1
|
Serrano-Solís V, Toscano Soares PE, de Farías ST. Genomic Signatures Among Acanthamoeba polyphaga Entoorganisms Unveil Evidence of Coevolution. J Mol Evol 2018; 87:7-15. [PMID: 30456441 DOI: 10.1007/s00239-018-9877-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022]
Abstract
The definition of a genomic signature (GS) is "the total net response to selective pressure". Recent isolation and sequencing of naturally occurring organisms, hereby named entoorganisms, within Acanthamoeba polyphaga, raised the hypothesis of a common genomic signature despite their diverse and unrelated evolutionary origin. Widely accepted and implemented tests for GS detection are oligonucleotide relative frequencies (OnRF) and relative codon usage (RCU) surveys. A common pattern and strong correlations were unveiled from OnRFs among A. polyphaga's Mimivirus and virophage Sputnik. RCU showed a common A-T bias at third codon position. We expanded tests to the amoebal mitochondrial genome and amoeba-resistant bacteria, achieving strikingly coherent results to the aforementioned viral analyses. The GSs in these entoorganisms of diverse evolutionary origin are coevolutionarily conserved within an intracellular environment that provides sanctuary for species of ecological and biomedical relevance.
Collapse
Affiliation(s)
- Víctor Serrano-Solís
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Centro de Ciencias Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Paulo Eduardo Toscano Soares
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Centro de Ciencias Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sávio T de Farías
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Centro de Ciencias Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
2
|
Forsdyke DR. The chromosomal basis of species initiation: Prdm9 as an anti-speciation gene. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Gatherer D. Genome Signatures, Self-Organizing Maps and Higher Order Phylogenies: A Parametric Analysis. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genome signatures are data vectors derived from the compositional statistics of DNA. The self-organizing map (SOM) is a neural network method for the conceptualisation of relationships within complex data, such as genome signatures. The various parameters of the SOM training phase are investigated for their effect on the accuracy of the resulting output map. It is concluded that larger SOMs, as well as taking longer to train, are less sensitive in phylogenetic classification of unknown DNA sequences. However, where a classification can be made, a larger SOM is more accurate. Increasing the number of iterations in the training phase of the SOM only slightly increases accuracy, without improving sensitivity. The optimal length of the DNA sequence k-mer from which the genome signature should be derived is 4 or 5, but shorter values are almost as effective. In general, these results indicate that small, rapidly trained SOMs are generally as good as larger, longer trained ones for the analysis of genome signatures. These results may also be more generally applicable to the use of SOMs for other complex data sets, such as microarray data.
Collapse
Affiliation(s)
- Derek Gatherer
- MRC Virology Unit, Institute of Virology. Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
4
|
Implications of human genome structural heterogeneity: functionally related genes tend to reside in organizationally similar genomic regions. BMC Genomics 2014; 15:252. [PMID: 24684786 PMCID: PMC4234528 DOI: 10.1186/1471-2164-15-252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 03/21/2014] [Indexed: 01/30/2023] Open
Abstract
Background In an earlier study, we hypothesized that genomic segments with different sequence
organization patterns (OPs) might display functional specificity despite their
similar GC content. Here we tested this hypothesis by dividing the human genome
into 100 kb segments, classifying these segments into five compositional
groups according to GC content, and then characterizing each segment within the
five groups by oligonucleotide counting (k-mer analysis; also referred to as
compositional spectrum analysis, or CSA), to examine the distribution of sequence
OPs in the segments. We performed the CSA on the entire DNA, i.e., its coding and
non-coding parts the latter being much more abundant in the genome than the
former. Results We identified 38 OP-type clusters of segments that differ in their compositional
spectrum (CS) organization. Many of the segments that shared the same OP type were
enriched with genes related to the same biological processes (developmental,
signaling, etc.), components of biochemical complexes, or organelles. Thirteen
OP-type clusters showed significant enrichment in genes connected to specific
gene-ontology terms. Some of these clusters seemed to reflect certain events
during periods of horizontal gene transfer and genome expansion, and subsequent
evolution of genomic regions requiring coordinated regulation. Conclusions There may be a tendency for genes that are involved in the same biological
process, complex or organelle to use the same OP, even at a distance of ~
100 kb from the genes. Although the intergenic DNA is non-coding, the general
pattern of sequence organization (e.g., reflected in over-represented
oligonucleotide “words”) may be important and were protected, to some
extent, in the course of evolution.
Collapse
|
5
|
Abstract
In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation in bacteria, and define the phylogenetic relationships within the Neisseriaceae family.
Collapse
|
6
|
Frenkel S, Kirzhner V, Korol A. Organizational heterogeneity of vertebrate genomes. PLoS One 2012; 7:e32076. [PMID: 22384143 PMCID: PMC3288070 DOI: 10.1371/journal.pone.0032076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/23/2012] [Indexed: 01/06/2023] Open
Abstract
Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.
Collapse
Affiliation(s)
| | | | - Abraham Korol
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
7
|
Abstract
To detect positive Darwinian selection it is thought essential to compare two sequences. Despite its defects, "the comparative method rules." However, genes evolving rapidly under positive selection conflict more with internal forces (the genome phenotype) than genes evolving slowly under negative selection. In particular, there is conflict with stem-loop potential. The conflict between protein-encoding potential (primary information) and stem-loop potential (secondary information) permits detection of positive selection in a single sequence. The degree to which secondary information is compromised provides a measure of the speed of transmission of primary information. Thus, the sovereignty of the comparative method is challenged not only by its own defects, but also by the availability of a single-sequence method. However, while of limited utility for positive selection, the comparative method casts new light on Darwin's great question — the origin of species. Comparison of rates of synonymous and non-synonymous mutation suggests that branching into new species begins with synonymous mutations.
Collapse
Affiliation(s)
- DONALD R. FORSDYKE
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L3N6, Canada
| |
Collapse
|
8
|
Peto M, Grant DM, Shoemaker RC, Cannon SB. Applying small-scale DNA signatures as an aid in assembling soybean chromosome sequences. Adv Bioinformatics 2010; 2010:976792. [PMID: 20827309 PMCID: PMC2933861 DOI: 10.1155/2010/976792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
Previous work has established a genomic signature based on relative counts of the 16 possible dinucleotides. Until now, it has been generally accepted that the dinucleotide signature is characteristic of a genome and is relatively homogeneous across a genome. However, we found some local regions of the soybean genome with a signature differing widely from that of the rest of the genome. Those regions were mostly centromeric and pericentromeric, and enriched for repetitive sequences. We found that DNA binding energy also presented large-scale patterns across soybean chromosomes. These two patterns were helpful during assembly and quality control of soybean whole genome shotgun scaffold sequences into chromosome pseudomolecules.
Collapse
Affiliation(s)
- Myron Peto
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - David M. Grant
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Randy C. Shoemaker
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Steven B. Cannon
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Perry SC, Beiko RG. Distinguishing microbial genome fragments based on their composition: evolutionary and comparative genomic perspectives. Genome Biol Evol 2010; 2:117-31. [PMID: 20333228 PMCID: PMC2839357 DOI: 10.1093/gbe/evq004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2010] [Indexed: 01/23/2023] Open
Abstract
It is well known that patterns of nucleotide composition vary within and among
genomes, although the reasons why these variations exist are not completely
understood. Between-genome compositional variation has been exploited to assign
environmental shotgun sequences to their most likely originating genomes,
whereas within-genome variation has been used to identify recently acquired
genetic material such as pathogenicity islands. Recent sequence assignment
techniques have achieved high levels of accuracy on artificial data sets, but
the relative difficulty of distinguishing lineages with varying degrees of
relatedness, and different types of genomic sequence, has not been examined in
depth. We investigated the compositional differences in a set of 774 sequenced
microbial genomes, finding rapid divergence among closely related genomes, but
also convergence of compositional patterns among genomes with similar habitats.
Support vector machines were then used to distinguish all pairs of genomes based
on genome fragments 500 nucleotides in length. The nearly 300,000 accuracy
scores obtained from these trials were used to construct general models of
distinguishability versus taxonomic and compositional indices of genomic
divergence. Unusual genome pairs were evident from their large residuals
relative to the fitted model, and we identified several factors including genome
reduction, putative lateral genetic transfer, and habitat convergence that
influence the distinguishability of genomes. The positional, compositional, and
functional context of a fragment within a genome has a strong influence on its
likelihood of correct classification, but in a way that depends on the taxonomic
and ecological similarity of the comparator genome.
Collapse
Affiliation(s)
- Scott C Perry
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
10
|
Soto W, Lostroh CP, Nishiguchi MK. Physiological Responses to Stress in the Vibrionaceae. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-9449-0_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Thompson CC, Vicente ACP, Souza RC, Vasconcelos ATR, Vesth T, Alves N, Ussery DW, Iida T, Thompson FL. Genomic taxonomy of Vibrios. BMC Evol Biol 2009; 9:258. [PMID: 19860885 PMCID: PMC2777879 DOI: 10.1186/1471-2148-9-258] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 10/27/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. RESULTS We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, < or = 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. CONCLUSION The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microrganims, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Rangel C Souza
- National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av. Getúlio Vargas 333, Quitandinha, 25651-070, Petropolis, RJ, Brazil
| | - Ana Tereza R Vasconcelos
- National Laboratory for Scientific Computing, Department of Applied and Computational Mathematics, Laboratory of Bioinformatics, Av. Getúlio Vargas 333, Quitandinha, 25651-070, Petropolis, RJ, Brazil
| | - Tammi Vesth
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nelson Alves
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| | - David W Ussery
- Center for Biological Sequence Analysis, Department of Biotechnology, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fabiano L Thompson
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| |
Collapse
|
12
|
Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2009; 2:159-67. [PMID: 19054742 DOI: 10.1155/2008/829730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results.
Collapse
|
13
|
Mrazek J. Phylogenetic Signals in DNA Composition: Limitations and Prospects. Mol Biol Evol 2009; 26:1163-9. [DOI: 10.1093/molbev/msp032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
14
|
Kirzhner V, Paz A, Volkovich Z, Nevo E, Korol A. Different clustering of genomes across life using the A-T-C-G and degenerate R-Y alphabets: early and late signaling on genome evolution? J Mol Evol 2007; 64:448-56. [PMID: 17479343 DOI: 10.1007/s00239-006-0178-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In this study, we have calculated distances between genomes based on our previously developed compositional spectra (CS) analysis. The study was conducted using genomes of 39 species of Eukarya, Eubacteria, and Archaea. Based on CS distances, we produced two different consensus dendrograms for four- and two-letter (purine-pyrimidine) alphabets. A comparison of the obtained structure using purine-pyrimidine alphabet with the standard three-kingdom (3K) scheme reveals substantial similarity. Surprisingly, this is not the case when the same procedure is based on the four-letter alphabet. In this situation, we also found three main clusters-but different from those in the 3K scheme. In particular, one of the clusters includes Eukarya and thermophilic bacteria and a part of the considered Archaea species. We speculate that the key factor in the last classification (based on the A-T-G-C alphabet) is related to ecology: two ecological parameters, temperature and oxygen, distinctly explain the clustering revealed by compositional spectra in the four-letter alphabet. Therefore, we assume that this result reflects two interdependent processes: evolutionary divergence and superimposed ecological convergence of the genomes, albeit another process, horizontal transfer, cannot be excluded as an important contributing factor.
Collapse
Affiliation(s)
- V Kirzhner
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | | | | | | |
Collapse
|
15
|
Paz A, Mester D, Nevo E, Korol A. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs. J Mol Evol 2007; 64:248-60. [PMID: 17211550 DOI: 10.1007/s00239-006-0135-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 11/19/2006] [Indexed: 01/05/2023]
Abstract
We analyzed precursor messenger RNAs (pre-mRNAs) of 12 eukaryotic species. In each species, three groups of highly expressed genes, ribosomal proteins, heat shock proteins, and amino-acyl tRNA synthetases, were compared with a control group (randomly selected genes). The purine-pyrimidine (R-Y) composition of pre-mRNAs of the three targeted gene groups proved to differ significantly from the control. The exons of the three groups tested have higher purine contents and R-tract abundance and lower abundance of Y-tracts compared to the control (R-tract-tract of sequential purines with Rn>or=5; Y-tract-tract of sequential pyrimidines with Yn>or=5). In species widely employing "intron definition" in the splicing process, the Y content of introns of the three targeted groups appeared to be higher compared to the control group. Furthermore, in all examined species, the introns of the targeted genes have a lower abundance of R-tracts compared to the control. We hypothesized that the R-Y composition of the targeted gene groups contributes to high rate and efficiency of both splicing and translation, in addition to the mRNA coding role. This is presumably achieved by (1) reducing the possibility of the formation of secondary structures in the mRNA, (2) using the R-tracts and R-biased sequences as exonic splicing enhancers, (3) lowering the amount of targets for pyrimidine tract binding protein in the exons, and (4) reducing the amount of target sequences for binding of serine/arginine-rich (SR) proteins in the introns, thereby allowing SR proteins to bind to proper (exonic) targets.
Collapse
Affiliation(s)
- A Paz
- Institute of Evolution, Haifa University, Mount Carmel, Haifa, 31905, Israel
| | | | | | | |
Collapse
|
16
|
Forsdyke DR. Conflict Resolution. Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|