1
|
Putaporntip C, Kuamsab N, Jongwutiwes S. Natural selection on apical membrane antigen 1 (AMA1) of an emerging zoonotic malaria parasite Plasmodium inui. Sci Rep 2024; 14:23637. [PMID: 39384839 PMCID: PMC11464719 DOI: 10.1038/s41598-024-74785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Apical membrane antigen 1 (AMA1) of malaria parasites plays an important role in host cell invasion. Antibodies to AMA1 can inhibit malaria merozoite invasion of erythrocytes while vaccine-induced specific cytotoxic T cell responses to this protein are associated with clinical protection. Polymorphisms in AMA1 of Plasmodium falciparum (PfAMA1) and P. vivax (PvAMA1) are of concern for vaccine development. To date, little is known about sequence diversity in ama1 of P. inui (Piama1), an emerging zoonotic malaria parasite. In this study, 80 complete Piama1 coding sequences were obtained from 57 macaques in Thailand that defined 60 haplotypes clustering in two phylogenetic lineages. In total, 74 nucleotide substitutions were identified and distributed unevenly across the gene. Blockwise analysis of the rates of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions did not show a significant deviation from neutrality among Thai isolates. However, significantly negative Tajima's D values were detected in domain I and the loop region of domain II, implying purifying selection. Codon-based analysis of dN/dS has identified 12 and 14 codons under positive and negative selections, respectively. Meanwhile, 85 amino acid substitutions were identified among 80 Thai and 11 non-Thai PiAMA1 sequences. Of these, 48 substituted residues had a significant alteration in physicochemical properties, suggesting positive selection. More than half of these positively selected amino acids (32 of 48) corresponded to the predicted B-cell or T-cell epitopes, suggesting that selective pressure could be mediated by host immunity. Importantly, 14 amino acid substitutions were singletons and predicted to be deleterious that could be subject to ongoing purifying selection or elimination. Besides genetic drift and natural selection, intragenic recombination identified in domain II could generate sequence variation in Piama1. It is likely that malarial ama1 exhibits interspecies differences in evolutionary histories. Knowledge of the sequence diversity of the Piama1 locus further provides an evolutionary perspective of this important malaria vaccine candidate.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Faculty of Health Science and Technology, Community Public Health Program, Southern College of Technology, Nakorn Si Thammarat, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Pappalardo AM, Calogero GS, Šanda R, Giuga M, Ferrito V. Evidence for Selection on Mitochondrial OXPHOS Genes in the Mediterranean Killifish Aphanius fasciatus Valenciennes, 1821. BIOLOGY 2024; 13:212. [PMID: 38666824 PMCID: PMC11048645 DOI: 10.3390/biology13040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) genes are a system subject to selection under determined environmental constraints despite a neutral evolution model that has long been hypothesized for the mitochondrial genome. In this study, the sequences of ND1, Cytb, and COI OXPHOS genes were analyzed in six populations of the eurythermal and euryhaline killifish A. fasciatus, to detect non-synonymous mutations leading to amino acid changes and to check whether selection acted on them using tests of recombination and selection. The results indicate a high COI and Cytb gene diversity and a high percentage of private haplotypes in all populations. In the Greek population, non-synonymous nucleotide substitutions were observed in the N-terminal region of COI and Cytb. Positively selected sites were also found. The information we obtained from the mitochondrial DNA sequences of A. fasciatus adds to the growing data on selective pressure acting on mitochondrial DNA in non-model species. These results should be explored from the perspective of the local adaptation of eurythermal and euryhaline species and supported using experimental evidence to better understand the interplay between historical climatic events and local adaptation and how each of them contributes to shaping the genetic structure of this species.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| | - Giada Santa Calogero
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| | - Radek Šanda
- National Museum of the Czech Republic, Václavské Náměstí 68, 115 79 Prague, Czech Republic;
| | - Marta Giuga
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
- Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (IAS-CNR), Via De Marini 6, 16149 Genova, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| |
Collapse
|
3
|
Evolution of tetraspanin antigens in the zoonotic Asian blood fluke Schistosoma japonicum. Parasit Vectors 2023; 16:97. [PMID: 36918965 PMCID: PMC10012309 DOI: 10.1186/s13071-023-05706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Despite successful control efforts in China over the past 60 years, zoonotic schistosomiasis caused by Schistosoma japonicum remains a threat with transmission ongoing and the risk of localised resurgences prompting calls for a novel integrated control strategy, with an anti-schistosome vaccine as a core element. Anti-schistosome vaccine development and immunisation attempts in non-human mammalian host species, intended to interrupt transmission, and utilising various antigen targets, have yielded mixed success, with some studies highlighting variation in schistosome antigen coding genes (ACGs) as possible confounders of vaccine efficacy. Thus, robust selection of target ACGs, including assessment of their genetic diversity and antigenic variability, is paramount. Tetraspanins (TSPs), a family of tegument-surface antigens in schistosomes, interact directly with the host's immune system and are promising vaccine candidates. Here, for the first time to our knowledge, diversity in S. japonicum TSPs (SjTSPs) and the impact of diversifying selection and sequence variation on immunogenicity in these protiens were evaluated. METHODS SjTSP sequences, representing parasite populations from seven provinces across China, were gathered by baiting published short-read NGS data and were analysed using in silico methods to measure sequence variation and selection pressures and predict the impact of selection on variation in antigen protein structure, function and antigenic propensity. RESULTS Here, 27 SjTSPs were identified across three subfamilies, highlighting the diversity of TSPs in S. japonicum. Considerable variation was demonstrated for several SjTSPs between geographical regions/provinces, revealing that episodic, diversifying positive selection pressures promote amino acid variation/variability in the large extracellular loop (LEL) domain of certain SjTSPs. Accumulating polymorphisms in the LEL domain of SjTSP-2, -8 and -23 led to altered structural, functional and antibody binding characteristics, which are predicted to impact antibody recognition and possibly blunt the host's ability to respond to infection. Such changes, therefore, appear to represent a mechanism utilised by S. japonicum to evade the host's immune system. CONCLUSION Whilst the genetic and antigenic geographic variability observed amongst certain SjTSPs could present challenges to vaccine development, here we demonstrate conservation amongst SjTSP-1, -13 and -14, revealing their likely improved utility as efficacious vaccine candidates. Importantly, our data highlight that robust evaluation of vaccine target variability in natural parasite populations should be a prerequisite for anti-schistosome vaccine development.
Collapse
|
4
|
Ecomorphology of toothed whales (Cetacea, Odontoceti) as revealed by 3D skull geometry. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractExtant odontocetes (toothed whales) exhibit differences in body size and brain mass, biosonar mode, feeding strategies, and diving and habitat adaptations. Strong selective pressures associated with these factors have likely contributed to the morphological diversification of their skull. Here, we used 3D landmark geometric morphometric data from the skulls of 60 out of ~ 72 extant odontocete species and a well-supported phylogenetic tree to test whether size and shape variation are associated with ecological adaptations at an interspecific scale. Odontocete skull morphology exhibited a significant phylogenetic signal, with skull size showing stronger signal than shape. After accounting for phylogeny, significant associations were detected between skull size and biosonar mode, body length, brain and body mass, maximum and minimum prey size, and maximum peak frequency. Brain mass was also strongly correlated with skull shape together with surface temperature and average and minimum prey size. When asymmetric and symmetric components of shape were analysed separately, a significant correlation was detected between sea surface temperature and both symmetric and asymmetric components of skull shape, and between diving ecology and the asymmetric component. Skull shape variation of odontocetes was strongly influenced by evolutionary allometry but most of the associations with ecological variables were not supported after phylogenetic correction. This suggests that ecomorphological feeding adaptations vary more between, rather than within, odontocete families, and functional anatomical patterns across odontocete clades are canalised by size constraints.
Collapse
|
5
|
Pereverzeva VV, Dokuchaev NE, Primak AA, Dubinin EA. Variability of the Cytochrome b Polypeptide in the Gray Red-Backed Vole (Craseomys rufocanus). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bachevskaya LT, Pereverzeva VV, Primak AA, Agapova GA. Genetic Variability of the Siberian Sucker Catostomus catostomus rostratus (Teleostei: Catastomidae) from Water Bodies of the Northeast of Russia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
The genetic drivers for the successful invasive potential of a generalist bird, the House crow. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zhang L, Sun K, Csorba G, Hughes AC, Jin L, Xiao Y, Feng J. Complete mitochondrial genomes reveal robust phylogenetic signals and evidence of positive selection in horseshoe bats. BMC Ecol Evol 2021; 21:199. [PMID: 34732135 PMCID: PMC8565063 DOI: 10.1186/s12862-021-01926-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In genus Rhinolophus, species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. RESULTS Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes (ND2 and ND6) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6, respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. CONCLUSIONS The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis. These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus.
Collapse
Affiliation(s)
- Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China.
| | - Gábor Csorba
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Alice Catherine Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla County, 666303, Yunnan, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
Reyes-Ramos CA, Gaxiola-Robles R, Vázquez-Medina JP, Ramírez-Jirano LJ, Bitzer-Quintero OK, Zenteno-Savín T. In silico Characterization of the Heme Oxygenase 1 From Bottlenose Dolphin ( Tursiops truncatus): Evidence of Changes in the Active Site and Purifying Selection. Front Physiol 2021; 12:711645. [PMID: 34456750 PMCID: PMC8388933 DOI: 10.3389/fphys.2021.711645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cetacea is a clade well-adapted to the aquatic lifestyle, with diverse adaptations and physiological responses, as well as a robust antioxidant defense system. Serious injuries caused by boats and fishing nets are common in bottlenose dolphins (Tursiops truncatus); however, these animals do not show signs of serious infections. Evidence suggests an adaptive response to tissue damage and associated infections in cetaceans. Heme oxygenase (HO) is a cytoprotective protein that participates in the anti-inflammatory response. HO catalyzes the first step in the oxidative degradation of the heme group. Various stimuli, including inflammatory mediators, regulate the inducible HO-1 isoform. This study aims to characterize HO-1 of the bottlenose dolphin in silico and compare its structure to the terrestrial mammal protein. Upstream HO-1 sequence of the bottlenose dolphin was obtained from NCBI and Ensemble databases, and the gene structure was determined using bioinformatics tools. Five exons and four introns were identified, and proximal regulatory elements were detected in the upstream region. The presence of 10 α-helices, three 310 helices, the heme group lodged between the proximal and distal helices, and a histidine-25 in the proximal helix serving as a ligand to the heme group were inferred for T. truncatus. Amino acid sequence alignment suggests HO-1 is a conserved protein. The HO-1 "fingerprint" and histidine-25 appear to be fully conserved among all species analyzed. Evidence of positive selection within an α-helix configuration without changes in protein configuration and evidence of purifying selection were found, indicating evolutionary conservation of the coding sequence structure.
Collapse
Affiliation(s)
- Carlos A. Reyes-Ramos
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
- Hospital General de Zona No. 1, Instituto Mexicano del Seguro Social, La Paz, Mexico
| | | | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Oscar Kurt Bitzer-Quintero
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, La Paz, Mexico
| |
Collapse
|
10
|
Evolutionary Relationships of Ljungan Virus Variants Circulating in Multi-Host Systems across Europe. Viruses 2021; 13:v13071317. [PMID: 34372523 PMCID: PMC8310206 DOI: 10.3390/v13071317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The picornavirus named 'Ljungan virus' (LV, species Parechovirus B) has been detected in a dozen small mammal species from across Europe, but detailed information on its genetic diversity and host specificity is lacking. Here, we analyze the evolutionary relationships of LV variants circulating in free-living mammal populations by comparing the phylogenetics of the VP1 region (encoding the capsid protein and associated with LV serotype) and the 3Dpol region (encoding the RNA polymerase) from 24 LV RNA-positive animals and a fragment of the 5' untranslated region (UTR) sequence (used for defining strains) in sympatric small mammals. We define three new VP1 genotypes: two in bank voles (Myodes glareolus) (genotype 8 from Finland, Sweden, France, and Italy, and genotype 9 from France and Italy) and one in field voles (Microtus arvalis) (genotype 7 from Finland). There are several other indications that LV variants are host-specific, at least in parts of their range. Our results suggest that LV evolution is rapid, ongoing and affected by genetic drift, purifying selection, spillover and host evolutionary history. Although recent studies suggest that LV does not have zoonotic potential, its widespread geographical and host distribution in natural populations of well-characterized small mammals could make it useful as a model for studying RNA virus evolution and transmission.
Collapse
|
11
|
Bondareva OV, Potapova NA, Konovalov KA, Petrova TV, Abramson NI. Searching for signatures of positive selection in cytochrome b gene associated with subterranean lifestyle in fast-evolving arvicolines (Arvicolinae, Cricetidae, Rodentia). BMC Ecol Evol 2021; 21:92. [PMID: 34016058 PMCID: PMC8136191 DOI: 10.1186/s12862-021-01819-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial genes encode proteins involved in oxidative phosphorylation. Variations in lifestyle and ecological niche can be directly reflected in metabolic performance. Subterranean rodents represent a good model for testing hypotheses on adaptive evolution driven by important ecological shifts. Voles and lemmings of the subfamily Arvicolinae (Rodentia: Cricetidae) provide a good example for studies of adaptive radiation. This is the youngest group within the order Rodentia showing the fastest rates of diversification, including the transition to the subterranean lifestyle in several phylogenetically independent lineages. Results We evaluated the signatures of selection in the mitochondrial cytochrome b (cytB) gene in 62 Arvicolinae species characterized by either subterranean or surface-dwelling lifestyle by assessing amino acid sequence variation, exploring the functional consequences of the observed variation in the tertiary protein structure, and estimating selection pressure. Our analysis revealed that: (1) three of the convergent amino acid substitutions were found among phylogenetically distant subterranean species and (2) these substitutions may have an influence on the protein complex structure, (3) cytB showed an increased ω and evidence of relaxed selection in subterranean lineages, relative to non-subterranean, and (4) eight protein domains possess increased nonsynonymous substitutions ratio in subterranean species. Conclusions Our study provides insights into the adaptive evolution of the cytochrome b gene in the Arvicolinae subfamily and its potential implications in the molecular mechanism of adaptation. We present a framework for future characterizations of the impact of specific mutations on the function, physiology, and interactions of the mtDNA-encoded proteins involved in oxidative phosphorylation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01819-4.
Collapse
Affiliation(s)
| | - Nadezhda A Potapova
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
| | | | | | | |
Collapse
|
12
|
Rozhkova DN, Zinevich LS, Karyakin IV, Sorokin AG, Tambovtseva VG, Kulikov AM. Non-Neutral Cytochrome b Variability in the Saker Falco cherrug Grey, 1834 and Gyrfalcon Falco rusticolus L. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bartáková V, Bryjová A, Nicolas V, Lavrenchenko LA, Bryja J. Mitogenomics of the endemic Ethiopian rats: looking for footprints of adaptive evolution in sky islands. Mitochondrion 2021; 57:182-191. [PMID: 33412336 DOI: 10.1016/j.mito.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/09/2022]
Abstract
Organisms living in high altitude must adapt to environmental conditions with hypoxia and low temperature, e.g. by changes in the structure and function of proteins associated with oxidative phosphorylation in mitochondria. Here we analysed the signs of adaptive evolution in 27 mitogenomes of endemic Ethiopian rats (Stenocephalemys), where individual species adapted to different elevation. Significant signals of positive selection were detected in 10 of the 13 mitochondrial protein-coding genes, with a majority of functional substitutions in the NADH dehydrogenase complex. Higher frequency of positively selected sites was found in phylogenetic lineages corresponding to Afroalpine specialists.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51 Paris, France
| | - Leonid A Lavrenchenko
- A. N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Ruiz CA, Chaney ME, Imamura M, Imai H, Tosi AJ. Predicted structural differences of four fertility-related Y-chromosome proteins in Macaca mulatta, M. fascicularis, and their Indochinese hybrids. Proteins 2020; 89:361-370. [PMID: 33146441 DOI: 10.1002/prot.26021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 11/10/2022]
Abstract
Species in the genus Macaca typically live in multimale-multifemale social groups with male macaques exhibiting some of the largest testis: body weight ratios among primates. Males are believed to experience intense levels of sperm competition. Several spermatogenesis genes are located on the Y-chromosome and, interestingly, occasional hybridization between two species has led to the introgression of the rhesus macaque (Macaca mulatta) Y-chromosome deep into the range of the long-tailed macaque (M. fascicularis). These observations have led to the prediction that the successful introgression of the rhesus Y-haplotype is due to functional differences in spermatogenesis genes compared to those of the native long-tailed Y-haplotype. We examine here four Y-chromosomal loci-RBMY, XKRY, and two nearly identical copies of CDY-and their corresponding protein sequences. The genes were surveyed in representative animals from north of, south of, and within the rhesus x long-tailed introgression zone. Our results show a series of non-synonymous amino acid substitutions present between the two Y-haplotypes. Protein structure modeling via I-TASSER revealed different folding patterns between the two species' Y-proteins, and functional predictions via TreeSAAP further reveal physicochemical differences as a result of non-synonymous substitutions. These differences inform our understanding of the evolution of primate Y-proteins involved in spermatogenesis and, in turn, have biomedical implications for human male fertility.
Collapse
Affiliation(s)
- Cody A Ruiz
- Department of Anthropology, Kent State University, Kent, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Morgan E Chaney
- Department of Anthropology, Kent State University, Kent, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Masanori Imamura
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Anthony J Tosi
- Department of Anthropology, Kent State University, Kent, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
15
|
Wilson RE, Sonsthagen SA, Smé N, Gharrett AJ, Majewski AR, Wedemeyer K, Nelson RJ, Talbot SL. Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids. Polar Biol 2020. [DOI: 10.1007/s00300-020-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Mao X, Rossiter SJ. Genome-wide data reveal discordant mitonuclear introgression in the intermediate horseshoe bat (Rhinolophus affinis). Mol Phylogenet Evol 2020; 150:106886. [PMID: 32534185 DOI: 10.1016/j.ympev.2020.106886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Closely related taxa often exhibit mitonuclear discordance attributed to introgression of mitochondrial DNA (mtDNA), yet few studies have considered the underlying causes of mtDNA introgression. Here we test for demographic versus adaptive processes as explanations for mtDNA introgression in three subspecies of the intermediate horseshoe bat (Rhinolophus affinis). We generated sequences of 1692 nuclear genes and 13 mitochondrial protein-coding genes for 48 individuals. Phylogenetic reconstructions based on 320 exon sequences and 2217 single nucleotide polymorphisms (SNPs) both revealed conflicts between the species tree and mtDNA tree. These results, together with geographic patterns of mitonuclear discordance, and shared identical or near-identical mtDNA sequences, suggest extensive introgression of mtDNA between the two parapatric mainland subspecies. Under demographic hypotheses, we would also expect to uncover traces of ncDNA introgression, however, population structure and gene flow analyses revealed little nuclear admixture. Furthermore, we found inconsistent estimates of the timing of population expansion and that of the most recent common ancestor for the clade containing introgressed haplotypes. Without a clear demographic explanation, we also examined whether introgression likely arises from adaptation. We found that five mtDNA genes contained fixed amino acid differences between introgressed and non-introgressed individuals, including putative positive selection found in one codon, although this did not show introgression. While our evidence for rejecting demographic hypotheses is arguably stronger than that for rejecting adaptation, we find no definitive support for either explanation. Future efforts will focus on larger-scale resequencing to decipher the underlying causes of discordant mitonuclear introgression in this system.
Collapse
Affiliation(s)
- Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200062, China.
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
17
|
Chai S, Tian R, Rong X, Li G, Chen B, Ren W, Xu S, Yang G. Evidence of Echolocation in the Common Shrew from Molecular Convergence with Other Echolocating Mammals. Zool Stud 2020; 59:e4. [PMID: 32494297 PMCID: PMC7262541 DOI: 10.6620/zs.2020.59-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Along with sophisticated echolocation found in bats and toothed whales, the common shrew (Sorex araneus) was confirmed to possess echolocation ability based on behavioral and experimental evidence such as high-frequency twittering and close-range spatial orientation. However, whether echolocation in the common shrew is convergent with bats and dolphins at the molecular level remains poorly understood. In this study, we gathered the coding region sequences of 11 hearing-related genes from genome data and previous studies. Convergent evolutionary analyses identified 13 amino acid residues (seven in CDH23, five in OTOF, and one in PRESTIN) under strong convergent evolution shared among the common shrew and other echolocating mammals (bats and dolphins). Furthermore, a phylogenetic tree was constructed based on the combined amino acid dataset of convergent/parallel substitutions, sites with parallel radical property changes, and sites supporting echolocator-convergence; it supported the converged topology of the simple echolocator Sorex araneus and sophisticated echolocating bats with high posterior probability. This study gives evidence at the molecular level that the common shrew echolocate and provides novel insights into the convergent evolution between the common shrew and bats and dolphins.
Collapse
Affiliation(s)
- Simin Chai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Xinghua Rong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Guiting Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Bingyao Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China. E-mail: (Xu); (Yang); (Chai); (Tian); (Rong); (Li); (Chen), (Ren)
| |
Collapse
|
18
|
Solari KA, Hadly EA. Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). Integr Zool 2018; 13:517-535. [PMID: 29851233 DOI: 10.1111/1749-4877.12332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genus Ochotona (pikas) is a clade of cold-tolerant lagomorphs that includes many high-elevation species. Pikas offer a unique opportunity to study adaptations and potential limitations of an ecologically important mammal to high-elevation hypoxia. We analyzed the evolution of 3 mitochondrial genes encoding the catalytic core of cytochrome c oxidase (COX) in 10 pika species occupying elevations from sea level to 5000 m. COX is an enzyme highly reliant on oxygen and essential for cell function. One amino acid property, the equilibrium constant (ionization of COOH), was found to be under selection in the overall protein complex. We observed a strong relationship between the net value change in this property and the elevation each species occupies, with higher-elevation species having potentially more efficient proteins. We also found evidence of selection in low-elevation species for potentially less efficient COX, perhaps trading efficiency for heat production in the absence of hypoxia. Our results suggest that different pika species may have evolved elevation-specific COX proteins, specialization that may indicate limitations in their ability to shift their elevational ranges in response to future climate change.
Collapse
Affiliation(s)
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, California, USA.,Woods Institute for the Environment, Stanford University, Stanford, California, USA.,Program for Conservation Genomics, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Horn RL, Marques AJD, Manseau M, Golding B, Klütsch CFC, Abraham K, Wilson PJ. Parallel evolution of site-specific changes in divergent caribou lineages. Ecol Evol 2018; 8:6053-6064. [PMID: 29988428 PMCID: PMC6024114 DOI: 10.1002/ece3.4154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
The parallel evolution of phenotypes or traits within or between species provides important insight into the basic mechanisms of evolution. Genetic and genomic advances have allowed investigations into the genetic underpinnings of parallel evolution and the independent evolution of similar traits in sympatric species. Parallel evolution may best be exemplified among species where multiple genetic lineages, descended from a common ancestor, colonized analogous environmental niches, and converged on a genotypic or phenotypic trait. Modern North American caribou (Rangifer tarandus) originated from three ancestral sources separated during the Last Glacial Maximum (LGM): the Beringian-Eurasian lineage (BEL), the North American lineage (NAL), and the High Arctic lineage (HAL). Historical introgression between the NAL and the BEL has been found throughout Ontario and eastern Manitoba. In this study, we first characterized the functional differentiation in the cytochrome-b (cytB) gene by identifying nonsynonymous changes. Second, the caribou lineages were used as a direct means to assess site-specific parallel changes among lineages. There was greater functional diversity within the NAL despite the BEL having greater neutral diversity. The patterns of amino acid substitutions occurring within different lineages supported the parallel evolution of cytB amino acid substitutions suggesting different selective pressures among lineages. This study highlights the independent evolution of identical amino acid substitutions within a wide-ranging mammal species that have diversified from different ancestral haplogroups and where ecological niches can invoke parallel evolution.
Collapse
Affiliation(s)
| | | | - Micheline Manseau
- Science and TechnologyEnvironment and Climate Change CanadaOttawaONCanada
- Natural Resources InstituteUniversity of ManitobaWinnipegMBCanada
| | - Brian Golding
- Department of BiologyMcMaster UniversityHamiltonONCanada
| | | | | | | |
Collapse
|
20
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Grigoryeva OO, Stakheev VV, Orlov VN. Mitochondrial Evidence of Refugial Distribution of the Pygmy Field Mouse Sylvaemus uralensis Pall. (Rodentia, Muridae) in the Northwestern Caucasus. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Chase EE, Robicheau BM, Veinot S, Breton S, Stewart DT. The complete mitochondrial genome of the hermaphroditic freshwater mussel Anodonta cygnea (Bivalvia: Unionidae): in silico analyses of sex-specific ORFs across order Unionoida. BMC Genomics 2018; 19:221. [PMID: 29587633 PMCID: PMC5870820 DOI: 10.1186/s12864-018-4583-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Doubly uniparental inheritance (DUI) of mitochondrial DNA in bivalves is a fascinating exception to strictly maternal inheritance as practiced by all other animals. Recent work on DUI suggests that there may be unique regions of the mitochondrial genomes that play a role in sex determination and/or sexual development in freshwater mussels (order Unionoida). In this study, one complete mitochondrial genome of the hermaphroditic swan mussel, Anodonta cygnea, is sequenced and compared to the complete mitochondrial genome of the gonochoric duck mussel, Anodonta anatina. An in silico assessment of novel proteins found within freshwater bivalve species (known as F-, H-, and M-open reading frames or ORFs) is conducted, with special attention to putative transmembrane domains (TMs), signal peptides (SPs), signal cleavage sites (SCS), subcellular localization, and potential control regions. Characteristics of TMs are also examined across freshwater mussel lineages. RESULTS In silico analyses suggests the presence of SPs and SCSs and provides some insight into possible function(s) of these novel ORFs. The assessed confidence in these structures and functions was highly variable, possibly due to the novelty of these proteins. The number and topology of putative TMs appear to be maintained among both F- and H-ORFs, however, this is not the case for M-ORFs. There does not appear to be a typical control region in H-type mitochondrial DNA, especially given the loss of tandem repeats in unassigned regions when compared to F-type mtDNA. CONCLUSION In silico analyses provides a useful tool to discover patterns in DUI and to navigate further in situ analyses related to DUI in freshwater mussels. In situ analysis will be necessary to further explore the intracellular localizations and possible role of these open reading frames in the process of sex determination in freshwater mussel.
Collapse
Affiliation(s)
- E. E. Chase
- Department of Biology, Acadia University, Wolfville, NS Canada
| | - B. M. Robicheau
- Department of Biology, Dalhousie University, Halifax, NS Canada
| | - S. Veinot
- Department of Biology, Dalhousie University, Halifax, NS Canada
| | - S. Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - D. T. Stewart
- Department of Biology, Acadia University, Wolfville, NS Canada
| |
Collapse
|
23
|
Bachevskaya LT, Ivanova GD, Pereverzeva VV, Agapova GA. Genetic Structure of the Coho Salmon Oncorhynchus kisutch in the Rivers of Northeastern Russia according to the Data on the Variability of the Cytochrome B Gene of Mitochondrial DNA. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017060048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Mohandesan E, Fitak RR, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi O, Raziq A, Nagy P, Stalder G, Walzer C, Faye B, Burger PA. Mitogenome Sequencing in the Genus Camelus Reveals Evidence for Purifying Selection and Long-term Divergence between Wild and Domestic Bactrian Camels. Sci Rep 2017; 7:9970. [PMID: 28855525 PMCID: PMC5577142 DOI: 10.1038/s41598-017-08995-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.
Collapse
Affiliation(s)
- Elmira Mohandesan
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Institute for Molecular Evolution and Development, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Robert R Fitak
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
- Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Adiya Yadamsuren
- Mammalian Ecology Laboratory, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Bayanzurh district, Ulaanbaatar, 210351, Mongolia
| | - Battsetseg Chuluunbat
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Bayanzurh district, Ulaanbaatar, 210351, Mongolia
| | - Omer Abdelhadi
- University of Khartoum, Department for Meat Sciences, Khartoum, Sudan
| | - Abdul Raziq
- Lasbela University of Agriculture, Water and Marine Sciences, Regional Cooperation for Development (RCD) Highway, Uthal, Pakistan
| | - Peter Nagy
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, PO Box 294239, Dubai, Umm Nahad, United Arab Emirates
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Chris Walzer
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
- International Takhi Group - Mongolia, Baigal Ordon, Ulaanbaatar, Mongolia
| | - Bernard Faye
- CIRAD-ES, UMR 112, Campus International de Baillarguet, TA C/112A, 34398, Montpellier, France
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|
25
|
Tao J, Feng C, Ai B, Kang M. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae). ANNALS OF BOTANY 2016; 118:1257-1268. [PMID: 27582362 PMCID: PMC5155596 DOI: 10.1093/aob/mcw168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/26/2016] [Accepted: 06/30/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. METHODS Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. KEY RESULTS Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5' end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. CONCLUSIONS The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1.
Collapse
Affiliation(s)
- Junjie Tao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China and
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China and
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China and
| | - Bin Ai
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China and
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China and
| |
Collapse
|
26
|
Porter ML, Roberts NW, Partridge JC. Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments. Mol Phylogenet Evol 2016; 105:160-165. [DOI: 10.1016/j.ympev.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
|
27
|
Romero PE, Weigand AM, Pfenninger M. Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life. BMC Evol Biol 2016; 16:164. [PMID: 27549326 PMCID: PMC4994307 DOI: 10.1186/s12862-016-0735-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transitions from marine to intertidal and terrestrial habitats resulted in a significant adaptive radiation within the Panpulmonata (Gastropoda: Heterobranchia). This clade comprises several groups that invaded the land realm independently and in different time periods, e.g., Ellobioidea, Systellomatophora, and Stylommatophora. Thus, mitochondrial genomes of panpulmonate gastropods are promising to screen for adaptive molecular signatures related to land invasions. RESULTS We obtained three complete mitochondrial genomes of terrestrial panpulmonates, i.e., the ellobiid Carychium tridentatum, and the stylommatophorans Arion rufus and Helicella itala. Our dataset consisted of 50 mitogenomes comprising almost all major panpulmonate lineages. The phylogenetic tree based on mitochondrial genes supports the monophyly of the clade Panpulmonata. Terrestrial lineages were sampled from Ellobioidea (1 sp.) and Stylommatophora (9 spp.). The branch-site test of positive selection detected significant non-synonymous changes in the terrestrial branches leading to Carychium (Ellobiodea) and Stylommatophora. These convergent changes occurred in the cob and nad5 genes (OXPHOS complex III and I, respectively). CONCLUSIONS The convergence of the non-synonymous changes in cob and nad5 suggest possible ancient episodes of positive selection related to adaptations to non-marine habitats. The positively selected sites in our data are in agreement with previous results in vertebrates suggesting a general pattern of adaptation to the new metabolic requirements. The demand for energy due to the colonization of land (for example, to move and sustain the body mass in the new habitat) and the necessity to tolerate new conditions of abiotic stress may have changed the physiological constraints in the early terrestrial panpulmonates and triggered adaptations at the mitochondrial level.
Collapse
Affiliation(s)
- Pedro E Romero
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute for Ecology, Evolution & Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany. .,Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima 14, Peru.
| | - Alexander M Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.,Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute for Ecology, Evolution & Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Ho WW, Smith SD. Molecular evolution of anthocyanin pigmentation genes following losses of flower color. BMC Evol Biol 2016; 16:98. [PMID: 27161359 PMCID: PMC4862180 DOI: 10.1186/s12862-016-0675-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/29/2016] [Indexed: 11/27/2022] Open
Abstract
Background Phenotypic transitions, such as trait gain or loss, are predicted to carry evolutionary consequences for the genes that control their development. For example, trait losses can result in molecular decay of the pathways underlying the trait. Focusing on the Iochrominae clade (Solanaceae), we examine how repeated losses of floral anthocyanin pigmentation associated with flower color transitions have affected the molecular evolution of three anthocyanin pathway genes (Chi, F3h, and Dfr). Results We recovered intact coding regions for the three genes in all of the lineages that have lost floral pigmentation, suggesting that molecular decay is not associated with these flower color transitions. However, two of the three genes (Chi, F3h) show significantly elevated dN/dS ratios in lineages without floral pigmentation. Maximum likelihood analyses suggest that this increase is due to relaxed constraint on anthocyanin genes in the unpigmented lineages as opposed to positive selection. Despite the increase, the values for dN/dS in both pigmented and unpigmented lineages were consistent overall with purifying selection acting on these loci. Conclusions The broad conservation of anthocyanin pathway genes across lineages with and without floral anthocyanins is consistent with the growing consensus that losses of pigmentation are largely achieved by changes in gene expression as opposed to structural mutations. Moreover, this conservation maintains the potential for regain of flower color, and indicates that evolutionary losses of floral pigmentation may be readily reversible. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0675-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Winnie W Ho
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA.
| |
Collapse
|
29
|
Almeida D, Maldonado E, Khan I, Silva L, Gilbert MTP, Zhang G, Jarvis ED, O'Brien SJ, Johnson WE, Antunes A. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds. Genome Biol Evol 2016; 8:1115-31. [PMID: 26979796 PMCID: PMC4860681 DOI: 10.1093/gbe/evw041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/19/2022] Open
Abstract
The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 avian whole genomes representing all major extant bird clades. Overall, 12 CYP2 subfamilies were identified, including the first description of the CYP2F, CYP2G, and several CYP2AF genes in avian genomes. Some of the CYP2 genes previously described as being lineage-specific, such as CYP2K and CYP2W, are ubiquitous to all avian groups. Furthermore, we identified a large number of CYP2J copies, which have been associated previously with water reabsorption. We detected positive selection in the avian CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC subfamilies. Moreover, we identified new substrate recognition sites (SRS0, SRS2_SRS3, and SRS3.1) and heme binding areas that influence CYP2 structure and function of functional importance as under significant positive selection. Some of the positively selected sites in avian CYP2D are located within the same SRS1 region that was previously linked with the metabolism of plant toxins. Additionally, we find that selective constraint variations in some avian CYP2 subfamilies are consistently associated with different feeding habits (CYP2H and CYP2J), habitats (CYP2D, CYP2H, CYP2J, and CYP2K), and migratory behaviors (CYP2D, CYP2H, and CYP2J). Overall, our findings indicate that there has been active enzyme site selection on CYP2 subfamilies and differential selection associated with different life history traits among birds.
Collapse
Affiliation(s)
- Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Emanuel Maldonado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Imran Khan
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzen, China Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Erich D Jarvis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia Oceanographic Center, Nova Southeastern University, Ft Lauderdale
| | - Warren E Johnson
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
30
|
Pereverzeva VV, Primak AA. Genetic diversity of the cytochrome b gene fragment haplotypes in red-backed vole Myodes (Clethrionomys) rutilus Pallas, 1779. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Eyun SI, Moriyama H, Hoffmann FG, Moriyama EN. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors. PLoS One 2016; 11:e0151023. [PMID: 26963722 PMCID: PMC4786312 DOI: 10.1371/journal.pone.0151023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.
Collapse
Affiliation(s)
- Seong-il Eyun
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
| | - Federico G. Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology and Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Etsuko N. Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gu P, Liu W, Yao YF, Ni QY, Zhang MW, Li DY, Xu HL. Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:455-62. [PMID: 24708132 DOI: 10.3109/19401736.2014.900667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adaptive evolutions to high-altitude adaptation have been intensively studied in mammals. However, considering the additional vertebrate groups, new perception regarding selection challenged by high-altitude stress on mitochondrial genome can be gained. To test this hypothesis, we compiled and analyzed the mitochondrial genomes of 5 alpine pheasants and 12 low-altitude species in Phasianidae. The results that evolutionary rates of ATP6 and ND6 showing significant fluctuation among branches when involved with five alpine pheasants revealed both genes might have implications with adapting to highland environment. The radical physico-chemical property changes identified by the modified MM01 model, including composition (C) and equilibrium constant (ionization of COOH) (Pk') in ATP6 and beta-structure tendencies (Pβ), Pk', and long-range non-bonded energy (El) in ND6, suggested that minor overall adjustments in size, protein conformation and relative orientation of reaction interfaces have been optimized to provide the ideal environments for electron transfer, proton translocation and generation of adenosine triphosphate (ATP). Additionally, three unique substitution sites were identified under selection in ND6, which could be potentially important adaptive changes contributing to cellular energy production. Our findings suggested that adaptive evolution may occur in alpine pheasants, which are an important complement to the knowledge of genetic mechanisms against the high-altitude environment in non-mammal animals.
Collapse
Affiliation(s)
- Peng Gu
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and.,b Forestry College, Sichuan Agricultural University , Ya'an , China
| | - Wei Liu
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and.,b Forestry College, Sichuan Agricultural University , Ya'an , China
| | - Yong-fang Yao
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Qing-yong Ni
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Ming-wang Zhang
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Di-yan Li
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Huai-liang Xu
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| |
Collapse
|
33
|
Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions. PLoS One 2015; 10:e0135405. [PMID: 26285039 PMCID: PMC4540416 DOI: 10.1371/journal.pone.0135405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I.
Collapse
|
34
|
Consuegra S, John E, Verspoor E, de Leaniz CG. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 2015; 47:58. [PMID: 26138253 PMCID: PMC4490732 DOI: 10.1186/s12711-015-0138-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) is frequently used in population genetic studies and is usually considered as a neutral marker. However, given the functional importance of the proteins encoded by the mitochondrial genome, and the prominent role of mitochondria in cellular energy production, the assumption of neutrality is increasingly being questioned. Results We tested for evidence of selection on the mitochondrial genome of the Atlantic salmon, which is a locally adapted and widely farmed species and is distributed across a large latitudinal cline. We analysed 20 independent regions of the salmon mtDNA that represented nine genes (ND1, ND2, ND3, COX1, COX2, ATP6, ND4, ND5, and CYTB). These 20 mtDNA regions were sequenced using a 454 approach from samples collected across the entire European range of this species. We found evidence of positive selection at the ND1, ND3 and ND4 genes, which is supported by at least two different codon-based methods and also by differences in the chemical properties of the amino acids involved. The geographical distribution of some of the mutations indicated to be under selection was not random, and some mutations were private to artic populations. We discuss the possibility that selection acting on the Atlantic salmon mtDNA genome might be related to the need for increased metabolic efficiency at low temperatures. Conclusions The analysis of sequences representing nine mitochondrial genes that are involved in the OXPHOS pathway revealed signatures of positive selection in the mitochondrial genome of the Atlantic salmon. The properties of the amino acids involved suggest that some of the mutations that were identified to be under positive selection might have functional implications, possibly in relation to metabolic efficiency. Experimental evidence, and better understanding of regional phylogeographic structuring, are needed to clarify the potential role of selection acting on the mitochondrial genome of Atlantic salmon and other locally adapted fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0138-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Consuegra
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Elgan John
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Eric Verspoor
- Inverness College, University of Highlands and Islands, Inverness, IV1 1SA, Scotland, UK.
| | | |
Collapse
|
35
|
Morales HE, Pavlova A, Joseph L, Sunnucks P. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 2015; 24:2820-37. [DOI: 10.1111/mec.13203] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Hernán E. Morales
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Leo Joseph
- Australian National Wildlife Collection; CSIRO National Facilities and Collections; GPO Box 1700 Canberra ACT 2601 Australia
| | - Paul Sunnucks
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
36
|
Wang J, Yu X, Hu B, Zheng J, Xiao W, Hao Y, Liu W, Wang D. Physicochemical evolution and molecular adaptation of the cetacean osmoregulation-related gene UT-A2 and implications for functional studies. Sci Rep 2015; 5:8795. [PMID: 25762239 PMCID: PMC4357013 DOI: 10.1038/srep08795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
Abstract
Cetaceans have an enigmatic evolutionary history of re-invading aquatic habitats. One of their essential adaptabilities that has enabled this process is their homeostatic strategy adjustment. Here, we investigated the physicochemical evolution and molecular adaptation of the cetacean urea transporter UT-A2, which plays an important role in urine concentration and water homeostasis. First, we cloned UT-A2 from the freshwater Yangtze finless porpoise, after which bioinformatics analyses were conducted based on available datasets (including freshwater baiji and marine toothed and baleen whales) using MEGA, PAML, DataMonkey, TreeSAAP and Consurf. Our findings suggest that the UT-A2 protein shows folding similar to that of dvUT and UT-B, whereas some variations occurred in the functional So and Si regions of the selectivity filter. Additionally, several regions of the cetacean UT-A2 protein have experienced molecular adaptations. We suggest that positive-destabilizing selection could contribute to adaptations by influencing its biochemical and conformational character. The conservation of amino acid residues within the selectivity filter of the urea conduction pore is likely to be necessary for urea conduction, whereas the non-conserved amino acid replacements around the entrance and exit of the conduction pore could potentially affect the activity, which could be interesting target sites for future mutagenesis studies.
Collapse
Affiliation(s)
- Jingzhen Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
| | - Xueying Yu
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bo Hu
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jinsong Zheng
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wuhan Xiao
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
37
|
Pereira J, Johnson WE, O’Brien SJ, Jarvis ED, Zhang G, Gilbert MTP, Vasconcelos V, Antunes A. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One 2014; 9:e74132. [PMID: 25549322 PMCID: PMC4280113 DOI: 10.1371/journal.pone.0074132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.
Collapse
Affiliation(s)
- Joana Pereira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Warren E. Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, N. Ocean Drive, Nova Southeastern University, Ft. Lauderdale, Florida, United States of America
| | - Erich D. Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zoon, Yantian District, Shenzhen, China
| | - M. Thomas P. Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
38
|
Filipi K, Marková S, Searle JB, Kotlík P. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Mol Phylogenet Evol 2014; 82 Pt A:245-57. [PMID: 25450101 DOI: 10.1016/j.ympev.2014.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
We have revisited the mtDNA phylogeny of the bank vole Clethrionomys glareolus based on Sanger and next-generation Illumina sequencing of 32 complete mitochondrial genomes. The bank vole is a key study species for understanding the response of European fauna to the climate change following the Last Glacial Maximum (LGM) and one of the most convincing examples of a woodland mammal surviving in cryptic northern glacial refugia in Europe. The genomes sequenced included multiple representatives of each of the eight bank vole clades previously described based on cytochrome b (cob) sequences. All clades with the exception of the Basque - likely a misidentified pseudogene clade - were highly supported in all phylogenetic analyses and the relationships between the clades were resolved with high confidence. Our data extend the distribution of the Carpathian clade, the marker of a northern glacial refugium in the Carpathian Mountains, to include Britain and Fennoscandia (but not adjacent areas of continental Europe). The Carpathian sub-clade that colonized Britain and Fennoscandia had a somewhat different history from the sub-clade currently found in or close to the Carpathians and may have derived from a more north-westerly refugial area. The two bank vole populations that colonized Britain at the end of the last glaciation are for the first time linked with particular continental clades, the first colonists with the Carpathian clade and the second colonists with the western clade originating in a more southerly refugium in the vicinity of the Alps. We however found no evidence that a functional divergence of proteins encoded in the mitochondrial genome promoted the partial genetic replacement of the first colonists by the second colonists detected previously in southern Britain. We did identify one codon site that changed more often and more radically in the tree than expected and where the observed amino acid change may affect the reductase activity of the cytochrome bc1 complex, but the change was not specific to a particular clade. We also found an excess of radical changes to the primary protein structure for geographically restricted clades from southern Italy and Norway, respectively, possibly related to stronger selective pressure at the latitudinal extremes of the bank vole distribution. However, overall, we find little evidence of pervasive effects of deviation from neutrality on bank vole mtDNA phylogeography.
Collapse
Affiliation(s)
- Karolína Filipi
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721 Liběchov, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12844 Prague 2, Czech Republic
| | - Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721 Liběchov, Czech Republic.
| |
Collapse
|
39
|
Maldonado E, Sunagar K, Almeida D, Vasconcelos V, Antunes A. IMPACT_S: integrated multiprogram platform to analyze and combine tests of selection. PLoS One 2014; 9:e96243. [PMID: 25329307 PMCID: PMC4203653 DOI: 10.1371/journal.pone.0096243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Among the major goals of research in evolutionary biology are the identification of genes targeted by natural selection and understanding how various regimes of evolution affect the fitness of an organism. In particular, adaptive evolution enables organisms to adapt to changing ecological factors such as diet, temperature, habitat, predatory pressures and prey abundance. An integrative approach is crucial for the identification of non-synonymous mutations that introduce radical changes in protein biochemistry and thus in turn influence the structure and function of proteins. Performing such analyses manually is often a time-consuming process, due to the large number of statistical files generated from multiple approaches, especially when assessing numerous taxa and/or large datasets. We present IMPACT_S, an easy-to-use Graphical User Interface (GUI) software, which rapidly and effectively integrates, filters and combines results from three widely used programs for assessing the influence of selection: Codeml (PAML package), Datamonkey and TreeSAAP. It enables the identification and tabulation of sites detected by these programs as evolving under the influence of positive, neutral and/or negative selection in protein-coding genes. IMPACT_S further facilitates the automatic mapping of these sites onto the three-dimensional structures of proteins. Other useful tools incorporated in IMPACT_S include Jmol, Archaeopteryx, Gnuplot, PhyML, a built-in Swiss-Model interface and a PDB downloader. The relevance and functionality of IMPACT_S is shown through a case study on the toxicoferan-reptilian Cysteine-rich Secretory Proteins (CRiSPs). IMPACT_S is a platform-independent software released under GPLv3 license, freely available online from http://impact-s.sourceforge.net.
Collapse
Affiliation(s)
- Emanuel Maldonado
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Kartik Sunagar
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniela Almeida
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
40
|
Dong J, Mao X, Sun H, Irwin DM, Zhang S, Hua P. Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus). Genetica 2014; 142:483-94. [DOI: 10.1007/s10709-014-9794-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
41
|
Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Garvin
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| | - Joseph P. Bielawski
- Department of Biology; Dalhousie University; Halifax NS Canada
- Department of Mathematics & Statistics; Dalhousie University; Halifax NS Canada
| | | | - Anthony J. Gharrett
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| |
Collapse
|
42
|
Malyarchuk B, Derenko M, Denisova G. A mitogenomic phylogeny and genetic history of sable (Martes zibellina). Gene 2014; 550:56-67. [PMID: 25110108 DOI: 10.1016/j.gene.2014.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022]
Abstract
We assessed phylogeny of sable (Martes zibellina, Linnaeus, 1758) by sequence analysis of nearly complete, new mitochondrial genomes in 36 specimens from different localities in northern Eurasia (Primorye, Khabarovsk and Krasnoyarsk regions, the Kamchatka Peninsula, the Kuril Islands and the Urals). Phylogenetic analysis of mtDNA sequences demonstrates that two clades, A and BC, radiated about 200-300 thousandyears ago (kya) according to results of Bayesian molecular clock and RelTime analyses of different mitogenome alignments (nearly complete mtDNA sequences, protein-coding region, and synonymous sites), while the age estimates of clades A, B and C fall within the Late Pleistocene (~50-140 kya). Bayesian skyline plots (BSPs) of sable population size change based on analysis of nearly complete mtDNAs show an expansion around 40 kya in the warm Karganian time, without a decline of population size around the Last Glacial Maximum (21 kya). The BSPs based on synonymous clock rate indicate that M. zibellina experienced demographic expansions later, approximately 22 kya. The A2a clade that colonized Kamchatka ~23-50 kya (depending on the mutation rate used) survived the last glaciation there as demonstrated by the BSP analysis. In addition, we have found evidence of positive selection acting at ND4 and cytochrome b genes, thereby suggesting adaptive evolution of the A2a clade in Kamchatka.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Institute of Biological Problems of the North, Magadan, 685000 Russia.
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Magadan, 685000 Russia
| | - Galina Denisova
- Institute of Biological Problems of the North, Magadan, 685000 Russia
| |
Collapse
|
43
|
Bachevskaya LT, Pereverzeva VV, Ivanova GD, Agapova GA, Primak AA. Genetic structure of the Siberian Sucker (Catostomus catostomus rostratus) according to data on sequence variation of the mtDNA cytochrome b gene. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014040037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Rottenberg H. Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b. J Bioenerg Biomembr 2014; 46:435-45. [PMID: 24827527 DOI: 10.1007/s10863-014-9552-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/07/2014] [Indexed: 11/26/2022]
Abstract
The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA, 18938, USA,
| |
Collapse
|
45
|
Melo-Ferreira J, Vilela J, Fonseca MM, da Fonseca RR, Boursot P, Alves PC. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol Evol 2014; 6:886-96. [PMID: 24696399 PMCID: PMC4007550 DOI: 10.1093/gbe/evu059] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive.
Collapse
Affiliation(s)
- José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
| | - Joana Vilela
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Portugal
| | - Miguel M. Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Spain
| | - Rute R. da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Portugal
| | - Pierre Boursot
- Institut des Sciences de l’Evolution, Université Montpellier 2, CNRS, IRD, France
| | - Paulo C. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula
| |
Collapse
|
46
|
Malyarchuk BA, Derenko MV, Denisova GA. Episodes of adaptive evolution of mitochondrial genome in asiatic salamanders (Amphibia, Caudata, Hynobiidae). RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Tomasco IH, Lessa EP. Two mitochondrial genes under episodic positive selection in subterranean octodontoid rodents. Gene 2014; 534:371-8. [DOI: 10.1016/j.gene.2013.09.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/28/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022]
|
48
|
Machado JP, Vasconcelos V, Antunes A. Adaptive functional divergence of the warm temperature acclimation-related protein (WAP65) in fishes and the ortholog hemopexin (HPX) in mammals. J Hered 2013; 105:237-52. [PMID: 24344252 DOI: 10.1093/jhered/est087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is an important mechanism that leads to genetic novelty. Different, nonexclusive processes are likely involved, and many adaptive and nonadaptive events may contribute to the maintenance of duplicated genes. In some teleosts, a duplicate copy of the mammalian ortholog Hemopexin (HPX) is present, known as the warm temperature acclimation-related protein (WAP65). Both WAP65 and HPX have been associated with iron homeostasis due to the affinity to bind the toxic-free heme circulating in the blood stream. We have assessed the evolutionary dynamics of WAP65 and HPX genes to understand the adaptive role of positive selection at both nucleotide and amino acid level. Our results showed an asymmetrical evolution between the paralogs WAP65-1 and WAP65-2 after duplication with a slight acceleration of the evolutionary rate in WAP65-1, but not in WAP65-2, and few sites contributing to the functional distinction between the paralogs, whereas the majority of the protein remained under negative selection or relaxed negative selection. WAP65-1 is functionally more distinct from the ancestral protein function than WAP65-2. HPX is phylogenetically closer to WAP65-2 but even so functional divergence was detected between both proteins. In addition, HPX showed a fast rate of evolution when compared with both WAP65-1 and WAP65-2 genes. The assessed 3-dimensional (3-D) structure of WAP65-1 and WAP65-2 suggests that the functional differences detected are not causing noticeable structural changes in these proteins. However, such subtle changes between WAP65 paralogs may be important to understand the differential gene retention of both copies in 20 out of 30 teleosts species studied.
Collapse
Affiliation(s)
- João Paulo Machado
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal
| | | | | |
Collapse
|
49
|
Gonçalves VR, Sobrinho IS, Malagó W, Henrique-Silva F, de Brito RA. Transcriptome analysis of female reproductive tissues of Anastrepha obliqua and molecular evolution of eggshell proteins in the fraterculus group. INSECT MOLECULAR BIOLOGY 2013; 22:551-561. [PMID: 24137793 DOI: 10.1111/imb.12045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The investigation of cDNA libraries has been an important tool for the identification of new genes in nonmodel species such as the fruit flies from the Anastrepha fraterculus group. In the present study, we constructed a cDNA library from the female reproductive tissues of Anastrepha obliqua aiming to identify genes with high evolutionary rates. We sequenced 2304 clones obtained from the female reproductive tissues of A. obliqua flies. The expressed sequence tags generated a total of 816 unigenes which were classified into different protein classes. Among these,we identified chorionic and vitelline protein genes as being among the most highly expressed. We used unigene sequences to amplify a set of chorionic and vitelline genes, involved in the formation of the eggshell,in species of the fraterculus group. Four chorionic genes and two vitelline genes showed evidence of positive selection along the Anastrepha and/or Tephritidae lineage. The signal of selection detected for Vm26Aa was possibly generated by a gene duplication event. The rapid evolutionary rates indicate that these genes could serve as important markers in population and evolutionary studies, not only for species of this group, but possibly also for other Diptera.
Collapse
Affiliation(s)
- V R Gonçalves
- Departamento de Genética e Evolução, UniversidadeFederal de São Carlos, São Carlos, Brazil
| | | | | | | | | |
Collapse
|
50
|
Abstract
Background Molecular evolution is a very active field of research, with several complementary approaches, including dN/dS, HON90, MM01, and others. Each has documented strengths and weaknesses, and no one approach provides a clear picture of how natural selection works at the molecular level. The purpose of this work is to present a simple new method that uses quantitative amino acid properties to identify and characterize directional selection in proteins. Methods Inferred amino acid replacements are viewed through the prism of a single physicochemical property to determine the amount and direction of change caused by each replacement. This allows the calculation of the probability that the mean change in the single property associated with the amino acid replacements is equal to zero (H0: μ = 0; i.e., no net change) using a simple two-tailed t-test. Results Example data from calanoid and cyclopoid copepod cytochrome oxidase subunit I sequence pairs are presented to demonstrate how directional selection may be linked to major shifts in adaptive zones, and that convergent evolution at the whole organism level may be the result of convergent protein adaptations. Conclusions Rather than replace previous methods, this new method further complements existing methods to provide a holistic glimpse of how natural selection shapes protein structure and function over evolutionary time.
Collapse
|