1
|
de Miguel M, Rodríguez-Quilón I, Heuertz M, Hurel A, Grivet D, Jaramillo-Correa JP, Vendramin GG, Plomion C, Majada J, Alía R, Eckert AJ, González-Martínez SC. Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait., Pinaceae). Mol Ecol 2022; 31:2089-2105. [PMID: 35075727 DOI: 10.1111/mec.16367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic, i.e., they have a genetic architecture determined by numerous loci each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyze this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response traits) in a clonal common-garden network, planted in contrasted environments (over 12,500 trees). Most of the analyzed traits showed evidence of local adaptation based on Qst -Fst comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.
Collapse
Affiliation(s)
- Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.,EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabel Rodríguez-Quilón
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | | | - Agathe Hurel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Juan-Pablo Jaramillo-Correa
- Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, AP 70-275, México City, CDMX 04510, Mexico
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino (FI), Italy
| | | | - Juan Majada
- Sección Forestal, SERIDA, Finca Experimental ''La Mata'', 33820, Grado, Principado de Asturias, Spain
| | - Ricardo Alía
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | | |
Collapse
|
2
|
Zhang L, Yang F, Bai X, Yao Y, Li J. Genetic polymorphism analysis of 23 STR loci in the Tujia population from Chongqing, Southwest China. Int J Legal Med 2020; 135:761-763. [PMID: 32249359 DOI: 10.1007/s00414-020-02287-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
To evaluate the applicability of 23 autosomal STR loci (D10S1248, D11S4463, D12ATA63, D14S1434, D17S1301, D18S853, D1GATA113, D1S1627, D6S1017, D20S1082, D20S482, D17S974, D22S1045, D1S1677, D2S1776, D2S441, D3S4529, D4S2408, D9S1122D5S2500, D6S474, D18S51, D9S2157) included in DNA Typer™ 25 Kit for individual identification and parentage testing, allele frequencies and forensic efficiency parameters were first obtained from healthy, unrelated 506 Chongqing Tujia individuals. A total of 1012 alleles were identified in 23 STR loci, and allele frequencies ranged from 0.001 to 0.5761. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) of the 23 STR loci were 0.999999999999999999999753 and 0.99999967, respectively. These results suggested that 23 autosomal STR loci could be used as an effective tool for forensic application in Chongqing Tujia population. Comprehensive comparisons were conducted based on the analysis of genetic distance, principal component analysis (PCA), multidimensional scaling plot (MDS), and phylogenetic tree to explore the interpopulation genetic relationship. Our results revealed that Chongqing Tujia keeps the more relatively genetic similarity with Hunan Han, Hubei Tujia, and Sichuan Han, which could be interpreted by that those populations were originated from the same ethnic ancestor or genetic communication were happened in adjacent areas.
Collapse
Affiliation(s)
- Li Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Fan Yang
- Institute of Forensic Science, Ministry of Public Security of China Beijing, Beijing, 100038, China
| | - Xue Bai
- Institute of Forensic Science, Ministry of Public Security of China Beijing, Beijing, 100038, China
| | - Yiren Yao
- Institute of Forensic Science, Ministry of Public Security of China Beijing, Beijing, 100038, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Pyhäjärvi T, Kujala ST, Savolainen O. 275 years of forestry meets genomics in Pinus sylvestris. Evol Appl 2020; 13:11-30. [PMID: 31988655 PMCID: PMC6966708 DOI: 10.1111/eva.12809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pinus sylvestris has a long history of basic and applied research that is relevant for both forestry and evolutionary studies. Its patterns of adaptive variation and role in forest economic and ecological systems have been studied extensively for nearly 275 years, detailed demography for a 100 years and mating system more than 50 years. However, its reference genome sequence is not yet available and genomic studies have been lagging compared to, for example, Pinus taeda and Picea abies, two other economically important conifers. Despite the lack of reference genome, many modern genomic methods are applicable for a more detailed look at its biological characteristics. For example, RNA-seq has revealed a complex transcriptional landscape and targeted DNA sequencing displays an excess of rare variants and geographically homogenously distributed molecular genetic diversity. Current DNA and RNA resources can be used as a reference for gene expression studies, SNP discovery, and further targeted sequencing. In the future, specific consequences of the large genome size, such as functional effects of regulatory open chromatin regions and transposable elements, should be investigated more carefully. For forest breeding and long-term management purposes, genomic data can help in assessing the genetic basis of inbreeding depression and the application of genomic tools for genomic prediction and relatedness estimates. Given the challenges of breeding (long generation time, no easy vegetative propagation) and the economic importance, application of genomic tools has a potential to have a considerable impact. Here, we explore how genomic characteristics of P. sylvestris, such as rare alleles and the low extent of linkage disequilibrium, impact the applicability and power of the tools.
Collapse
Affiliation(s)
- Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | | | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
4
|
Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC. High rate of adaptive evolution in two widespread European pines. Mol Ecol 2017; 26:6857-6870. [PMID: 29110402 DOI: 10.1111/mec.14402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.
Collapse
Affiliation(s)
- Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain
| | - Komlan Avia
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universités, UPMC, Station Biologique Roscoff, Roscoff, France.,UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, Roscoff, France
| | - Aleksia Vaattovaara
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - Outi Savolainen
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain.,BIOGECO, INRA, Univ. Bordeaux, Cestas, France
| |
Collapse
|
5
|
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, Cabezas JA, Cervera MT, Ingvarsson PK, Van de Peer Y. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol 2017; 9:1130-1147. [PMID: 28460034 PMCID: PMC5414570 DOI: 10.1093/gbe/evx070] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/02/2023] Open
Abstract
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Amanda R De La Torre
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Sciences, University of California-Davis, Davis, CA
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
6
|
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants. Mol Biol Evol 2017; 34:1363-1377. [PMID: 28333233 PMCID: PMC5435085 DOI: 10.1093/molbev/msx069] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Plant Sciences, University of California-Davis, Davis, CA.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Zhen Li
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Mosaic genetic differentiation along environmental and geographic gradients indicate divergent selection in a white pine species complex. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9785-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
De La Torre AR, Lin YC, Van de Peer Y, Ingvarsson PK. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families. Genome Biol Evol 2015; 7:1002-15. [PMID: 25747252 PMCID: PMC4419791 DOI: 10.1093/gbe/evv044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.
Collapse
Affiliation(s)
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Genomics Research Institute, University of Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Sweden Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
9
|
La Porta N, Sablok G, Emilliani G, Hietala AM, Giovannelli A, Fontana P, Potenza E, Baldi P. Identification of Low Temperature Stress Regulated Transcript Sequences and Gene Families in Italian Cypress. Mol Biotechnol 2014; 57:407-18. [DOI: 10.1007/s12033-014-9833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhou Y, Zhang L, Liu J, Wu G, Savolainen O. Climatic adaptation and ecological divergence between two closely related pine species in Southeast China. Mol Ecol 2014; 23:3504-22. [PMID: 24935279 DOI: 10.1111/mec.12830] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 02/04/2023]
Abstract
Climate is one of the most important drivers for adaptive evolution in forest trees. Climatic selection contributes greatly to local adaptation and intraspecific differentiation, but this kind of selection could also have promoted interspecific divergence through ecological speciation. To test this hypothesis, we examined intra- and interspecific genetic variation at 25 climate-related candidate genes and 12 reference loci in two closely related pine species, Pinus massoniana Lamb. and Pinus hwangshanensis Hisa, using population genetic and landscape genetic approaches. These two species occur in Southeast China but have contrasting ecological preferences in terms of several environmental variables, notably altitude, although hybrids form where their distributions overlap. One or more robust tests detected signals of recent and/or ancient selection at two-thirds (17) of the 25 candidate genes, at varying evolutionary timescales, but only three of the 12 reference loci. The signals of recent selection were species specific, but signals of ancient selection were mostly shared by the two species likely because of the shared evolutionary history. FST outlier analysis identified six SNPs in five climate-related candidate genes under divergent selection between the two species. In addition, a total of 24 candidate SNPs representing nine candidate genes showed significant correlation with altitudinal divergence in the two species based on the covariance matrix of population history derived from reference SNPs. Genetic differentiation between these two species was higher at the candidate genes than at the reference loci. Moreover, analysis using the isolation-with-migration model indicated that gene flow between the species has been more restricted for climate-related candidate genes than the reference loci, in both directions. Taken together, our results suggest that species-specific and divergent climatic selection at the candidate genes might have counteracted interspecific gene flow and played a key role in the ecological divergence of these two closely related pine species.
Collapse
Affiliation(s)
- Yongfeng Zhou
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China; Plant Genetics Group, Department of Biology, University of Oulu, 90014, Oulu, Finland
| | | | | | | | | |
Collapse
|
11
|
Wang B, Wang XR. Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus. Mol Phylogenet Evol 2014; 80:20-30. [PMID: 25106134 DOI: 10.1016/j.ympev.2014.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/18/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
Abstract
The evolution of the mitochondrial (mt) genome is far from being fully understood. Systematic investigations into the modes of inheritance, rates and patterns of recombination, nucleotide substitution, and structural changes in the mt genome are still lacking in many groups of plants. In this study, we sequenced >11kbp mtDNA segments from multiple accessions of 36 pine species to characterize the evolutionary patterns of mtDNA in the genus Pinus. We found extremely low substitution rates and complex repetitive sequences scattered across different genome regions, as well as chimeric structures that were probably generated by multiple intergenomic recombinations. The mtDNA-based phylogeny of the genus differed from that based on chloroplast and nuclear DNA in the placement of several groups of species. Such discordances suggest a series of mtDNA capture events during past range shifts of the pine species and that both vertical and horizontal inheritance are implicated in the evolution of mtDNA in Pinus. MtDNA dating revealed that most extant lineages of the genus originated during Oligocene-Miocene radiation and subgenus Strobus diversified earlier than subgenus Pinus. Our findings illustrate a reticular evolutionary pathway for the mt genome through capture and recombination in the genus Pinus, and provide new insights into the evolution of the genus.
Collapse
Affiliation(s)
- Baosheng Wang
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden.
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
12
|
Eckert AJ, Bower AD, Jermstad KD, Wegrzyn JL, Knaus BJ, Syring JV, Neale DB. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus). Mol Ecol 2013; 22:5635-50. [PMID: 24134614 DOI: 10.1111/mec.12514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne ). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of Ne . An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions (α) for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long-term adaptive evolution was detected, as all 11 estimates for α were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome-wide expectations for these species, however, was difficult as the loci chosen for the analysis were a biased set of conserved loci, which greatly influenced the estimates of the DFE and α. This implies that genome-wide parameter estimates will need truly genome-wide data, so that many of the existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision.
Collapse
Affiliation(s)
- Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Grivet D, Climent J, Zabal-Aguirre M, Neale DB, Vendramin GG, González-Martínez SC. Adaptive evolution of Mediterranean pines. Mol Phylogenet Evol 2013; 68:555-66. [DOI: 10.1016/j.ympev.2013.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 03/31/2013] [Indexed: 10/27/2022]
|
14
|
Flores-Rentería L, Wegier A, Ortega Del Vecchyo D, Ortíz-Medrano A, Piñero D, Whipple AV, Molina-Freaner F, Domínguez CA. Genetic, morphological, geographical and ecological approaches reveal phylogenetic relationships in complex groups, an example of recently diverged pinyon pine species (Subsection Cembroides). Mol Phylogenet Evol 2013; 69:940-9. [PMID: 23831459 DOI: 10.1016/j.ympev.2013.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
Abstract
Elucidating phylogenetic relationships and species boundaries within complex taxonomic groups is challenging for intrinsic and extrinsic (i.e., technical) reasons. Mexican pinyon pines are a complex group whose phylogenetic relationships and species boundaries have been widely studied but poorly resolved, partly due to intrinsic ecological and evolutionary features such as low morphological and genetic differentiation caused by recent divergence, hybridization and introgression. Extrinsic factors such as limited sampling and difficulty in selecting informative molecular markers have also impeded progress. Some of the Mexican pinyon pines are of conservation concern but others may remain unprotected because the species boundaries have not been established. In this study we combined approaches to resolve the phylogenetic relationships in this complex group and to establish species boundaries in four recently diverged taxa: P. discolor, P. johannis, P. culminicola and P. cembroides. We performed phylogenetic analyses using the chloroplast markers matK and psbA-trnH as well as complete and partial chloroplast genomes of species of Subsection Cembroides. Additionally, we performed a phylogeographic analysis combining genetic data (18 chloroplast markers), morphological data and geographical data to define species boundaries in four recently diverged taxa. Ecological divergence was supported by differences in climate among localities for distinct genetic lineages. Whereas the phylogenetic analysis inferred with matK and psbA-trnH was unable to resolve the relationships in this complex group, we obtained a resolved phylogeny with the use of the chloroplast genomes. The resolved phylogeny was concordant with a haplotype network obtained using chloroplast markers. In species with potential for recent divergence, hybridization or introgression, nonhierarchical network-based approaches are probably more appropriate to protect against misclassification due to incomplete lineage sorting. The boundaries among genetic lineages were delimited by the inclusion of morphological, geographical and ecological data in the haplotype network. These multiple lines of evidence help to assign species boundaries in this complex group. P. johannis, P. discolor, P. culminicola and P. cembroides are different species based on their genetic, morphological and ecological niche differences. We suggest a reevaluation of the conservation status of these species considering the information generated in this study.
Collapse
Affiliation(s)
- Lluvia Flores-Rentería
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Coyoacán, DF 04510, Mexico; Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Perdiguero P, Barbero MC, Cervera MT, Soto A, Collada C. Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. PLANTA 2012; 236:1863-74. [PMID: 22922940 DOI: 10.1007/s00425-012-1737-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/03/2012] [Indexed: 05/12/2023]
Abstract
Dehydrins are thought to play an essential role in the response, acclimation and tolerance to different abiotic stresses, such as cold and drought. These proteins have been classified into five groups according to the presence of conserved and repeated motifs in their amino acid sequence. Due to their putative functions in the response to stress, dehydrins have been often used as candidate genes in studies on population variability and local adaptation to environmental conditions. However, little is still known regarding the differential role played by such groups or the mechanism underlying their function. Based on the sequences corresponding to dehydrins available in public databases we have isolated eight different dehydrins from cDNA of Pinus pinaster. We have obtained also their genomic sequences and identified their intron/exon structure. Quantitative RT-PCR analysis of their expression pattern in needles, stems and roots during a severe and prolonged drought stress, similar to the ones trees must face in nature, is also reported. Additionally, we have identified two amino acid motifs highly conserved and repeated in Pinaceae dehydrins and absent in angiosperms, presumably related to the divergent expression profiles observed.
Collapse
Affiliation(s)
- Pedro Perdiguero
- GENFOR Grupo de investigación en Genética y Fisiología Forestal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Mosca E, Eckert AJ, Liechty JD, Wegrzyn JL, La Porta N, Vendramin GG, Neale DB. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol Appl 2012; 5:762-75. [PMID: 23144662 PMCID: PMC3492901 DOI: 10.1111/j.1752-4571.2012.00256.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/11/2012] [Indexed: 11/29/2022] Open
Abstract
A candidate gene approach was used to identify levels of nucleotide diversity and to identify genes departing from neutral expectations in coniferous species of the Alpine European forest. Twelve samples were collected from four species that dominate montane and subalpine forests throughout Europe: Abies alba Mill, Larix decidua Mill, Pinus cembra L., and Pinus mugo Turra. A total of 800 genes, originally resequenced in Pinus taeda L., were resequenced across 12 independent trees for each of the four species. Genes were assigned to two categories, candidate and control, defined through homology-based searches to Arabidopsis. Estimates of nucleotide diversity per site varied greatly between polymorphic candidate genes (range: 0.0004–0.1295) and among species (range: 0.0024–0.0082), but were within the previously established ranges for conifers. Tests of neutrality using stringent significance thresholds, performed under the standard neutral model, revealed one to seven outlier loci for each species. Some of these outliers encode proteins that are involved with plant stress responses and form the basis for further evolutionary enquiries.
Collapse
Affiliation(s)
- Elena Mosca
- Department of Plant Sciences, University of California at Davis Davis, CA, USA ; IASMA Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Parks M, Cronn R, Liston A. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol 2012; 12:100. [PMID: 22731878 PMCID: PMC3475122 DOI: 10.1186/1471-2148-12-100] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Through next-generation sequencing, the amount of sequence data potentially available for phylogenetic analyses has increased exponentially in recent years. Simultaneously, the risk of incorporating 'noisy' data with misleading phylogenetic signal has also increased, and may disproportionately influence the topology of weakly supported nodes and lineages featuring rapid radiations and/or elevated rates of evolution. RESULTS We investigated the influence of phylogenetic noise in large data sets by applying two fundamental strategies, variable site removal and long-branch exclusion, to the phylogenetic analysis of a full plastome alignment of 107 species of Pinus and six Pinaceae outgroups. While high overall phylogenetic resolution resulted from inclusion of all data, three historically recalcitrant nodes remained conflicted with previous analyses. Close investigation of these nodes revealed dramatically different responses to data removal. Whereas topological resolution and bootstrap support for two clades peaked with removal of highly variable sites, the third clade resolved most strongly when all sites were included. Similar trends were observed using long-branch exclusion, but patterns were neither as strong nor as clear. When compared to previous phylogenetic analyses of nuclear loci and morphological data, the most highly supported topologies seen in Pinus plastome analysis are congruent for the two clades gaining support from variable site removal and long-branch exclusion, but in conflict for the clade with highest support from the full data set. CONCLUSIONS These results suggest that removal of misleading signal in phylogenomic datasets can result not only in increased resolution for poorly supported nodes, but may serve as a tool for identifying erroneous yet highly supported topologies. For Pinus chloroplast genomes, removal of variable sites appears to be more effective than long-branch exclusion for clarifying phylogenetic hypotheses.
Collapse
Affiliation(s)
- Matthew Parks
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
18
|
BURGARELLA C, NAVASCUÉS M, ZABAL-AGUIRRE M, BERGANZO E, RIBA M, MAYOL M, VENDRAMIN GG, GONZÁLEZ-MARTÍNEZ SC. Recent population decline and selection shape diversity of taxol-related genes. Mol Ecol 2012; 21:3006-21. [DOI: 10.1111/j.1365-294x.2012.05532.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Ren GP, Abbott RJ, Zhou YF, Zhang LR, Peng YL, Liu JQ. Genetic divergence, range expansion and possible homoploid hybrid speciation among pine species in Northeast China. Heredity (Edinb) 2012; 108:552-62. [PMID: 22187083 PMCID: PMC3330684 DOI: 10.1038/hdy.2011.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/15/2011] [Accepted: 09/22/2011] [Indexed: 11/08/2022] Open
Abstract
Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora.
Collapse
Affiliation(s)
- G-P Ren
- Division of Molecular Ecology, State Key Laboratory of Grassland Farming System, College of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - R J Abbott
- School of Biology, Mitchell Building, University of St Andrews, St Andrews, Fife, UK
| | - Y-F Zhou
- Division of Molecular Ecology, State Key Laboratory of Grassland Farming System, College of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - L-R Zhang
- Division of Molecular Ecology, State Key Laboratory of Grassland Farming System, College of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Y-L Peng
- Division of Molecular Ecology, State Key Laboratory of Grassland Farming System, College of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - J-Q Liu
- Division of Molecular Ecology, State Key Laboratory of Grassland Farming System, College of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| |
Collapse
|
20
|
Pentony MM, Winters P, Penfold-Brown D, Drew K, Narechania A, DeSalle R, Bonneau R, Purugganan MD. The plant proteome folding project: structure and positive selection in plant protein families. Genome Biol Evol 2012; 4:360-71. [PMID: 22345424 PMCID: PMC3318447 DOI: 10.1093/gbe/evs015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite its importance, relatively little is known about the relationship between the structure, function, and evolution of proteins, particularly in land plant species. We have developed a database with predicted protein domains for five plant proteomes (http://pfp.bio.nyu.edu) and used both protein structural fold recognition and de novo Rosetta-based protein structure prediction to predict protein structure for Arabidopsis and rice proteins. Based on sequence similarity, we have identified ∼15,000 orthologous/paralogous protein family clusters among these species and used codon-based models to predict positive selection in protein evolution within 175 of these sequence clusters. Our results show that codons that display positive selection appear to be less frequent in helical and strand regions and are overrepresented in amino acid residues that are associated with a change in protein secondary structure. Like in other organisms, disordered protein regions also appear to have more selected sites. Structural information provides new functional insights into specific plant proteins and allows us to map positively selected amino acid sites onto protein structures and view these sites in a structural and functional context.
Collapse
Affiliation(s)
- M M Pentony
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Buschiazzo E, Ritland C, Bohlmann J, Ritland K. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol 2012; 12:8. [PMID: 22264329 PMCID: PMC3328258 DOI: 10.1186/1471-2148-12-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. RESULTS Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10(-9) synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. CONCLUSIONS Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.
Collapse
Affiliation(s)
- Emmanuel Buschiazzo
- Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
22
|
Wachowiak W, Palmé AE, Savolainen O. Speciation history of three closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.). Mol Ecol 2011; 20:1729-43. [PMID: 21375633 DOI: 10.1111/j.1365-294x.2011.05037.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleotide polymorphisms at genomic regions including 17 nuclear loci, two chloroplast and one mitochondrial DNA fragments were used to study the speciation history of three pine species: dwarf mountain pine (Pinus mugo), peat-bog pine (P. uliginosa) and Scots pine (P. sylvestris). We set out to investigate three specific speciation scenarios: (I) P. uliginosa is a homoploid hybrid between the other two, (II) the species have evolved without gene flow after divergence and (III) there has been substantial gene flow between the species since their divergence. Overall, the genetic data suggest that P. mugo and P. uliginosa share the same gene pool (average net divergence of 0.0001) and that the phenotypic differences (e.g. growth form) are most likely due to very limited areas of the genome. P. mugo and P. uliginosa are more diverged from P. sylvestris than from each other (average net divergence of 0.0027 and 0.0026, respectively). The nucleotide patterns can best be explained by the divergence with migration speciation scenario, although the hybrid speciation scenario with small genomic contribution from P. sylvestris cannot be completely ruled out. We suggest that the large amount of shared polymorphisms between the pine taxa and the lack of monophyly at all loci studied between P. sylvestris and P. mugo-P. uliginosa can largely be explained by relatively recent speciation history and large effective population sizes but also by interspecific gene flow. These closely related pine taxa form an excellent system for searching for loci involved in adaptive variation as they are differentiated in phenotype and ecology but have very similar genetic background.
Collapse
Affiliation(s)
- Witold Wachowiak
- Department of Biology, University of Oulu, 90014, Oulu, Finland.
| | | | | |
Collapse
|
23
|
Abstract
Over the past two decades, research in forest tree genomics has lagged behind that of model and agricultural systems. However, genomic research in forest trees is poised to enter into an important and productive phase owing to the advent of next-generation sequencing technologies, the enormous genetic diversity in forest trees and the need to mitigate the effects of climate change. Research on long-lived woody perennials is extending our molecular knowledge of complex life histories and adaptations to the environment - enriching a field that has traditionally drawn biological inference from a few short-lived herbaceous species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
24
|
Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of Bona Fide CAD. J Mol Evol 2010; 71:202-18. [PMID: 20721545 DOI: 10.1007/s00239-010-9378-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.
Collapse
|
25
|
Cibrián-Jaramillo A, De la Torre-Bárcena JE, Lee EK, Katari MS, Little DP, Stevenson DW, Martienssen R, Coruzzi GM, DeSalle R. Using phylogenomic patterns and gene ontology to identify proteins of importance in plant evolution. Genome Biol Evol 2010; 2:225-39. [PMID: 20624728 PMCID: PMC2997538 DOI: 10.1093/gbe/evq012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2010] [Indexed: 01/01/2023] Open
Abstract
We use measures of congruence on a combined expressed sequenced tag genome phylogeny to identify proteins that have potential significance in the evolution of seed plants. Relevant proteins are identified based on the direction of partitioned branch and hidden support on the hypothesis obtained on a 16-species tree, constructed from 2,557 concatenated orthologous genes. We provide a general method for detecting genes or groups of genes that may be under selection in directions that are in agreement with the phylogenetic pattern. Gene partitioning methods and estimates of the degree and direction of support of individual gene partitions to the overall data set are used. Using this approach, we correlate positive branch support of specific genes for key branches in the seed plant phylogeny. In addition to basic metabolic functions, such as photosynthesis or hormones, genes involved in posttranscriptional regulation by small RNAs were significantly overrepresented in key nodes of the phylogeny of seed plants. Two genes in our matrix are of critical importance as they are involved in RNA-dependent regulation, essential during embryo and leaf development. These are Argonaute and the RNA-dependent RNA polymerase 6 found to be overrepresented in the angiosperm clade. We use these genes as examples of our phylogenomics approach and show that identifying partitions or genes in this way provides a platform to explain some of the more interesting organismal differences among species, and in particular, in the evolution of plants.
Collapse
Affiliation(s)
- Angélica Cibrián-Jaramillo
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii). Genetics 2009; 183:289-98. [PMID: 19596906 DOI: 10.1534/genetics.109.103895] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forest trees exhibit remarkable adaptations to their environments. The genetic basis for phenotypic adaptation to climatic gradients has been established through a long history of common garden, provenance, and genecological studies. The identities of genes underlying these traits, however, have remained elusive and thus so have the patterns of adaptive molecular diversity in forest tree genomes. Here, we report an analysis of diversity and divergence for a set of 121 cold-hardiness candidate genes in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Application of several different tests for neutrality, including those that incorporated demographic models, revealed signatures of selection consistent with selective sweeps at three to eight loci, depending upon the severity of a bottleneck event and the method used to detect selection. Given the high levels of recombination, these candidate genes are likely to be closely linked to the target of selection if not the genes themselves. Putative homologs in Arabidopsis act primarily to stabilize the plasma membrane and protect against denaturation of proteins at freezing temperatures. These results indicate that surveys of nucleotide diversity and divergence, when framed within the context of further association mapping experiments, will come full circle with respect to their utility in the dissection of complex phenotypic traits into their genetic components.
Collapse
|