~100-300 kb and are favored by RNAi machinery that silences transposons, by suppression of meiotic crossovers at centromeres, and by the ability of some transposons to target centromeres. Megabase-length satellite centromeres arise in plants and animals with asymmetric female meiosis that creates centromere competition, and favors satellite monomers one or two nucleosomes in length that position and stabilize centromeric nucleosomes. Holocentromeres encompass the length of a chromosome and may differ dramatically between mitosis and meiosis. We propose a model in which low level transcription of centromeres facilitates the formation of non-B DNA that specifies centromeres and promotes loading of centromeric nucleosomes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
18
|
Melters DP, Pitman M, Rakshit T, Dimitriadis EK, Bui M, Papoian GA, Dalal Y. Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners. Proc Natl Acad Sci U S A 2019; 116:24066-24074. [PMID: 31712435 PMCID: PMC6883791 DOI: 10.1073/pnas.1911880116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone variants fine-tune transcription, replication, DNA damage repair, and faithful chromosome segregation. Whether and how nucleosome variants encode unique mechanical properties to their cognate chromatin structures remains elusive. Here, using in silico and in vitro nanoindentation methods, extending to in vivo dissections, we report that histone variant nucleosomes are intrinsically more elastic than their canonical counterparts. Furthermore, binding proteins, which discriminate between histone variant nucleosomes, suppress this innate elasticity and also compact chromatin. Interestingly, when we overexpress the binding proteins in vivo, we also observe increased compaction of chromatin enriched for histone variant nucleosomes, correlating with diminished access. Taken together, these data suggest a plausible link between innate mechanical properties possessed by histone variant nucleosomes, the adaptability of chromatin states in vivo, and the epigenetic plasticity of the underlying locus.
Collapse
Affiliation(s)
- Daniël P Melters
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Mary Pitman
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Tatini Rakshit
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Emilios K Dimitriadis
- Scanning Probe Microscopy Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Minh Bui
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742;
| | - Yamini Dalal
- Laboratory Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892;
| |
Collapse
|
19
|
Weighill D, Macaya-Sanz D, DiFazio SP, Joubert W, Shah M, Schmutz J, Sreedasyam A, Tuskan G, Jacobson D. Wavelet-Based Genomic Signal Processing for Centromere Identification and Hypothesis Generation. Front Genet 2019; 10:487. [PMID: 31214244 PMCID: PMC6554479 DOI: 10.3389/fgene.2019.00487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Various ‘omics data types have been generated for Populus trichocarpa, each providing a layer of information which can be represented as a density signal across a chromosome. We make use of genome sequence data, variants data across a population as well as methylation data across 10 different tissues, combined with wavelet-based signal processing to perform a comprehensive analysis of the signature of the centromere in these different data signals, and successfully identify putative centromeric regions in P. trichocarpa from these signals. Furthermore, using SNP (single nucleotide polymorphism) correlations across a natural population of P. trichocarpa, we find evidence for the co-evolution of the centromeric histone CENH3 with the sequence of the newly identified centromeric regions, and identify a new CENH3 candidate in P. trichocarpa.
Collapse
Affiliation(s)
- Deborah Weighill
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | | | - Wayne Joubert
- Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Manesh Shah
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Gerald Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
20
|
Oliveira LC, Torres GA. Plant centromeres: genetics, epigenetics and evolution. Mol Biol Rep 2018; 45:1491-1497. [DOI: 10.1007/s11033-018-4284-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
|
21
|
Heterochromatin and RNAi regulate centromeres by protecting CENP-A from ubiquitin-mediated degradation. PLoS Genet 2018; 14:e1007572. [PMID: 30089114 PMCID: PMC6101405 DOI: 10.1371/journal.pgen.1007572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/20/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023] Open
Abstract
Centromere is a specialized chromatin domain that plays a vital role in chromosome segregation. In most eukaryotes, centromere is surrounded by the epigenetically distinct heterochromatin domain. Heterochromatin has been shown to contribute to centromere function, but the precise role of heterochromatin in centromere specification remains elusive. Centromeres in most eukaryotes, including fission yeast (Schizosaccharomyces pombe), are defined epigenetically by the histone H3 (H3) variant CENP-A. In contrast, the budding yeast Saccharomyces cerevisiae has genetically-defined point centromeres. The transition between regional centromeres and point centromeres is considered as one of the most dramatic evolutionary events in centromere evolution. Here we demonstrated that Cse4, the budding yeast CENP-A homolog, can localize to centromeres in fission yeast and partially substitute fission yeast CENP-ACnp1. But overexpression of Cse4 results in its localization to heterochromatic regions. Cse4 is subject to efficient ubiquitin-dependent degradation in S. pombe, and its N-terminal domain dictates its centromere distribution via ubiquitination. Notably, without heterochromatin and RNA interference (RNAi), Cse4 fails to associate with centromeres. We showed that RNAi-dependent heterochromatin mediates centromeric localization of Cse4 by protecting Cse4 from ubiquitin-dependent degradation. Heterochromatin also contributes to the association of native CENP-ACnp1 with centromeres via the same mechanism. These findings suggest that protection of CENP-A from degradation by heterochromatin is a general mechanism used for centromere assembly, and also provide novel insights into centromere evolution.
Collapse
|
22
|
Lipikhina YA, Evtushenko EV, Elisafenko EA, Vershinin AV. Chromosomal assignment of centromere-specific histone CENH3 genes in rye ( Secale cereale L.) and their phylogeny. COMPARATIVE CYTOGENETICS 2017; 11:821-832. [PMID: 29302301 PMCID: PMC5740403 DOI: 10.3897/compcytogen.v11i4.19953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Centromeres are essential for correct chromosome segregation during cell division and are determined by the presence of centromere-specific histone 3 (CENH3). Most of the diploid plant species, in which the structure and copy number of CENH3 genes have been determined, have this gene as a singleton; however, some cereal species in the tribe Triticeae have been found to have CENH3 in two variants. In this work, using the set of the wheat-rye addition lines we wanted to establish the chromosomal assignment of the CENH3 genes in the cultivated rye, Secale cereale (Linnaeus, 1753), in order to expand our knowledge about synteny conservation in the most important cereal species and about their chromosome evolution. To this end, we have also analyzed data in available genome sequencing databases. As a result, the αCENH3 and βCENH3 forms have been assigned to rye chromosomes 1R and 6R: specifically, the commonest variants αCENH3v1 and βCENH3v1 to chromosome 1R, and the rare variants, αCENH3v2 and probably βCENH3v2, to chromosome 6R. No other CENH3 variants have been found by analysis of the rye genome sequencing databases. Our chromosomal assignment of CENH3 in rye has been found to be the same as that in barley, suggesting that both main forms of CENH3 appeared in a Triticeae species before the barley and wheatrye lineages split.
Collapse
Affiliation(s)
- Yulia A. Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
23
|
Xiao H, Wang F, Wisniewski J, Shaytan AK, Ghirlando R, FitzGerald PC, Huang Y, Wei D, Li S, Landsman D, Panchenko AR, Wu C. Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres. Genes Dev 2017; 31:1958-1972. [PMID: 29074736 PMCID: PMC5710141 DOI: 10.1101/gad.304782.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Abstract
Histone CENP-A-containing nucleosomes play an important role in nucleating kinetochores at centromeres for chromosome segregation. However, the molecular mechanisms by which CENP-A nucleosomes engage with kinetochore proteins are not well understood. Here, we report the finding of a new function for the budding yeast Cse4/CENP-A histone-fold domain interacting with inner kinetochore protein Mif2/CENP-C. Strikingly, we also discovered that AT-rich centromere DNA has an important role for Mif2 recruitment. Mif2 contacts one side of the nucleosome dyad, engaging with both Cse4 residues and AT-rich nucleosomal DNA. Both interactions are directed by a contiguous DNA- and histone-binding domain (DHBD) harboring the conserved CENP-C motif, an AT hook, and RK clusters (clusters enriched for arginine-lysine residues). Human CENP-C has two related DHBDs that bind preferentially to DNA sequences of higher AT content. Our findings suggest that a DNA composition-based mechanism together with residues characteristic for the CENP-A histone variant contribute to the specification of centromere identity.
Collapse
Affiliation(s)
- Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Feng Wang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jan Wisniewski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter C FitzGerald
- Genome Analysis Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yingzi Huang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shipeng Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Carl Wu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
24
|
Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Res 2017; 27:471-478. [PMID: 28223399 PMCID: PMC5340974 DOI: 10.1101/gr.214619.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana. We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3.
Collapse
Affiliation(s)
- Shamoni Maheshwari
- Plant Biology Department and Genome Center, University of California, Davis, California 95616, USA
| | - Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany
| | - C Titus Brown
- Department of Population Health and Reproduction, University of California, Davis, California 95616, USA
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Stadt Seeland, Germany
| | - Luca Comai
- Plant Biology Department and Genome Center, University of California, Davis, California 95616, USA
| |
Collapse
|
25
|
Centromeres Drive a Hard Bargain. Trends Genet 2017; 33:101-117. [PMID: 28069312 DOI: 10.1016/j.tig.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022]
Abstract
Centromeres are essential chromosomal structures that mediate the accurate distribution of genetic material during meiotic and mitotic cell divisions. In most organisms, centromeres are epigenetically specified and propagated by nucleosomes containing the centromere-specific H3 variant, centromere protein A (CENP-A). Although centromeres perform a critical and conserved function, CENP-A and the underlying centromeric DNA are rapidly evolving. This paradox has been explained by the centromere drive hypothesis, which proposes that CENP-A is undergoing an evolutionary tug-of-war with selfish centromeric DNA. Here, we review our current understanding of CENP-A evolution in relation to centromere drive and discuss classical and recent advances, including new evidence implicating CENP-A chaperones in this conflict.
Collapse
|
26
|
Zedek F, Bureš P. CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model. Sci Rep 2016; 6:33308. [PMID: 27629066 PMCID: PMC5024113 DOI: 10.1038/srep33308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
27
|
Co-evolving CENP-A and CAL1 Domains Mediate Centromeric CENP-A Deposition across Drosophila Species. Dev Cell 2016; 37:136-47. [PMID: 27093083 DOI: 10.1016/j.devcel.2016.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022]
Abstract
Centromeres mediate the conserved process of chromosome segregation, yet centromeric DNA and the centromeric histone, CENP-A, are rapidly evolving. The rapid evolution of Drosophila CENP-A loop 1 (L1) is thought to modulate the DNA-binding preferences of CENP-A to counteract centromere drive, the preferential transmission of chromosomes with expanded centromeric satellites. Consistent with this model, CENP-A from Drosophila bipectinata (bip) cannot localize to Drosophila melanogaster (mel) centromeres. We show that this result is due to the inability of the mel CENP-A chaperone, CAL1, to deposit bip CENP-A into chromatin. Co-expression of bip CENP-A and bip CAL1 in mel cells restores centromeric localization, and similar findings apply to other Drosophila species. We identify two co-evolving regions, CENP-A L1 and the CAL1 N terminus, as critical for lineage-specific CENP-A incorporation. Collectively, our data show that the rapid evolution of L1 modulates CAL1-mediated CENP-A assembly, suggesting an alternative mechanism for the suppression of centromere drive.
Collapse
|
28
|
Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Chromosoma 2016; 126:145-163. [DOI: 10.1007/s00412-016-0579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
29
|
Simon L, Voisin M, Tatout C, Probst AV. Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:1049. [PMID: 26648952 PMCID: PMC4663263 DOI: 10.3389/fpls.2015.01049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/09/2015] [Indexed: 05/23/2023]
Abstract
The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.
Collapse
Affiliation(s)
| | - Maxime Voisin
- †These authors have contributed equally to this work.
| | | | | |
Collapse
|
30
|
Kral L. Possible identification of CENP-C in fish and the presence of the CENP-C motif in M18BP1 of vertebrates. F1000Res 2015; 4:474. [PMID: 27127616 PMCID: PMC4830207 DOI: 10.12688/f1000research.6823.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 01/10/2023] Open
Abstract
The centromeric protein CENP-C is a base component of the kinetochore. This protein, along with CENP-A has been shown to adaptively evolve in a number of animal and plant species. In order to determine if CENP-C also evolves in fish species, I attempted to retrieve fish CENP-C sequences from GenBank. No Teleostei CENP-C sequences were found either by name or by BLASTP searches with the vertebrate CENP-C motif sequence. A number of putative Teleostei protein sequences were identified in GenBank that have homology to the C-terminal cupin domain of vertebrate CENP-C. These proteins only have partial homology to the CENP-C motif, but evidence is presented that makes it likely that these fish proteins are orthologs of CENP-C. Interestingly, it was also discovered that the CENP-C motif sequence is also mostly present in M18BP1 proteins of fish and some other vertebrates but not in mammals. This finding may have implications for CENP-C and M18BP1 assembly in centromeric regions of different vertebrate taxa.
Collapse
Affiliation(s)
- Leos Kral
- Department of Biology, University of West Georgia, Carrollton, GA, 30118, USA
| |
Collapse
|
31
|
Adaptive Evolution of CENP-A in Percid Fishes. Genes (Basel) 2015; 6:662-71. [PMID: 26193324 PMCID: PMC4584323 DOI: 10.3390/genes6030662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022] Open
Abstract
Centromeric protein A (CENP-A) is the epigenetic determinant of centromeres. This protein has been shown to be adaptively evolving in a number of animal and plant species. In a previous communication we were able to demonstrate that signs of adaptive evolution were detected in the comparison of CENP-A sequences from three percid fish species. In this study we isolated the CENP-A gene from eight additional species from the Percidae family. With these sequences and those previously obtained, we carried out a more robust statistical analysis of codon specific positive selection in CENP-A coding sequences of eleven percid species. We were able to demonstrate that at least two amino acid positions within the N-terminal tail are under strong positive selection and that one of these positions is potentially a substrate for phosphorylation. While nonsynonymous substitutions were detected in the histone fold domain, these were not statistically supported as resulting from positive selection.
Collapse
|
32
|
Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R. Haploids: Constraints and opportunities in plant breeding. Biotechnol Adv 2015; 33:812-29. [PMID: 26165969 DOI: 10.1016/j.biotechadv.2015.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/04/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to national programs or small-medium private seed for the exploitation of DH technology in plant breeding.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Anne B Britt
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, P. O. Box 30709-00100, Kenya
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India; Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; UWA Institute of Agriculture, University of Western Australia, Crawley WA 6009, Australia; Department of Biology, University of Louisiana at Lafayette, 300 E. St. Mary Blvd, 108 Billeaud Hall, Lafayette, LA 70504, USA
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences (SLU), Department of Plant Breeding, Sundsvagen 14 Box 101, 23053 Alnarp, Sweden.
| |
Collapse
|
33
|
Lermontova I, Sandmann M, Mascher M, Schmit AC, Chabouté ME. Centromeric chromatin and its dynamics in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:4-17. [PMID: 25976696 DOI: 10.1111/tpj.12875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 05/22/2023]
Abstract
Centromeres are chromatin structures that are required for proper separation of chromosomes during mitosis and meiosis. The centromere is composed of centromeric DNA, often enriched in satellite repeats, and kinetochore complex proteins. To date, over 100 kinetochore components have been identified in various eukaryotes. Kinetochore assembly begins with incorporation of centromeric histone H3 variant CENH3 into centromeric nucleosomes. Protein components of the kinetochore are either present at centromeres throughout the cell cycle or localize to centromeres transiently, prior to attachment of microtubules to each kinetochore in prometaphase of mitotic cells. This is the case for the spindle assembly checkpoint (SAC) proteins in animal cells. The SAC complex ensures equal separation of chromosomes between daughter nuclei by preventing anaphase onset before metaphase is complete, i.e. the sister kinetochores of all chromosomes are attached to spindle fibers from opposite poles. In this review, we focus on the organization of centromeric DNA and the kinetochore assembly in plants. We summarize recent advances regarding loading of CENH3 into the centromere, and the subcellular localization and protein-protein interactions of Arabidopsis thaliana proteins involved in kinetochore assembly and function. We describe the transcriptional activity of corresponding genes based on in silico analysis of their promoters and cell cycle-dependent expression. Additionally, barley homologs of all selected A. thaliana proteins have been identified in silico, and their sequences and domain structures are presented.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Michael Sandmann
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
34
|
Finseth FR, Dong Y, Saunders A, Fishman L. Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive. Mol Biol Evol 2015; 32:2694-706. [PMID: 26104011 DOI: 10.1093/molbev/msv145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3, the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus, including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3, a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog (CENH3_B) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins.
Collapse
Affiliation(s)
| | - Yuzhu Dong
- Division of Biological Sciences, University of Montana, Missoula Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Arpiar Saunders
- Division of Biological Sciences, University of Montana, Missoula Department of Genetics, Harvard Medical School, Boston, MA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula
| |
Collapse
|
35
|
Yuan J, Guo X, Hu J, Lv Z, Han F. Characterization of two CENH3 genes and their roles in wheat evolution. THE NEW PHYTOLOGIST 2015; 206:839-51. [PMID: 25557089 DOI: 10.1111/nph.13235] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Wheat evolution is complex as a result of successive rounds of allopolyploidization and continuous selection during domestication. Diploid and tetraploid wheat species (Triticum spp.) were used as model systems in which to study the role of centromere-specific histone H3 variant (CENH3) in wheat evolution. We characterized two types of CENH3 genes, named αCENH3 and βCENH3, each of which has three slightly different copies derived from the AA, BB and DD genomes. Specific antibodies were raised against the two CENH3 proteins and were co-localized to centromeres with subtle differences. In most tetraploid wheat species, CENH3 genes are more highly expressed from the AA genome. In wild tetraploids, βCENH3 has a much lower expression level than αCENH3, while in cultivated tetraploids βCENH3 transcripts are enhanced to near αCENH3 levels. Comparison of the CENH3 proteins in wild and cultivated tetraploids revealed that the histone folding domain (HFD) of only βCENH3 is under positive selection, especially in the region responsible for targeting of CENH3 to the centromere. Taken together, positive selection of βCENH3 and its increased expression in tetraploid cultivars are indicative of adaptive evolution. Furthermore, the differences in localization between αCENH3 and βCENH3 observed using fiber fluorescence in situ hybridization (FISH) and immunodetection and in developmental phenotypes resulting from virus-reduced gene silencing imply their functional diversification during wheat evolution.
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
36
|
Neumann P, Pavlíková Z, Koblížková A, Fuková I, Jedličková V, Novák P, Macas J. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species. Mol Biol Evol 2015; 32:1862-79. [PMID: 25771197 PMCID: PMC4476163 DOI: 10.1093/molbev/msv070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution.
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Zuzana Pavlíková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Iva Fuková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Veronika Jedličková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| |
Collapse
|
37
|
Abstract
The centromere-the primary constriction of monocentric chromosomes-is essential for correct segregation of chromosomes during mitosis and meiosis. Centromeric DNA varies between different organisms in sequence composition and extension. The main components of centromeric and pericentromeric DNA of Brassicaceae species are centromeric satellite repeats. Centromeric DNA initiates assembly of the kinetochore, the large protein complex where the spindle fibers attach during nuclear division to pull sister chromatids apart. Kinetochore assembly is initiated by incorporation of the centromeric histone H3 cenH3 into centromeric nucleosomes. The spindle assembly checkpoint acts during mitosis and meiosis at centromeres and maintains genome stability by preventing chromosome segregation before all kinetochores are correctly attached to microtubules. The function of the spindle assembly checkpoint in plants is still poorly understood. Here, we review recent advances of studies on structure and functional importance of centromeric DNA of Brassicaceae, assembly and function of cenH3 in Arabidopsis thaliana and characterization of core SAC proteins of A. thaliana in comparison with non-plant homologues.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany,
| | | | | |
Collapse
|
38
|
Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 2015; 11:e1004970. [PMID: 25622028 PMCID: PMC4314295 DOI: 10.1371/journal.pgen.1004970] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/20/2014] [Indexed: 11/19/2022] Open
Abstract
The point of attachment of spindle microtubules to metaphase chromosomes is known as the centromere. Plant and animal centromeres are epigenetically specified by a centromere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate. This diversification of CENH3 is a conundrum since its role as the key determinant of centromere identity remains a constant across species. Here, we ask whether naturally occurring divergence in CENH3 has functional consequences. We performed functional complementation assays on cenh3-1, a null mutation in Arabidopsis thaliana, using untagged CENH3s from increasingly distant relatives. Contrary to previous results using GFP-tagged CENH3, we find that the essential functions of CENH3 are conserved across a broad evolutionary landscape. CENH3 from a species as distant as the monocot Zea mays can functionally replace A. thaliana CENH3. Plants expressing variant CENH3s that are fertile when selfed show dramatic segregation errors when crossed to a wild-type individual. The progeny of this cross include hybrid diploids, aneuploids with novel genetic rearrangements and haploids that inherit only the genome of the wild-type parent. Importantly, it is always chromosomes from the plant expressing the divergent CENH3 that missegregate. Using chimeras, we show that it is divergence in the fast-evolving N-terminal tail of CENH3 that is causing segregation errors and genome elimination. Furthermore, we analyzed N-terminal tail sequences from plant CENH3s and discovered a modular pattern of sequence conservation. From this we hypothesize that while the essential functions of CENH3 are largely conserved, the N-terminal tail is evolving to adapt to lineage-specific centromeric constraints. Our results demonstrate that this lineage-specific evolution of CENH3 causes inviability and sterility of progeny in crosses, at the same time producing karyotypic variation. Thus, CENH3 evolution can contribute to postzygotic reproductive barriers.
Collapse
Affiliation(s)
- Shamoni Maheshwari
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ek Han Tan
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California, United States of America
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California, United States of America
- * E-mail:
| | - Simon W. L. Chan
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
- Howard-Hughes Medical Institute and the Gordon and Betty Moore Foundation, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
39
|
Masonbrink RE, Gallagher JP, Jareczek JJ, Renny-Byfield S, Grover CE, Gong L, Wendel JF. CenH3 evolution in diploids and polyploids of three angiosperm genera. BMC PLANT BIOLOGY 2014; 14:383. [PMID: 25547313 PMCID: PMC4308911 DOI: 10.1186/s12870-014-0383-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. RESULTS All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. CONCLUSIONS Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Josef J Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Simon Renny-Byfield
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Lei Gong
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
40
|
Otero S, Desvoyes B, Gutierrez C. Histone H3 dynamics in plant cell cycle and development. Cytogenet Genome Res 2014; 143:114-24. [PMID: 25060842 DOI: 10.1159/000365264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromatin is a macromolecular complex where DNA associates with histone proteins and a variety of non-histone proteins. Among the 4 histone types present in nucleosomes, histone H3 is encoded by a large number of genes in most eukaryotic species and is the histone that contains the largest variety of potential post-translational modifications in the N-terminal amino acid residues. In addition to centromeric histone H3, 2 major types of histone H3 exist, namely the canonical H3.1 and the variant H3.3. In this article, we review the most recent observations on the distinctive features of plant H3 proteins in terms of their expression and dynamics during the cell cycle and at various developmental stages. We also include a discussion on the histone H3 chaperones that actively participate in H3 deposition, in particular CAF-1, HIRA and ASF1, and on the putative plant homologs of human ATRX and DEK chaperones. Accumulating evidence confirms that the balanced deposition of H3.1 and H3.3 is of primary relevance for cell differentiation during plant organogenesis.
Collapse
Affiliation(s)
- Sofía Otero
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | |
Collapse
|
41
|
Verma G, Surolia N. Plasmodium falciparum CENH3 is able to functionally complement Cse4p and its, C-terminus is essential for centromere function. Mol Biochem Parasitol 2013; 192:21-9. [PMID: 24316361 DOI: 10.1016/j.molbiopara.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/16/2022]
Abstract
The Plasmodium falciparum centromeric histone variant PfCENH3 has been shown to occupy a 4-4.5 kb region on each chromosome, but the experimental demonstration of its structure-function relationship remains unexplored. By functional complementation assays, we report that the C-terminus, specifically the CATD region within the HFD of PfCENH3 is essential in centromere function. Our studies also indicate that the PfCENH3 specific LLAL residues of the CATD region are required for centromere targeting and chromosome segregation. Histone H3 of P. falciparum is not found to complement Cse4p (the yeast homologue of CENH3). We also report the identification of PfCENP-C, another component of the inner kinetochore protein complex and its association with PfCENH3. These studies thus delineate the structural determinants of PfCENH3.
Collapse
Affiliation(s)
- Garima Verma
- Molecular Parasitology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Namita Surolia
- Molecular Parasitology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
42
|
The evolutionary life cycle of the resilient centromere. Chromosoma 2012; 121:327-40. [PMID: 22527114 DOI: 10.1007/s00412-012-0369-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/13/2022]
Abstract
The centromere is a chromosomal structure that is essential for the accurate segregation of replicated eukaryotic chromosomes to daughter cells. In most centromeres, the underlying DNA is principally made up of repetitive DNA elements, such as tandemly repeated satellite DNA and retrotransposable elements. Paradoxically, for such an essential genomic region, the DNA is rapidly evolving both within and between species. In this review, we show that the centromere locus is a resilient structure that can undergo evolutionary cycles of birth, growth, maturity, death and resurrection. The birth phase is highlighted by examples in humans and other organisms where centromere DNA deletions or chromosome rearrangements can trigger the epigenetic assembly of neocentromeres onto genomic sites without typical features of centromere DNA. In addition, functional centromeres can be generated in the laboratory using various methodologies. Recent mapping of the foundation centromere mark, the histone H3 variant CENP-A, onto near-complete genomes has uncovered examples of new centromeres which have not accumulated centromere repeat DNA. During the growth period of the centromere, repeat DNA begins to appear at some, but not all, loci. The maturity stage is characterised by centromere repeat accumulation, expansions and contractions and the rapid evolution of the centromere DNA between chromosomes of the same species and between species. This stage provides inherent centromere stability, facilitated by repression of gene activity and meiotic recombination at and around the centromeres. Death to a centromere can result from genomic instability precipitating rearrangements, deletions, accumulation of mutations and the loss of essential centromere binding proteins. Surprisingly, ancestral centromeres can undergo resurrection either in the field or in the laboratory, via as yet poorly understood mechanisms. The underlying principle for the preservation of a centromeric evolutionary life cycle is to provide resilience and perpetuity for the all-important structure and function of the centromere.
Collapse
|
43
|
Isolation and Characterization of the Etheostoma tallapoosae (Teleostei: Percidae) CENP-A Gene. Genes (Basel) 2011; 2:829-40. [PMID: 24710294 PMCID: PMC3927593 DOI: 10.3390/genes2040829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/03/2011] [Accepted: 10/24/2011] [Indexed: 11/17/2022] Open
Abstract
Both centromeric alpha-satellite sequences as well as centromeric protein A (CENP-A) are highly variable in eukaryotes. CENP-A, a histone H3 variant, is thought to act as the epigenetic “mark” for assembly of centromeric proteins. While most of the histone fold domain (HFD) of the CENP-A is fairly well conserved, a portion of this HFD as well as the N-terminal tail show adaptive variation in both plants and animals. Such variation may establish reproductive barriers that may lead to speciation. The family Percidae contains over 200 species most of which are within the subfamily Etheostomatinae. This subfamily represents a species rich radiation of freshwater fishes in North America and these species exhibit both allopatric and sympatric distributions. In order to study the evolution of CENP-A in percid fish species, we have isolated and characterized the CENP-A gene from Etheostoma tallapoosae by PCR based gene walking. As a result of this study we have demonstrated that the Tallapoosa darter CENP-A gene HFD sequences can be isolated from genomic DNA by nested PCR in a manner that does not lead to the amplification of the highly sequence related histone H3 gene. We also demonstrated that PCR based walking can be subsequently used to isolate the rest of the CENP-A gene and adjacent gene sequences. These adjacent gene sequences provide us with a primer binding sites for PCR isolation of the CENP-A gene from other percid species of fishes. An initial comparison of three percid species shows that the N-terminal tail of the percid CENP-A gene shows adaptive evolution.
Collapse
|
44
|
Elde NC, Roach KC, Yao MC, Malik HS. Absence of positive selection on centromeric histones in Tetrahymena suggests unsuppressed centromere: drive in lineages lacking male meiosis. J Mol Evol 2011; 72:510-20. [PMID: 21643829 PMCID: PMC3144370 DOI: 10.1007/s00239-011-9449-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/19/2011] [Indexed: 12/20/2022]
Abstract
Centromere-drive is a process where centromeres compete for transmission through asymmetric "female" meiosis for inclusion into the oocyte. In symmetric "male" meiosis, all meiotic products form viable germ cells. Therefore, the primary incentive for centromere-drive, a potential transmission bias, is believed to be missing from male meiosis. In this article, we consider whether male meiosis also bears the primary cost of centromere-drive. Because different taxa carry out different combinations of meiotic programs (symmetric + asymmetric, symmetric only, asymmetric only), it is possible to consider the evolutionary consequences of centromere-drive in the context of these differing systems. Groups with both types of meiosis have large, rapidly evolving centromeric regions, and their centromeric histones (CenH3s) have been shown to evolve under positive selection, suggesting roles as suppressors of centromere-drive. In contrast, taxa with only symmetric male meiosis have shown no evidence of positive selection in their centromeric histones. In this article, we present the first evolutionary analysis of centromeric histones in ciliated protozoans, a group that only undergoes asymmetric "female" meiosis. We find no evidence of positive selection acting on CNA1, the CenH3 of Tetrahymena species. Cytological observations of a panel of Tetrahymena species are consistent with dynamic karyotype evolution in this lineage. Our findings suggest that defects in male meiosis, and not mitosis or female meiosis, are the primary selective force behind centromere-drive suppression. Our study raises the possibility that taxa like ciliates, with only female meiosis, may therefore undergo unsuppressed centromere drive.
Collapse
Affiliation(s)
- Nels C. Elde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A2-205, Seattle, WA 98109 USA
- Present Address: Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Kevin C. Roach
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A2-205, Seattle, WA 98109 USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A2-205, Seattle, WA 98109 USA
- HHMI, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A2-205, Seattle, WA 98109 USA
| |
Collapse
|
45
|
Expression of CENH3 alleles in synthesized allopolyploid Oryza species. J Genet Genomics 2011; 37:703-11. [PMID: 21035096 DOI: 10.1016/s1673-8527(09)60088-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 12/29/2022]
Abstract
Synthesized allopolyploids are valuable materials for comparative analyses of two or more distinct genomes, such as the expression changes (activation, inactivation or differential expression) of orthologous genes following allopolyploidization. CENH3 is a centromere- specific histone H3 variant and has been regarded as a central component in kinetochore formation and centromere function. In this study, interspecific hybrids of Oryza genus (AA × CC, AA × CCDD) and their backcross progenies were produced, and the genome constitutions were identified as AC, ACC, ACD, AACD, or AA(CD) by Genomic in situ hybridization (GISH). We further cloned and sequenced the CENH3 genes from O. sativa (AA), O. officinalis (CC) and O. latifolia (CCDD). Sequencing of RT-PCR products revealed that CENH3_C2 and CENH3_D, the two CENH3 alleles from O. latifolia, showed polymorphism in several sites, while CENH3_C2 and CENH3_C1 from O. officinalis were different at only two amino acids positions. Moreover, we found that the CENH3 genes from both parents are expressed in interspecific hybrids and their progenies. Specifically, based on our cDNA sequencing data, the ratio of expression level between CENH3_A and CENH3_C1 was approximately 1 in AC and 0.5 in ACC genomes, respectively. As a result, the CENH3 expression patterns shed more light on the inter-coordination between varied centromeric DNA sequences and highly conserved kinetochore protein in synthesized allopolyploids of Oryza genus.
Collapse
|
46
|
Moraes ICR, Lermontova I, Schubert I. Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. PLANT MOLECULAR BIOLOGY 2011; 75:253-261. [PMID: 21190064 DOI: 10.1007/s11103-010-9723-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/17/2010] [Indexed: 05/27/2023]
Abstract
The centromere is an essential chromosomal component assembling the kinetochore for chromosome attachment to the spindle microtubules and for directing the chromosome segregation during nuclear division. Kinetochore assembly requires deposition of the centromeric histone H3 variant (CENH3) into centromeric nucleosomes. CENH3 has a variable N-terminal and a more conserved C-terminal part, including the loop1 region of the histone fold domain, which is considered to be critical for centromere targeting. To investigate the structural requirements for centromere targeting, constructs for EYFP-tagged CENH3 of A. lyrata, A. arenosa, Capsella bursa-pastoris, Zea mays and Luzula nivea (the latter with holocentric chromosomes) were transformed into A. thaliana. Except for LnCENH3, all recombinant CENH3 proteins targeted A. thaliana centromeres, but the more distantly related the heterologous protein is, the lower is the efficiency of targeting. Alignment of CENH3 sequences revealed that the tested species share only three amino acids at loop1 region: threonine2, arginine12 and alanine15. These three amino acids were substituted by asparagine, proline and valine encoding sequences within a recombinant EYFP-AtCENH3 construct via PCR mutagenesis prior to transformation of A. thaliana. After transformation, immunostaining of root tip nuclei with anti-GFP antibodies yielded only diffuse signals, indicating that the original three amino acids are necessary but not sufficient for targeting A. thaliana centromeres.
Collapse
Affiliation(s)
- Izabel C R Moraes
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | |
Collapse
|
47
|
Dechassa ML, Wyns K, Li M, Hall MA, Wang MD, Luger K. Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun 2011; 2:313. [PMID: 21587230 PMCID: PMC3112535 DOI: 10.1038/ncomms1320] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/18/2011] [Indexed: 02/03/2023] Open
Abstract
Much controversy exists regarding the structural organization of the yeast centromeric nucleosome and the role of the nonhistone protein, Scm3, in its assembly and architecture. Here we show that the substitution of H3 with its centromeric variant Cse4 results in octameric nucleosomes that organize DNA in a left-handed superhelix. We demonstrate by single-molecule approaches, micrococcal nuclease digestion and small-angle X-ray scattering that Cse4-nucleosomes exhibit an open conformation with weakly bound terminal DNA segments. The Cse4-octamer does not preferentially form nucleosomes on its cognate centromeric DNA. We show that Scm3 functions as a Cse4-specific nucleosome assembly factor, and that the resulting octameric nucleosomes do not contain Scm3 as a stably bound component. Taken together, our data provide insights into the assembly and structural features of the budding yeast centromeric nucleosome.
Collapse
Affiliation(s)
- Mekonnen Lemma Dechassa
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Katharina Wyns
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ming Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Michael A. Hall
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Michelle D. Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
48
|
Dubin M, Fuchs J, Gräf R, Schubert I, Nellen W. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. Nucleic Acids Res 2010; 38:7526-37. [PMID: 20675719 PMCID: PMC2995078 DOI: 10.1093/nar/gkq664] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage.
Collapse
Affiliation(s)
- Manu Dubin
- Department of Genetics, University Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | | | | | | | | |
Collapse
|
49
|
The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 2010; 186:461-71. [PMID: 20628040 DOI: 10.1534/genetics.110.120337] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.
Collapse
|
50
|
Nagaki K, Terada K, Wakimoto M, Kashihara K, Murata M. Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells. Chromosome Res 2010; 18:203-11. [PMID: 20084454 DOI: 10.1007/s10577-009-9108-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
The centromere is a region utilized for spindle attachment on a eukaryotic chromosome and essential for accurate chromatid segregation. In most eukaryotes, centromeres have specific DNA sequences and are capable of assembling specific proteins to form a complex called the kinetochore. Among these proteins, centromeric histone H3 (CENH3) is one of the most fundamental, since CENH3s have been found in all investigated functional centromeres and recruits other centromeric proteins. In this study, the localization of alien CENH3s were analyzed in Arabidopsis and tobacco-cultured cells to determine the interaction between species-specific centromeric DNA and CENH3. Results showed that CENH3 of Arabidopsis and tobacco were localized on centromeres in the tobacco-cultured cells, unlike the case with CENH3 of rice and Luzula. In addition to these CENH3s, CENH3 of Luzula was partially localized in the Arabidopsis cultured cells. These data suggest that only evolutionally close CENH3s are able to target centromeres in alien species. Furthermore, the ability to target alien centromeres of histone fold domains was investigated using amino-terminal deleted CENH3s.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan.
| | | | | | | | | |
Collapse
|