1
|
Garric S, Ratin M, Marie D, Foulon V, Probert I, Rodriguez F, Six C. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis. Curr Biol 2024; 34:3064-3076.e5. [PMID: 38936366 DOI: 10.1016/j.cub.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.
Collapse
Affiliation(s)
- Sarah Garric
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Valentin Foulon
- Centre National de la Recherche Scientifique, UMR 6285 Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance (Lab-STICC), Technopole Brest-Iroise, Brest 29238, France
| | - Ian Probert
- Sorbonne Université, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Francisco Rodriguez
- Centro oceanográfico de Vigo (IEO-CSIC), Subida a Radio Faro 50, Vigo 36390, Spain
| | - Christophe Six
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France.
| |
Collapse
|
2
|
Carnicer O, Hu YY, Ebenezer V, Irwin AJ, Finkel ZV. Genomic architecture constrains macromolecular allocation in dinoflagellates. Protist 2023; 174:125992. [PMID: 37738738 DOI: 10.1016/j.protis.2023.125992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Dinoflagellate genomes have a unique architecture that may constrain their physiological and biochemical responsiveness to environmental stressors. Here we quantified how nitrogen (N) starvation influenced macromolecular allocation and C:N:P of three photosynthetic marine dinoflagellates, representing different taxonomic classes and genome sizes. Dinoflagellates respond to nitrogen starvation by decreasing cellular nitrogen, protein and RNA content, but unlike many other eukaryotic phytoplankton examined RNA:protein is invariant. Additionally, 2 of the 3 species exhibit increases in cellular phosphorus and very little change in cellular carbon with N-starvation. As a consequence, N starvation induces moderate increases in C:N, but extreme decreases in N:P and C:P, relative to diatoms. Dinoflagellate DNA content relative to total C, N and P is much higher than similar sized diatoms, but similar to very small photosynthetic picoeukaryotes such as Ostreococcus. In aggregate these results indicate the accumulation of phosphate stores may be an important strategy employed by dinoflagellates to meet P requirements associated with the maintenance and replication of their large genomes.
Collapse
Affiliation(s)
- Olga Carnicer
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Ying-Yu Hu
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Vinitha Ebenezer
- Department of Oceanography, Dalhousie University, Halifax, Canada
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, Canada.
| |
Collapse
|
3
|
Kwok ACM, Li C, Lam WT, Wong JTY. Responses of dinoflagellate cells to ultraviolet-C irradiation. Environ Microbiol 2022; 24:5936-5950. [PMID: 35837869 DOI: 10.1111/1462-2920.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/12/2023]
Abstract
Dinoflagellates are important aquatic microbes and major harmful algal bloom (HAB) agents that form invasive species through ship ballast transfer. UV-C installations are recommended for ballast treatments and HAB controls, but there is a lack of knowledge in dinoflagellate responses to UV-C. We report here dose-dependent cell cycle delay and viability loss of dinoflagellate cells irradiated with UV-C, with significant proliferative reduction at 800 Jm-2 doses or higher, but immediate LD50 was in the range of 2400-3200 Jm-2 . At higher dosages, some dinoflagellate cells surprisingly survived after days of recovery incubation, and continued viability loss, with samples exhibiting DNA fragmentations per proliferative resumption. Sequential cell cycle postponements, suggesting DNA damages were repaired over one cell cycle, were revealed with flow cytometric analysis and transcriptomic analysis. Over a sustained level of other DNA damage repair pathways, transcript elevation was observed only for several components of base pair repair and mismatch repair. Cumulatively, our findings demonstrated special DNA damage responses in dinoflagellate cells, which we discussed in relation to their unique chromo-genomic characters, as well as indicating resilience of dinoflagellate cells to UV-C.
Collapse
Affiliation(s)
- Alvin Chun Man Kwok
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Chongping Li
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wing Tai Lam
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Joseph Tin Yum Wong
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
4
|
Alacid E, Irwin NAT, Smilansky V, Milner DS, Kilias ES, Leonard G, Richards TA. A diversified and segregated mRNA spliced-leader system in the parasitic Perkinsozoa. Open Biol 2022; 12:220126. [PMID: 36000319 PMCID: PMC9399869 DOI: 10.1098/rsob.220126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spliced-leader trans-splicing (SLTS) has been described in distantly related eukaryotes and acts to mark mRNAs with a short 5′ exon, giving different mRNAs identical 5′ sequence-signatures. The function of these systems is obscure. Perkinsozoa encompasses a diversity of parasitic protists that infect bivalves, toxic-tide dinoflagellates, fish and frog tadpoles. Here, we report considerable sequence variation in the SLTS-system across the Perkinsozoa and find that multiple variant SLTS-systems are encoded in parallel in the ecologically important Perkinsozoa parasite Parvilucifera sinerae. These results demonstrate that the transcriptome of P. sinerae is segregated based on the addition of different spliced-leader (SL) exons. This segregation marks different gene categories, suggesting that SL-segregation relates to functional differentiation of the transcriptome. By contrast, both sets of gene categories are present in the single SL-transcript type sampled from Maranthos, implying that the SL-segregation of the Parvilucifera transcriptome is a recent evolutionary innovation. Furthermore, we show that the SLTS-system marks a subsection of the transcriptome with increased mRNA abundance and includes genes that encode the spliceosome system necessary for SLTS-function. Collectively, these data provide a picture of how the SLTS-systems can vary within a major evolutionary group and identify how additional transcriptional-complexity can be achieved through SL-segregation.
Collapse
Affiliation(s)
- Elisabet Alacid
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Nicholas A T Irwin
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK.,Merton College, University of Oxford, Oxford, Oxfordshire OX1 4JD, UK
| | - Vanessa Smilansky
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - David S Milner
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Estelle S Kilias
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Thomas A Richards
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
5
|
González-Pech RA, Stephens TG, Chen Y, Mohamed AR, Cheng Y, Shah S, Dougan KE, Fortuin MDA, Lagorce R, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biol 2021; 19:73. [PMID: 33849527 PMCID: PMC8045281 DOI: 10.1186/s12915-021-00994-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1–5 Gbp) and idiosyncratic genome features. Results Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. Conclusions Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00994-6.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Present address: Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Yibi Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, 4072, Australia.,Present address: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rémi Lagorce
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,École Polytechnique Universitaire de l'Université de Nice, Université Nice-Sophia-Antipolis, 06410, Nice, Provence-Alpes-Côte d'Azur, France
| | - David W Burt
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
de Bustos A, Figueroa RI, Sixto M, Bravo I, Cuadrado Á. The 5S rRNA genes in Alexandrium: their use as a FISH chromosomal marker in studies of the diversity, cell cycle and sexuality of dinoflagellates. HARMFUL ALGAE 2020; 98:101903. [PMID: 33129460 DOI: 10.1016/j.hal.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Chromosomal markers of the diversity and evolution of dinoflagellates are scarce because the genomes of these organisms are unique among eukaryotes in terms of their base composition and chromosomal structure. Similarly, a lack of appropriate tools has hindered studies of the chromosomal localization of 5S ribosomal DNA (rDNA) in the nucleosome-less chromosomes of dinoflagellates. In this study, we isolated and cloned 5S rDNA sequences from various toxin-producing species of the genus Alexandrium and developed a fluorescence in situ hybridization (FISH) probe that allows their chromosomal localization. Our results can be summarized as follows: 1) The 5S rDNA unit is composed of a highly conserved 122-bp coding region and an intergenic spacer (IGS), the length and sequence of which are variable even within strains. 2) Three different IGS types, one containing the U6 small nuclear RNA (snRNA) gene, were found among four of the studied species (A. minutum, A. tamarense, A. catenella and A. pacificum). 3) In all strains investigated by FISH (A. minutum, A. tamarense, A. pacificum, A. catenella, A. andersonii and A. ostenfeldii), 5S rDNA gene arrays were separate from the nucleolar organizer region, which contains the genes for the large 45S pre-ribosomal RNA. 4) One to three 5S rDNA sites per haploid genome were detected, depending on the strains/species. Intraspecific variability in the number of 5S rDNA sites was determined among strains of A. minutum and A. pacificum. 5) 5S rDNA is a useful chromosomal marker of mitosis progression and can be employed to differentiate vegetative (haploid) vs. planozygotes (diploid) cells. Thus, the FISH probe (oligo-Dino5Smix5) developed in this study facilitates analyses of the diversity, cell cycle and life stages of the genus Alexandrium.
Collapse
Affiliation(s)
- Alfredo de Bustos
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain.
| | - Rosa I Figueroa
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Marta Sixto
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain; Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, 36311 Vigo, Spain.
| | - Isabel Bravo
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Ángeles Cuadrado
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol 2020; 18:56. [PMID: 32448240 PMCID: PMC7245778 DOI: 10.1186/s12915-020-00782-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free-living species is still lacking. RESULTS Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparison unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. CONCLUSIONS Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution.
Collapse
Affiliation(s)
- Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present Address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present Address: Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, 4067, Australia
| | - David W Burt
- UQ Genomics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Sprecher BN, Zhang H, Lin S. Nuclear Gene Transformation in the Dinoflagellate Oxyrrhis marina. Microorganisms 2020; 8:E126. [PMID: 31963386 PMCID: PMC7022241 DOI: 10.3390/microorganisms8010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
The lack of a robust gene transformation tool that allows proper expression of foreign genes and functional testing for the vast number of nuclear genes in dinoflagellates has greatly hampered our understanding of the fundamental biology in this ecologically important and evolutionarily unique lineage of microeukaryotes. Here, we report the development of a dinoflagellate expression vector containing various DNA elements from phylogenetically separate dinoflagellate lineages, an electroporation protocol, and successful expression of introduced genes in an early branching dinoflagellate, Oxyrrhis marina. This protocol, involving the use of Lonza's Nucleofector and a codon-optimized antibiotic resistance gene, has been successfully used to produce consistent results in several independent experiments for O. marina. It is anticipated that this protocol will be adaptable for other dinoflagellates and will allow characterization of many novel dinoflagellate genes.
Collapse
Affiliation(s)
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd, Groton, CT 06340, USA;
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd, Groton, CT 06340, USA;
| |
Collapse
|
9
|
Fajardo C, Amil-Ruiz F, Fuentes-Almagro C, De Donato M, Martinez-Rodriguez G, Escobar-Niño A, Carrasco R, Mancera JM, Fernandez-Acero FJ. An “omic” approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. J Proteomics 2019; 209:103502. [DOI: 10.1016/j.jprot.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
10
|
Wang H, Kim H, Lim WA, Ki JS. Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 2019; 46:5955-5966. [PMID: 31407247 DOI: 10.1007/s11033-019-05029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Dinoflagellate algae are microeukaryotes that have distinct genomes and gene regulation systems, making them an interesting model for studying protist evolution and genomics. In the present study, we discovered a novel manganese superoxide dismutase (PmMnSOD) gene from the marine dinoflagellate Prorocentrum minimum, examined its molecular characteristics, and evaluated its transcriptional responses to the oxidative stress-inducing contaminants, CuSO4 and NaOCl. Its cDNA was 1238 bp and contained a dinoflagellate spliced leader sequence, a 906 bp open reading frame (301 amino acids), and a poly (A) tail. The gene was coded on the nuclear genome with one 174 bp intron; signal peptide analysis showed that it might be localized to the mitochondria. Real-time PCR analysis revealed an increase in gene expression of MnSOD and SOD activity when P. minimum cells were separately exposed to CuSO4 and NaOCl. In addition, both contaminants considerably decreased chlorophyll autofluorescence, and increased intracellular reactive oxygen species. These results suggest that dinoflagellate MnSOD may be involved in protecting cells against oxidative damage.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
11
|
Verma A, Barua A, Ruvindy R, Savela H, Ajani PA, Murray SA. The Genetic Basis of Toxin Biosynthesis in Dinoflagellates. Microorganisms 2019; 7:E222. [PMID: 31362398 PMCID: PMC6722697 DOI: 10.3390/microorganisms7080222] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023] Open
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth rates. One factor that may play a role in their ecological success is the production of complex secondary metabolite compounds that can have anti-predator, allelopathic, or other toxic effects on marine organisms, and also cause seafood poisoning in humans. Our knowledge about the genes involved in toxin biosynthesis in dinoflagellates is currently limited due to the complex genomic features of these organisms. Most recently, the sequencing of dinoflagellate transcriptomes has provided us with valuable insights into the biosynthesis of polyketide and alkaloid-based toxin molecules in dinoflagellate species. This review synthesizes the recent progress that has been made in understanding the evolution, biosynthetic pathways, and gene regulation in dinoflagellates with the aid of transcriptomic and other molecular genetic tools, and provides a pathway for future studies of dinoflagellates in this exciting omics era.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia.
| | - Abanti Barua
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
- Department of Microbiology, Noakhali Science and Technology University, Chittagong 3814, Bangladesh
| | - Rendy Ruvindy
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Henna Savela
- Finnish Environment Institute, Marine Research Centre, 00790 Helsinki, Finland
| | - Penelope A Ajani
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
12
|
Fugacium Spliced Leader Genes Identified from Stranded RNA-Seq Datasets. Microorganisms 2019; 7:microorganisms7060171. [PMID: 31212635 PMCID: PMC6616646 DOI: 10.3390/microorganisms7060171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Trans-splicing mechanisms have been documented in many lineages that are widely distributed phylogenetically, including dinoflagellates. The spliced leader (SL) sequence itself is conserved in dinoflagellates, although its gene sequences and arrangements have diversified within or across different species. In this study, we present 18 Fugacium kawagutii SL genes identified from stranded RNA-seq reads. These genes typically have a single SL but can contain several partial SLs with lengths ranging from 103 to 292 bp. Unexpectedly, we find the SL gene transcripts contain sequences upstream of the canonical SL, suggesting that generation of mature transcripts will require additional modifications following trans-splicing. We have also identified 13 SL-like genes whose expression levels and length are comparable to Dino-SL genes. Lastly, introns in these genes were identified and a new site for Sm-protein binding was proposed. Overall, this study provides a strategy for fast identification of SL genes and identifies new sequences of F. kawagutii SL genes to supplement our understanding of trans-splicing.
Collapse
|
13
|
Matsuo M, Katahata A, Satoh S, Matsuzaki M, Nomura M, Ishida KI, Inagaki Y, Obokata J. Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer. PLoS One 2018; 13:e0200961. [PMID: 30024971 PMCID: PMC6053224 DOI: 10.1371/journal.pone.0200961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5′ end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5′ end sequence of 28–33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.
Collapse
Affiliation(s)
- Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Atsushi Katahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mami Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichiro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
14
|
Bannerman BP, Kramer S, Dorrell RG, Carrington M. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One 2018; 13:e0192633. [PMID: 29561870 PMCID: PMC5862402 DOI: 10.1371/journal.pone.0192633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/26/2018] [Indexed: 12/01/2022] Open
Abstract
The degree of conservation and evolution of cytoplasmic mRNA metabolism pathways across the eukaryotes remains incompletely resolved. In this study, we describe a comprehensive genome and transcriptome-wide analysis of proteins involved in mRNA maturation, translation, and mRNA decay across representative organisms from the six eukaryotic super-groups. We demonstrate that eukaryotes share common pathways for mRNA metabolism that were almost certainly present in the last eukaryotic common ancestor, and show for the first time a correlation between intron density and a selective absence of some Exon Junction Complex (EJC) components in eukaryotes. In addition, we identify pathways that have diversified in individual lineages, with a specific focus on the unique gene gains and losses in members of the Excavata and SAR groups that contribute to their unique gene expression pathways compared to other organisms.
Collapse
Affiliation(s)
| | - Susanne Kramer
- Biozentrum, Lehrstuhl für Zell-und Entwicklungsbiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Richard G. Dorrell
- Institute of Biology, École Normale Supérieure, PSL Research University, Paris, France
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wang H, Guo R, Ki JS. 6.0 K microarray reveals differential transcriptomic responses in the dinoflagellate Prorocentrum minimum exposed to polychlorinated biphenyl (PCB). CHEMOSPHERE 2018; 195:398-409. [PMID: 29274579 DOI: 10.1016/j.chemosphere.2017.12.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have toxic effects on algae; however, their molecular genomic responses have not been sufficiently elucidated. Here, we evaluated genome-scaled responses of the dinoflagellate alga Prorocentrum minimum exposed to an EDC, polychlorinated biphenyl (PCB), using a 6.0 K microarray. Based on two-fold change cut-off, we identified that 609 genes (∼10.2%) responded to the PCB treatment. KEGG pathway analysis showed that differentially expressed genes (DEGs) were related to ribosomes, biosynthesis of amino acids, spliceosomes, and cellular processes. Many DEGs were involved in cell cycle progression, apoptosis, signal transduction, ion binding, and cellular transportation. In contrast, only a few genes related to photosynthesis and oxidative stress were expressed in response to PCB exposure. This was supported by that fact that there were no obvious changes in the photosynthetic efficiency and reactive oxygen species (ROS) production. These results suggest that PCB might not cause chloroplast and oxidative damage, but could lead to cell cycle arrest and apoptosis. In addition, various signal transduction and transport pathways might be disrupted in the cells, which could further contribute to cell death. These results expand the genomic understanding of the effects of EDCs on this dinoflagellate protist.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Ruoyu Guo
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
16
|
On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing. J Mol Evol 2017; 85:37-45. [DOI: 10.1007/s00239-017-9803-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023]
|
17
|
Harke MJ, Juhl AR, Haley ST, Alexander H, Dyhrman ST. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Front Microbiol 2017; 8:1279. [PMID: 28769884 PMCID: PMC5513979 DOI: 10.3389/fmicb.2017.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California, DavisDavis, CA, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| |
Collapse
|
18
|
Yang F, Xu D, Zhuang Y, Yi X, Huang Y, Chen H, Lin S, Campbell DA, Sturm NR, Liu G, Zhang H. Spliced leader RNA trans-splicing discovered in copepods. Sci Rep 2015; 5:17411. [PMID: 26621068 PMCID: PMC4664967 DOI: 10.1038/srep17411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3′-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.
Collapse
Affiliation(s)
- Feifei Yang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Donghui Xu
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yunyun Zhuang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyan Yi
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yousong Huang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongju Chen
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA
| | - David A Campbell
- Department of Microbiology, Immunology &Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology &Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Guangxing Liu
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huan Zhang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.,Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA
| |
Collapse
|
19
|
Jones GD, Williams EP, Place AR, Jagus R, Bachvaroff TR. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates. BMC Evol Biol 2015; 15:14. [PMID: 25886308 PMCID: PMC4330643 DOI: 10.1186/s12862-015-0301-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/29/2015] [Indexed: 01/27/2023] Open
Abstract
Background Dinoflagellates are eukaryotes with unusual cell biology and appear to rely on translational rather than transcriptional control of gene expression. The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in regulating gene expression because eIF4E binding to the mRNA cap is a control point for translation. eIF4E is part of an extended, eukaryote-specific family with different members having specific functions, based on studies of model organisms. Dinoflagellate eIF4E diversity could provide a mechanism for dinoflagellates to regulate gene expression in a post-transcriptional manner. Accordingly, eIF4E family members from eleven core dinoflagellate transcriptomes were surveyed to determine the diversity and phylogeny of the eIF4E family in dinoflagellates and related lineages including apicomplexans, ciliates and heterokonts. Results The survey uncovered eight to fifteen (on average eleven) different eIF4E family members in each core dinoflagellate species. The eIF4E family members from heterokonts and dinoflagellates segregated into three clades, suggesting at least three eIF4E cognates were present in their common ancestor. However, these three clades are distinct from the three previously described eIF4E classes, reflecting diverse approaches to a central eukaryotic function. Heterokonts contain four clades, ciliates two and apicomplexans only a single recognizable eIF4E clade. In the core dinoflagellates, the three clades were further divided into nine sub-clades based on the phylogenetic analysis and species representation. Six of the sub-clades included at least one member from all eleven core dinoflagellate species, suggesting duplication in their shared ancestor. Conservation within sub-clades varied, suggesting different selection pressures. Conclusions Phylogenetic analysis of eIF4E in core dinoflagellates revealed complex layering of duplication and conservation when compared to other eukaryotes. Our results suggest that the diverse eIF4E family in core dinoflagellates may provide a toolkit to enable selective translation as a strategy for controlling gene expression in these enigmatic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0301-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grant D Jones
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA. .,University of Maryland, Baltimore, Graduate School, Baltimore, USA.
| | - Ernest P Williams
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Rosemary Jagus
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| |
Collapse
|
20
|
Figueroa RI, Cuadrado A, Stüken A, Rodríguez F, Fraga S. Ribosomal DNA Organization Patterns within the Dinoflagellate Genus Alexandrium as Revealed by FISH: Life Cycle and Evolutionary Implications. Protist 2014; 165:343-63. [DOI: 10.1016/j.protis.2014.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
21
|
Beauparlant MA, Drouin G. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species. Curr Genet 2013; 60:17-24. [DOI: 10.1007/s00294-013-0404-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/16/2013] [Accepted: 08/22/2013] [Indexed: 11/21/2022]
|
22
|
Zhang H, Campbell DA, Sturm NR, Rosenblad MA, Dungan CF, Lin S. Signal recognition particle RNA in dinoflagellates and the Perkinsid Perkinsus marinus. Protist 2013; 164:748-61. [PMID: 23994724 DOI: 10.1016/j.protis.2013.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022]
Abstract
In dinoflagellates and perkinsids, the molecular structure of the protein translocating machinery is unclear. Here, we identified several types of full-length signal recognition particle (SRP) RNA genes from Karenia brevis (dinoflagellate) and Perkinsus marinus (perkinsid). We also identified the four SRP S-domain proteins, but not the two Alu domain proteins, from P. marinus and several dinoflagellates. We mapped both ends of SRP RNA transcripts from K. brevis and P. marinus, and obtained the 3' end from four other dinoflagellates. The lengths of SRP RNA are predicted to be ∼260-300 nt in dinoflagellates and 280-285 nt in P. marinus. Although these SRP RNA sequences are substantially variable, the predicted structures are similar. The genomic organization of the SRP RNA gene differs among species. In K. brevis, this gene is located downstream of the spliced leader (SL) RNA, either as SL RNA-SRP RNA-tRNA gene tandem repeats, or within a SL RNA-SRP RNA-tRNA-U6-5S rRNA gene cluster. In other dinoflagellates, SRP RNA does not cluster with SL RNA or 5S rRNA genes. The majority of P. marinus SRP RNA genes array as tandem repeats without the above-mentioned small RNA genes. Our results capture a snapshot of a potentially complex evolutionary history of SRP RNA in alveolates.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Tandem repeats, high copy number and remarkable diel expression rhythm of form II RuBisCO in Prorocentrum donghaiense (Dinophyceae). PLoS One 2013; 8:e71232. [PMID: 23976999 PMCID: PMC3747160 DOI: 10.1371/journal.pone.0071232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 11/24/2022] Open
Abstract
Gene structure and expression regulation of form II RuBisCO (rbcII) in dinoflagellates are still poorly understood. Here we isolated this gene (Pdrbc) and investigated its diel expression pattern in a harmful algal bloom forming dinoflagellate Prorocentrum donghaiense. We obtained cDNA sequences with triple tandem repeats of the coding unit (CU); the 5′ region has the sequence of a typical dinoflagellate plastid gene, encoding an N-terminus with two transmembrane regions separated by a plastid transit peptide. The CUs (1,455 bp except 1464 bp in last CU) are connected through a 63 bp spacer. Phylogenetic analysis showed that rbcII CUs within species formed monophyletic clusters, indicative of intraspecific gene duplication or purifying evolution. Using quantitative PCR (qPCR) we estimated 117±40 CUs of Pdrbc in the P. donghaiense genome. Although it is commonly believed that most dinoflagellate genes lack transcriptional regulation, our RT-qPCR analysis on synchronized cultures revealed remarkable diel rhythm of Pdrbc expression, showing significant correlations of transcript abundance with the timing of the dark-to-light transition and cell cycle G2M-phase. When the cultures were shifted to continuous light, Pdrbc expression remained significantly correlated with the G2M-phase. Under continuous darkness the cell cycle was arrested at the G1 phase, and the rhythm of Pdrbc transcription disappeared. Our results suggest that dinoflagellate rbcII 1) undergoes duplication or sequence purification within species, 2) is organized in tandem arrays in most species probably to facilitate efficient translation and import of the encoded enzyme, and 3) is regulated transcriptionally in a cell cycle-dependent fashion at least in some dinoflagellates.
Collapse
|
24
|
Proof that Dinoflagellate Spliced Leader (DinoSL) is a Useful Hook for Fishing Dinoflagellate Transcripts from Mixed Microbial Samples: Symbiodinium kawagutii as a Case Study. Protist 2013; 164:510-27. [DOI: 10.1016/j.protis.2013.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 12/25/2022]
|
25
|
Transcriptomic study reveals widespread spliced leader trans-splicing, short 5'-UTRs and potential complex carbon fixation mechanisms in the euglenoid Alga Eutreptiella sp. PLoS One 2013; 8:e60826. [PMID: 23585853 PMCID: PMC3621762 DOI: 10.1371/journal.pone.0060826] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
Eutreptiella are an evolutionarily unique and ecologically important genus of microalgae, but they are poorly understood with regard to their genomic make-up and expression profiles. Through the analysis of the full-length cDNAs from a Eutreptiella species, we found a conserved 28-nt spliced leader sequence (Eut-SL, ACACUUUCUGAGUGUCUAUUUUUUUUCG) was trans-spliced to the mRNAs of Eutreptiella sp. Using a primer derived from Eut-SL, we constructed four cDNA libraries under contrasting physiological conditions for 454 pyrosequencing. Clustering analysis of the ∼1.9×10(6) original reads (average length 382 bp) yielded 36,643 unique transcripts. Although only 28% of the transcripts matched documented genes, this fraction represents a functionally very diverse gene set, suggesting that SL trans-splicing is likely ubiquitous in this alga's transcriptome. The mRNAs of Eutreptiella sp. seemed to have short 5'- untranslated regions, estimated to be 21 nucleotides on average. Among the diverse biochemical pathways represented in the transcriptome we obtained, carbonic anhydrase and genes known to function in the C4 pathway and heterotrophic carbon fixation were found, posing a question whether Eutreptiella sp. employs multifaceted strategies to acquire and fix carbon efficiently. This first large-scale transcriptomic dataset for a euglenoid uncovers many potential novel genes and overall offers a valuable genetic resource for research on euglenoid algae.
Collapse
|
26
|
Chan CX, Soares MB, Bonaldo MF, Wisecaver JH, Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE(). JOURNAL OF PHYCOLOGY 2012; 48:1130-1142. [PMID: 23066170 PMCID: PMC3466611 DOI: 10.1111/j.1529-8817.2012.01194.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate-specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14-17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2-4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome-wide approaches to infer the tree of microbial eukaryotes.
Collapse
Affiliation(s)
- Cheong Xin Chan
- Department of Ecology, Evolution and Natural Resources, and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Marcelo B. Soares
- Northwestern University, Children's Memorial Research Center, Chicago, IL 60614, USA
| | - Maria F. Bonaldo
- Northwestern University, Children's Memorial Research Center, Chicago, IL 60614, USA
| | - Jennifer H. Wisecaver
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | - Jeremiah D. Hackett
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | | | - Deana L. Erdner
- Marine Science Institute, University of Texas, Port Aransas, TX 78373, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
27
|
Drouin G, Tsang C. 5S rRNA Gene Arrangements in Protists: A Case of Nonadaptive Evolution. J Mol Evol 2012; 74:342-51. [DOI: 10.1007/s00239-012-9512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
|
28
|
Guo R, Ki JS. Differential transcription of heat shock protein 90 (HSP90) in the dinoflagellate Prorocentrum minimum by copper and endocrine-disrupting chemicals. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1448-1457. [PMID: 22476698 DOI: 10.1007/s10646-012-0898-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2012] [Indexed: 05/31/2023]
Abstract
The dinoflagellate algae survive variations in water temperature as well as sudden exposures to toxic substances; heat shock proteins (HSPs) seem to function as part of their cell survival strategy. In the present study, we determined the complete open reading frame (ORF) of HSP90 gene in the dinoflagellate Prorocentrum minimum (PmHSP90), and examined the expression levels of the gene after exposure to thermal stressors, copper metal, and endocrine-disrupting chemicals, including bisphenol A (BPA) and polychlorinated biphenyl (PCB). The complete ORF of PmHSP90 was 2,130-bp long, encoding a 709-amino acid-long polypeptide (81.62 kDa), and bearing characteristics of the HSP90 family and conserved domains. Real-time (RT)-PCR analyses revealed different expression patterns after exposure to heat, metals, and chemicals. The expression of PmHSP90 was significantly upregulated by increased thermal stresses, with the highest changes of 2.4-fold and 1.9-fold occurring after 24 h at 25 °C and 30 °C, respectively. The gene expression dramatically increased (2.1 to 8.9-fold changes) with increasing concentrations of copper (one-way ANOVA, P < 0.01). Treatment with BPA or PCB, however, did not induce significant changes in PmHSP90 expression. These data suggest that the dinoflagellate HSP90 responds to thermal stressors, but may differentially respond to toxic substances such as metals and endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Green Life Science, Sangmyung University, Seoul 110-743, Korea
| | | |
Collapse
|
29
|
Okamoto N, Horák A, Keeling PJ. Description of two species of early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. PLoS One 2012; 7:e34900. [PMID: 22719825 PMCID: PMC3377698 DOI: 10.1371/journal.pone.0034900] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
In alveolate evolution, dinoflagellates have developed many unique features, including the cell that has epicone and hypocone, the undulating transverse flagellum. However, it remains unclear how these features evolved. The early branching dinoflagellates so far investigated such as Hematodinium, Amoebophrya and Oxyrrhis marina differ in many ways from of core dinoflagellates, or dinokaryotes. Except those handful of well studied taxa, the vast majority of early branching dinoflagellates are known only by environmental sequences, and remain enigmatic. In this study we describe two new species of the early branching dinoflagellates, Psammosa pacifica n. g., n. sp. and P. atlantica n. sp. from marine intertidal sandy beach. Molecular phylogeny of the small subunit (SSU) ribosomal RNA and Hsp90 gene places Psammosa spp. as an early branch among the dinoflagellates. Morphologically (1) they lack the typical dinoflagellate epicone-hypocone structure, and (2) undulation in either flagella. Instead they display a mosaïc of dinokaryotes traits, i.e. (3) presence of bi-partite trychocysts; Oxyrrhis marina-like traits, i.e. (4) presence of flagellar hairs, (5) presence of two-dimensional cobweb scales ornamenting both flagella (6) transversal cell division; a trait shared with some syndineansand Parvilucifera spp. i.e. (7) a nucleus with a conspicuous nucleolus and condensed chromatin distributed beneath the nuclear envelope; as well as Perkinsus marinus -like features i.e. (8) separate ventral grooves where flagella emerge and (9) lacking dinoflagellate-type undulating flagellum. Notably Psammosa retains an apical complex structure, which is shared between perkinsids, colpodellids, chromerids and apicomplexans, but is not found in dinokaryotic dinoflagellates.
Collapse
Affiliation(s)
- Noriko Okamoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
30
|
Guo R, Ki JS. Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate Prorocentrum minimum using real-time PCR. Eur J Protistol 2011; 48:199-206. [PMID: 22209541 DOI: 10.1016/j.ejop.2011.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Housekeeping genes (HKGs) are required for the normalization of expression levels in real-time PCR, and their selection is critical for gene expression studies. However, stable expressions of candidate HKGs vary among organisms and tissues and even according to environmental conditions. Here, we evaluated the gene expressions of 10 frequently used HKGs, including 18S rRNA, P2, ACT, TUA, TUB, CYC, eIF4E, MDH, UBQ, and GAPDH, with a total of 17 RNA samples extracted from the dinoflagellate Prorocentrum minimum. All the RNAs were prepared from various cells cultured under different conditions, including thermal shocks, toxic chemical exposures, and different life stages. Via C(T) analyses of the 10 HKGs using the geNorm software, TUA was selected as the most stable HKG for gene expression studies of the dinoflagellate, followed by MDH. Pair-wise variation (V) analysis showed that at least 2 genes were required for accurate normalization of gene expression studies depending on the experimental conditions. These HKGs are useful internal controls for the normalization of gene expression in P. minimum.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Green Life Science, Sangmyung University, Seoul 110-743, South Korea
| | | |
Collapse
|
31
|
Jaeckisch N, Yang I, Wohlrab S, Glöckner G, Kroymann J, Vogel H, Cembella A, John U. Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One 2011; 6:e28012. [PMID: 22164224 PMCID: PMC3229502 DOI: 10.1371/journal.pone.0028012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/29/2011] [Indexed: 01/09/2023] Open
Abstract
Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins.
Collapse
Affiliation(s)
- Nina Jaeckisch
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (NJ); (UJ)
| | - Ines Yang
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Germany
| | - Sylke Wohlrab
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Gernot Glöckner
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Juergen Kroymann
- Université Paris-Sud/CNRS, Laboratoire d'Ecologie, Systématique et Evolution, Orsay, France
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Allan Cembella
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Uwe John
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- * E-mail: (NJ); (UJ)
| |
Collapse
|
32
|
MARZ MANJA, VANZO NATHALIE, STADLER PETERF. TEMPERATURE-DEPENDENT STRUCTURAL VARIABILITY OF RNAs: SPLICED LEADER RNAs AND THEIR EVOLUTIONARY HISTORY. J Bioinform Comput Biol 2011; 8:1-17. [DOI: 10.1142/s0219720010004525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/16/2009] [Accepted: 09/14/2009] [Indexed: 11/18/2022]
Abstract
The structures attained by RNA molecules depend not only on their sequence but also on environmental parameters such as their temperature. So far, this effect has been largely neglected in bioinformatics studies. Here, we show that structural comparisons can be facilitated and more coherent structural models can be obtained when differences in environmental parameters are taken into account. We re-evaluate the secondary structures of the spliced leader (SL) RNAs from the seven eukaryotic phyla in which SL RNA trans-splicing has been described. Adjusting structure prediction to the natural growth temperatures and considering energetically similar secondary structures, we observe striking similarities among Euglenida, Kinetoplastida, Dinophyceae, Cnidaria, Rotifera, Nematoda, Platyhelminthes, and Tunicata that cannot be explained easily by the independent innovation of SL RNAs in each of these phyla. Supplementary Table is available at .
Collapse
Affiliation(s)
- MANJA MARZ
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - NATHALIE VANZO
- Centre de Biologie du Développement, UMR 5547 C. N. R. S. Université Paul Sabatier, F-31062 Toulouse Cedex, France
| | - PETER F. STADLER
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Fraunhofer Institut für Zelltherapie und Immunologie – IZI, Perlickstraße 1, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
33
|
Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of alveolates. PLoS One 2011; 6:e19933. [PMID: 21629701 PMCID: PMC3101222 DOI: 10.1371/journal.pone.0019933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/19/2011] [Indexed: 01/04/2023] Open
Abstract
The genus Perkinsus occupies a precarious phylogenetic position. To gain a better understanding of the relationship between perkinsids, dinoflagellates and other alveolates, we analyzed the nuclear-encoded spliced-leader (SL) RNA and mitochondrial genes, intron prevalence, and multi-protein phylogenies. In contrast to the canonical 22-nt SL found in dinoflagellates (DinoSL), P. marinus has a shorter (21-nt) and a longer (22-nt) SL with slightly different sequences than DinoSL. The major SL RNA transcripts range in size between 80–83 nt in P. marinus, and ∼83 nt in P. chesapeaki, significantly larger than the typical ≤56-nt dinoflagellate SL RNA. In most of the phylogenetic trees based on 41 predicted protein sequences, P. marinus branched at the base of the dinoflagellate clade that included the ancient taxa Oxyrrhis and Amoebophrya, sister to the clade of apicomplexans, and in some cases clustered with apicomplexans as a sister to the dinoflagellate clade. Of 104 Perkinsus spp. genes examined 69.2% had introns, a higher intron prevalence than in dinoflagellates. Examination of Perkinsus spp. mitochondrial cytochrome B and cytochrome C oxidase subunit I genes and their cDNAs revealed no mRNA editing, but these transcripts can only be translated when frameshifts are introduced at every AGG and CCC codon as if AGGY codes for glycine and CCCCU for proline. These results, along with the presence of the numerous uncharacterized ‘marine alveolate group I' and Perkinsus-like lineages separating perkinsids from core dinoflagellates, expand support for the affiliation of the genus Perkinsus with an independent lineage (Perkinsozoa) positioned between the phyla of Apicomplexa and Dinoflagellata.
Collapse
|
34
|
Lin S. Genomic understanding of dinoflagellates. Res Microbiol 2011; 162:551-69. [PMID: 21514379 DOI: 10.1016/j.resmic.2011.04.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
The phylum of dinoflagellates is characterized by many unusual and interesting genomic and physiological features, the imprint of which, in its immense genome, remains elusive. Much novel understanding has been achieved in the last decade on various aspects of dinoflagellate biology, but most remarkably about the structure, expression pattern and epigenetic modification of protein-coding genes in the nuclear and organellar genomes. Major findings include: 1) the great diversity of dinoflagellates, especially at the base of the dinoflagellate tree of life; 2) mini-circularization of the genomes of typical dinoflagellate plastids (with three membranes, chlorophylls a, c1 and c2, and carotenoid peridinin), the scrambled mitochondrial genome and the extensive mRNA editing occurring in both systems; 3) ubiquitous spliced leader trans-splicing of nuclear-encoded mRNA and demonstrated potential as a novel tool for studying dinoflagellate transcriptomes in mixed cultures and natural assemblages; 4) existence and expression of histones and other nucleosomal proteins; 5) a ribosomal protein set expected of typical eukaryotes; 6) genetic potential of non-photosynthetic solar energy utilization via proton-pump rhodopsin; 7) gene candidates in the toxin synthesis pathways; and 8) evidence of a highly redundant, high gene number and highly recombined genome. Despite this progress, much more work awaits genome-wide transcriptome and whole genome sequencing in order to unfold the molecular mechanisms underlying the numerous mysterious attributes of dinoflagellates.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
35
|
Hearne JL, Pitula JS. Identification of two spliced leader RNA transcripts from Perkinsus marinus. J Eukaryot Microbiol 2011; 58:266-8. [PMID: 21435079 DOI: 10.1111/j.1550-7408.2011.00538.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spliced leader (SL) variants are present in a number of mRNAs from Perkinsus marinus. Three different SLs of 22 nucleotides (nt) in length were previously reported, with a consensus sequence of (DCCGUAGCCAUYUUGGCUCAAG). A truncated 21 nt SL, with an (A) at nt-1 and a (U) deletion at nt-13, has also been reported. Here, we report an additional 21 nt SL variant with (G) at nt-1. Using cDNA analysis, a full-length SL RNA transcript was identified for both 21 nt SLs (SL2[A] and SL2[G]). This transcript is 81 nt in length and contains a conserved transcription termination sequence present in closely related dinoflagellates.
Collapse
Affiliation(s)
- Jennifer L Hearne
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA
| | | |
Collapse
|
36
|
Abstract
Trans-splicing is the joining together of portions of two separate pre-mRNA molecules. The two distinct categories of spliceosomal trans-splicing are genic trans-splicing, which joins exons of different pre-mRNA transcripts, and spliced leader (SL) trans-splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis-splicing. Genic trans-splicing events producing protein-coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans-splicing can be associated with cancers and translocations. SL trans-splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans-splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans-splicing, as operon resolution can only account for a small proportion of the total amount of SL trans-splicing.
Collapse
Affiliation(s)
- Erika L Lasda
- University of Colorado Denver, Department of Biochemistry and Molecular Genetics; University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology
| | | |
Collapse
|
37
|
Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc Natl Acad Sci U S A 2010; 107:20033-8. [PMID: 21041634 DOI: 10.1073/pnas.1007246107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental transcriptomics (metatranscriptomics) for a specific lineage of eukaryotic microbes (e.g., Dinoflagellata) would be instrumental for unraveling the genetic mechanisms by which these microbes respond to the natural environment, but it has not been exploited because of technical difficulties. Using the recently discovered dinoflagellate mRNA-specific spliced leader as a selective primer, we constructed cDNA libraries (e-cDNAs) from one marine and two freshwater plankton assemblages. Small-scale sequencing of the e-cDNAs revealed functionally diverse transcriptomes proven to be of dinoflagellate origin. A set of dinoflagellate common genes and transcripts of dominant dinoflagellate species were identified. Further analyses of the dataset prompted us to delve into the existing, largely unannotated dinoflagellate EST datasets (DinoEST). Consequently, all four nucleosome core histones, two histone modification proteins, and a nucleosome assembly protein were detected, clearly indicating the presence of nucleosome-like machinery long thought not to exist in dinoflagellates. The isolation of rhodopsin from taxonomically and ecotypically diverse dinoflagellates and its structural similarity and phylogenetic affinity to xanthorhodopsin suggest a common genetic potential in dinoflagellates to use solar energy nonphotosynthetically. Furthermore, we found 55 cytoplasmic ribosomal proteins (RPs) from the e-cDNAs and 24 more from DinoEST, showing that the dinoflagellate phylum possesses all 79 eukaryotic RPs. Our results suggest that a sophisticated eukaryotic molecular machine operates in dinoflagellates that likely encodes many more unsuspected physiological capabilities and, meanwhile, demonstrate that unique spliced leaders are useful for profiling lineage-specific microbial transcriptomes in situ.
Collapse
|
38
|
Yeats B, Matsumoto J, Mortimer SI, Shoguchi E, Satoh N, Hastings KEM. SL RNA genes of the ascidian tunicates Ciona intestinalis and Ciona savignyi. Zoolog Sci 2010; 27:171-80. [PMID: 20141422 DOI: 10.2108/zsj.27.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We characterized by bioinformatics the trans-spliced leader donor RNA (SL RNA) genes of two ascidians, Ciona intestinalis and Ciona savignyi. The Ciona intestinalis genome contains approximately 670 copies of the SL RNA gene, principally on a 264-bp tandemly repeated element. Fluorescent in-situ hybridization mapped most of the repeats to a single site on the short arm of chromosome 8. The Ciona intestinalis genome also contains approximately 100 copies of a >3.6-kb element that carries 1) an SL RNA-related sequence (possible a pseudogene) and 2) genes for the U6 snRNA and a histone-like protein. The Ciona savignyi genome contains two SL RNA gene classes having the same SL sequence as Ciona intestinalis but differing in the intron-like segments. These reside in similar but distinct repeat units of 575 bp ( approximately 410 copies) and 552 bp ( approximately 250 copies) that are arranged as separate tandem repeats. In neither Ciona species is the 5S RNA gene present within the SL RNA gene repeat unit. Although the number of SL RNA genes is similar, there is little sequence similarity between the intestinalis and savignyi repeat units, apart from the region encoding the SL RNA itself. This suggests that cis-regulatory elements involved in transcription and 3'-end processing are likely to be present within the transcribed region. The genomes of both Ciona species also include > 100 dispersed short elements containing the 16-nt SL sequence and up to 6 additional nucleotides of the SL RNA sequence.
Collapse
Affiliation(s)
- Brendan Yeats
- Montreal Neurological Institute and Department of Biology, McGill University, 3801 University Street, Montréal, Québec, Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
39
|
Derelle R, Momose T, Manuel M, Da Silva C, Wincker P, Houliston E. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. RNA (NEW YORK, N.Y.) 2010; 16:696-707. [PMID: 20142326 PMCID: PMC2844618 DOI: 10.1261/rna.1975210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/23/2009] [Indexed: 05/20/2023]
Abstract
Replacement of mRNA 5' UTR sequences by short sequences trans-spliced from specialized, noncoding, spliced leader (SL) RNAs is an enigmatic phenomenon, occurring in a set of distantly related animal groups including urochordates, nematodes, flatworms, and hydra, as well as in Euglenozoa and dinoflagellates. Whether SL trans-splicing has a common evolutionary origin and biological function among different organisms remains unclear. We have undertaken a systematic identification of SL exons in cDNA sequence data sets from non-bilaterian metazoan species and their closest unicellular relatives. SL exons were identified in ctenophores and in hydrozoan cnidarians, but not in other cnidarians, placozoans, or sponges, or in animal unicellular relatives. Mapping of SL absence/presence obtained from this and previous studies onto current phylogenetic trees favors an evolutionary scenario involving multiple origins for SLs during eumetazoan evolution rather than loss from a common ancestor. In both ctenophore and hydrozoan species, multiple SL sequences were identified, showing high sequence diversity. Detailed analysis of a large data set generated for the hydrozoan Clytia hemisphaerica revealed trans-splicing of given mRNAs by multiple alternative SLs. No evidence was found for a common identity of trans-spliced mRNAs between different hydrozoans. One feature found specifically to characterize SL-spliced mRNAs in hydrozoans, however, was a marked adenosine enrichment immediately 3' of the SL acceptor splice site. Our findings of high sequence divergence and apparently indiscriminate use of SLs in hydrozoans, along with recent findings in other taxa, indicate that SL genes have evolved rapidly in parallel in diverse animal groups, with constraint on SL exon sequence evolution being apparently rare.
Collapse
Affiliation(s)
- Romain Derelle
- Biologie du Développement (UMR 7138) Observatoire Océanologique, Université Pierre et Marie Curie (UPMC-Univ Paris 06) and Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-mer, France
| | | | | | | | | | | |
Collapse
|
40
|
Hou Y, Lin S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS One 2009; 4:e6978. [PMID: 19750009 PMCID: PMC2737104 DOI: 10.1371/journal.pone.0006978] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/14/2009] [Indexed: 11/18/2022] Open
Abstract
The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10)-transformed protein-coding gene number (Y') versus log(10)-transformed genome size (X', genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p<0.001, R(2)>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6) kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245x10(6) kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.
Collapse
Affiliation(s)
- Yubo Hou
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
- * E-mail:
| |
Collapse
|