1
|
Yada T, Taniguchi T. A putative scenario of how de novo protein-coding genes originate in the Saccharomyces cerevisiae lineage. BMC Genomics 2024; 25:834. [PMID: 39237856 PMCID: PMC11378370 DOI: 10.1186/s12864-024-10669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Novel protein-coding genes were considered to be born by re-organization of pre-existing genes, such as gene duplication and gene fusion. However, recent progress of genome research revealed that more protein-coding genes than expected were born de novo, that is, gene origination by accumulating mutations in non-genic DNA sequences. Nonetheless, the in-depth process (scenario) for de novo origination is not well understood. RESULTS We have conceived bioinformatic analysis for sketching a scenario for de novo origination of protein-coding genes. For each de novo protein-coding gene, we firstly identified an edge of a given phylogenetic tree where the gene was born based on parsimony. Then, from a multiple sequence alignment of the de novo gene and its orthologous regions, we constructed ancestral DNA sequences of the gene corresponding to both end nodes of the edge. We finally revealed statistical features observed in evolution between the two ancestral sequences. In the analysis of the Saccharomyces cerevisiae lineage, we have successfully sketched a putative scenario for de novo origination of protein-coding genes. (1) In the beginning was GC-rich genome regions. (2) Neutral mutations were accumulated in the regions. (3) ORFs were extended/combined, and then (4) translation signature (Kozak consensus sequence) was recruited. Interestingly, as the scenario progresses from (2) to (4), the specificity of mutations increases. CONCLUSION To the best of our knowledge, this is the first report outlining a scenario of de novo origination of protein-coding genes. Our bioinformatic analysis can capture events that occur during a short evolutionary time by directly observing the evolution of the ancestral sequences from non-genic to genic. This property is suitable for the analysis of fast evolving de novo genes.
Collapse
Affiliation(s)
- Tetsushi Yada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan.
| | | |
Collapse
|
2
|
Liu Y, Liang N, Xian Q, Zhang W. GC heterogeneity reveals sequence-structures evolution of angiosperm ITS2. BMC PLANT BIOLOGY 2023; 23:608. [PMID: 38036992 PMCID: PMC10691020 DOI: 10.1186/s12870-023-04634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Despite GC variation constitutes a fundamental element of genome and species diversity, the precise mechanisms driving it remain unclear. The abundant sequence data available for the ITS2, a commonly employed phylogenetic marker in plants, offers an exceptional resource for exploring the GC variation across angiosperms. RESULTS A comprehensive selection of 8666 species, comprising 165 genera, 63 families, and 30 orders were used for the analyses. The alignment of ITS2 sequence-structures and partitioning of secondary structures into paired and unpaired regions were performed using 4SALE. Substitution rates and frequencies among GC base-pairs in the paired regions of ITS2 were calculated using RNA-specific models in the PHASE package. The results showed that the distribution of ITS2 GC contents on the angiosperm phylogeny was heterogeneous, but their increase was generally associated with ITS2 sequence homogenization, thereby supporting the occurrence of GC-biased gene conversion (gBGC) during the concerted evolution of ITS2. Additionally, the GC content in the paired regions of the ITS2 secondary structure was significantly higher than that of the unpaired regions, indicating the selection of GC for thermodynamic stability. Furthermore, the RNA substitution models demonstrated that base-pair transformations favored both the elevation and fixation of GC in the paired regions, providing further support for gBGC. CONCLUSIONS Our findings highlight the significance of secondary structure in GC investigation, which demonstrate that both gBGC and structure-based selection are influential factors driving angiosperm ITS2 GC content.
Collapse
Affiliation(s)
- Yubo Liu
- Marine College, Shandong University, Weihai, 264209, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Nan Liang
- Marine College, Shandong University, Weihai, 264209, China
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qing Xian
- Marine College, Shandong University, Weihai, 264209, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
3
|
Vohnoutová M, Sedláková A, Symonová R. Abandoning the Isochore Theory Can Help Explain Genome Compositional Organization in Fish. Int J Mol Sci 2023; 24:13167. [PMID: 37685974 PMCID: PMC10487504 DOI: 10.3390/ijms241713167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.
Collapse
Affiliation(s)
- Marta Vohnoutová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370-05 České Budějovice, Czech Republic;
| | - Anastázie Sedláková
- Faculty of Science, University of Hradec Králové, Hradecká 1285, 500-03 Hradec Králové, Czech Republic;
| | - Radka Symonová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370-05 České Budějovice, Czech Republic;
- Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, 370-05 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
5
|
Matoulek D, Ježek B, Vohnoutová M, Symonová R. Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution. Genes (Basel) 2023; 14:genes14020244. [PMID: 36833171 PMCID: PMC9956151 DOI: 10.3390/genes14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Cytogenetic and compositional studies considered fish genomes rather poor in guanine-cytosine content (GC%) because of a putative "sharp increase in genic GC% during the evolution of higher vertebrates". However, the available genomic data have not been exploited to confirm this viewpoint. In contrast, further misunderstandings in GC%, mostly of fish genomes, originated from a misapprehension of the current flood of data. Utilizing public databases, we calculated the GC% in animal genomes of three different, technically well-established fractions: DNA (entire genome), cDNA (complementary DNA), and cds (exons). Our results across chordates help set borders of GC% values that are still incorrect in literature and show: (i) fish in their immense diversity possess comparably GC-rich (or even GC-richer) genomes as higher vertebrates, and fish exons are GC-enriched among vertebrates; (ii) animal genomes generally show a GC-enrichment from the DNA, over cDNA, to the cds level (i.e., not only the higher vertebrates); (iii) fish and invertebrates show a broad(er) inter-quartile range in GC%, while avian and mammalian genomes are more constrained in their GC%. These results indicate no sharp increase in the GC% of genes during the transition to higher vertebrates, as stated and numerously repeated before. We present our results in 2D and 3D space to explore the compositional genome landscape and prepared an online platform to explore the AT/GC compositional genome evolution.
Collapse
Affiliation(s)
- Dominik Matoulek
- Department of Physics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Bruno Ježek
- Faculty of Informatics and Management, University of Hradec Králové, Rokitanského 62, 500 02 Hradec Králové, Czech Republic
| | - Marta Vohnoutová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radka Symonová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
6
|
Slaying (Yet Again) the Brain-Eating Zombie Called the "Isochore Theory": A Segmentation Algorithm Used to "Confirm" the Existence of Isochores Creates "Isochores" Where None Exist. Int J Mol Sci 2022; 23:ijms23126558. [PMID: 35743002 PMCID: PMC9224211 DOI: 10.3390/ijms23126558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
The isochore theory, which was proposed more than 40 years ago, depicts the mammalian genome as a mosaic of long, homogeneous regions that are characterized by their guanine and cytosine (GC) content. The human genome, for instance, was claimed to consist of five compositionally distinct isochore families. The isochore theory, in all its reincarnations, has been repeatedly falsified in the literature, yet isochore proponents have persistently resurrected it by either redefining isochores or by proposing alternative means of testing the theory. Here, I deal with the latest attempt to salvage this seemingly immortal zombie—a sequence segmentation method called isoSegmenter, which was claimed to “identify” isochores while at the same time disregarding the main characteristic attribute of isochores—compositional homogeneity. I used a series of controlled, randomly generated simulated sequences as a benchmark to study the performance of isoSegmenter. The main advantage of using simulated sequences is that, unlike real data, the exact start and stop point of any isochore or homogeneous compositional domain is known. Based on three key performance metrics—sensitivity, precision, and Jaccard similarity index—isoSegmenter was found to be vastly inferior to isoPlotter, a segmentation algorithm with no user input. Moreover, isoSegmenter identified isochores where none exist and failed to identify compositionally homogeneous sequences that were shorter than 100−200 kb. Will this zillionth refutation of “isochores” ensure a final and permanent entombment of the isochore theory? This author is not holding his breath.
Collapse
|
7
|
Skorupski J. Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications. Genes (Basel) 2022; 13:genes13010125. [PMID: 35052465 PMCID: PMC8774856 DOI: 10.3390/genes13010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-91-444-16-85
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
- The European Mink Centre, 71-415 Szczecin, Poland
| |
Collapse
|
8
|
Gul IS, Staal J, Hulpiau P, De Keuckelaere E, Kamm K, Deroo T, Sanders E, Staes K, Driege Y, Saeys Y, Beyaert R, Technau U, Schierwater B, van Roy F. GC Content of Early Metazoan Genes and Its Impact on Gene Expression Levels in Mammalian Cell Lines. Genome Biol Evol 2018; 10:909-917. [PMID: 29608715 PMCID: PMC5952964 DOI: 10.1093/gbe/evy040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/20/2023] Open
Abstract
With the genomes available for many animal clades, including the early-branching metazoans, one can readily study the functional conservation of genes across a diversity of animal lineages. Ectopic expression of an animal protein in, for instance, a mammalian cell line is a generally used strategy in structure–function analysis. However, this might turn out to be problematic in case of distantly related species. Here we analyzed the GC content of the coding sequences of basal animals and show its impact on gene expression levels in human cell lines, and, importantly, how this expression efficiency can be improved. Optimization of the GC3 content in the coding sequences of cadherin, alpha-catenin, and paracaspase of Trichoplax adhaerens dramatically increased the expression of these basal animal genes in human cell lines.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jens Staal
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Evi De Keuckelaere
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Kai Kamm
- Institut für Tierökologie und Zellbiologie (ITZ), Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany
| | - Tom Deroo
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Ellen Sanders
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Katrien Staes
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Yvan Saeys
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Austria
| | - Bernd Schierwater
- Institut für Tierökologie und Zellbiologie (ITZ), Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany
| | - Frans van Roy
- Center for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
9
|
Shimada MK, Sanbonmatsu R, Yamaguchi-Kabata Y, Yamasaki C, Suzuki Y, Chakraborty R, Gojobori T, Imanishi T. Selection pressure on human STR loci and its relevance in repeat expansion disease. Mol Genet Genomics 2016; 291:1851-69. [PMID: 27290643 DOI: 10.1007/s00438-016-1219-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 05/21/2016] [Indexed: 12/30/2022]
Abstract
Short Tandem Repeats (STRs) comprise repeats of one to several base pairs. Because of the high mutability due to strand slippage during DNA synthesis, rapid evolutionary change in the number of repeating units directly shapes the range of repeat-number variation according to selection pressure. However, the remaining questions include: Why are STRs causing repeat expansion diseases maintained in the human population; and why are these limited to neurodegenerative diseases? By evaluating the genome-wide selection pressure on STRs using the database we constructed, we identified two different patterns of relationship in repeat-number polymorphisms between DNA and amino-acid sequences, although both patterns are evolutionary consequences of avoiding the formation of harmful long STRs. First, a mixture of degenerate codons is represented in poly-proline (poly-P) repeats. Second, long poly-glutamine (poly-Q) repeats are favored at the protein level; however, at the DNA level, STRs encoding long poly-Qs are frequently divided by synonymous SNPs. Furthermore, significant enrichments of apoptosis and neurodevelopment were biological processes found specifically in genes encoding poly-Qs with repeat polymorphism. This suggests the existence of a specific molecular function for polymorphic and/or long poly-Q stretches. Given that the poly-Qs causing expansion diseases were longer than other poly-Qs, even in healthy subjects, our results indicate that the evolutionary benefits of long and/or polymorphic poly-Q stretches outweigh the risks of long CAG repeats predisposing to pathological hyper-expansions. Molecular pathways in neurodevelopment requiring long and polymorphic poly-Q stretches may provide a clue to understanding why poly-Q expansion diseases are limited to neurodegenerative diseases.
Collapse
Affiliation(s)
- Makoto K Shimada
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan.
| | - Ryoko Sanbonmatsu
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yumi Yamaguchi-Kabata
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Chisato Yamasaki
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Ranajit Chakraborty
- Health Science Center, University of North Texas, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Takashi Gojobori
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Ibn Al-Haytham Building (West), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tadashi Imanishi
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
10
|
Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer. Int J Mol Sci 2016; 17:ijms17081304. [PMID: 27517915 PMCID: PMC5000701 DOI: 10.3390/ijms17081304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022] Open
Abstract
Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC₃ (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA.
Collapse
|
11
|
Costantini M, Greif G, Alvarez-Valin F, Bernardi G. The Anolis Lizard Genome: An Amniote Genome without Isochores? Genome Biol Evol 2016; 8:1048-55. [PMID: 26992416 PMCID: PMC4860688 DOI: 10.1093/gbe/evw056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes).
Collapse
Affiliation(s)
- Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gonzalo Greif
- Unidad de Biología Molecular, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Giorgio Bernardi
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy Science Department, Roma Tre University, Rome, Italy
| |
Collapse
|
12
|
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, Aguileta G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME, Schultz DJ, Cuomo CA. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 2015; 16:461. [PMID: 26076695 PMCID: PMC4469406 DOI: 10.1186/s12864-015-1660-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. Results We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14 % of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. Conclusions The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1660-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Joelle Amselem
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. .,Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France.
| | - Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Sebastien Duplessis
- INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. .,UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France.
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France. .,Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France.
| | - Helene Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Jared Andrews
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Dominique Razeeq
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain.
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA.
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
13
|
Shen W, Wang D, Ye B, Shi M, Ma L, Zhang Y, Zhao Z. GC3-biased gene domains in mammalian genomes. Bioinformatics 2015; 31:3081-4. [PMID: 26019240 PMCID: PMC4576692 DOI: 10.1093/bioinformatics/btv329] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 01/17/2023] Open
Abstract
Motivation: Synonymous codon usage bias has been shown to be correlated with many genomic features among different organisms. However, the biological significance of codon bias with respect to gene function and genome organization remains unclear. Results: Guanine and cytosine content at the third codon position (GC3) could be used as a good indicator of codon bias. Here, we used relative GC3 bias values to compare the strength of GC3 bias of genes in human and mouse. We reported, for the first time, that GC3-rich and GC3-poor gene products might have distinct sub-cellular spatial distributions. Moreover, we extended the view of genomic gene domains and identified conserved GC3 biased gene domains along chromosomes. Our results indicated that similar GC3 biased genes might be co-translated in specific spatial regions to share local translational machineries, and that GC3 could be involved in the organization of genome architecture. Availability and implementation: Source code is available upon request from the authors. Contact:zhaozh@nic.bmi.ac.cn or zany1983@gmail.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wenlong Shen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Dong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing 100071, China, College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Minglei Shi
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lei Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
14
|
Homology-independent metrics for comparative genomics. Comput Struct Biotechnol J 2015; 13:352-7. [PMID: 26029354 PMCID: PMC4446528 DOI: 10.1016/j.csbj.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/06/2015] [Accepted: 04/18/2015] [Indexed: 11/24/2022] Open
Abstract
A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference.
Collapse
|
15
|
Clément Y, Fustier MA, Nabholz B, Glémin S. The bimodal distribution of genic GC content is ancestral to monocot species. Genome Biol Evol 2014; 7:336-48. [PMID: 25527839 PMCID: PMC4316631 DOI: 10.1093/gbe/evu278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In grasses such as rice or maize, the distribution of genic GC content is well known to be bimodal. It is mainly driven by GC content at third codon positions (GC3 for short). This feature is thought to be specific to grasses as closely related species like banana have a unimodal GC3 distribution. GC3 is associated with numerous genomics features and uncovering the origin of this peculiar distribution will help understanding the potential roles and consequences of GC3 variations within and between genomes. Until recently, the origin of the peculiar GC3 distribution in grasses has remained unknown. Thanks to the recent publication of several complete genomes and transcriptomes of nongrass monocots, we studied more than 1,000 groups of one-to-one orthologous genes in seven grasses and three outgroup species (banana, palm tree, and yam). Using a maximum likelihood-based method, we reconstructed GC3 at several ancestral nodes. We found that the bimodal GC3 distribution observed in extant grasses is ancestral to both grasses and most monocot species, and that other species studied here have lost this peculiar structure. We also found that GC3 in grass lineages is globally evolving very slowly and that the decreasing GC3 gradient observed from 5′ to 3′ along coding sequences is also conserved and ancestral to monocots. This result strongly challenges the previous views on the specificity of grass genomes and we discuss its implications for the possible causes of the evolution of GC content in monocots.
Collapse
Affiliation(s)
- Yves Clément
- Montpellier SupAgro, Unité Mixte de Recherche 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Montpellier, France Institut des Sciences de l'Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier, France
| | | | - Benoit Nabholz
- Institut des Sciences de l'Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier, France
| | - Sylvain Glémin
- Institut des Sciences de l'Evolution de Montpellier, Unité Mixte de Recherche 5554, Centre National de la Recherche Scientifique, Université Montpellier, France
| |
Collapse
|
16
|
Figuet E, Ballenghien M, Romiguier J, Galtier N. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol 2014; 7:240-50. [PMID: 25527834 PMCID: PMC4316630 DOI: 10.1093/gbe/evu277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Collapse
Affiliation(s)
- Emeric Figuet
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Marion Ballenghien
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| | - Jonathan Romiguier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - Nicolas Galtier
- CNRS, Université Montpellier 2, UMR 5554, Institut des Sciences de l'Evolution de Montpellier, France
| |
Collapse
|
17
|
Elhaik E, Graur D. A comparative study and a phylogenetic exploration of the compositional architectures of mammalian nuclear genomes. PLoS Comput Biol 2014; 10:e1003925. [PMID: 25375262 PMCID: PMC4222635 DOI: 10.1371/journal.pcbi.1003925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 09/18/2014] [Indexed: 11/18/2022] Open
Abstract
For the past four decades the compositional organization of the mammalian genome posed a formidable challenge to molecular evolutionists attempting to explain it from an evolutionary perspective. Unfortunately, most of the explanations adhered to the "isochore theory," which has long been rebutted. Recently, an alternative compositional domain model was proposed depicting the human and cow genomes as composed mostly of short compositionally homogeneous and nonhomogeneous domains and a few long ones. We test the validity of this model through a rigorous sequence-based analysis of eleven completely sequenced mammalian and avian genomes. Seven attributes of compositional domains are used in the analyses: (1) the number of compositional domains, (2) compositional domain-length distribution, (3) density of compositional domains, (4) genome coverage by the different domain types, (5) degree of fit to a power-law distribution, (6) compositional domain GC content, and (7) the joint distribution of GC content and length of the different domain types. We discuss the evolution of these attributes in light of two competing phylogenetic hypotheses that differ from each other in the validity of clade Euarchontoglires. If valid, the murid genome compositional organization would be a derived state and exhibit a high similarity to that of other mammals. If invalid, the murid genome compositional organization would be closer to an ancestral state. We demonstrate that the compositional organization of the murid genome differs from those of primates and laurasiatherians, a phenomenon previously termed the "murid shift," and in many ways resembles the genome of opossum. We find no support to the "isochore theory." Instead, our findings depict the mammalian genome as a tapestry of mostly short homogeneous and nonhomogeneous domains and few long ones thus providing strong evidence in favor of the compositional domain model and seem to invalidate clade Euarchontoglires.
Collapse
Affiliation(s)
- Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Dan Graur
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
18
|
Abstract
Whole-genome and functional analyses suggest a wealth of secondary or auxiliary genetic information (AGI) within the redundancy component of the genetic code. Although there are multiple aspects of biased codon use, we focus on two types of auxiliary information: codon-specific translational pauses that can be used by particular proteins toward their unique folding and biased codon patterns shared by groups of functionally related mRNAs with coordinate regulation. AGI is important to genetics in general and to human disease; here, we consider influences of its three major components, biased codon use itself, variations in the tRNAome, and anticodon modifications that distinguish synonymous decoding. AGI is plastic and can be used by different species to different extents, with tissue-specificity and in stress responses. Because AGI is species-specific, it is important to consider codon-sensitive experiments when using heterologous systems; for this we focus on the tRNA anticodon loop modification enzyme, CDKAL1, and its link to type 2 diabetes. Newly uncovered tRNAome variability among humans suggests roles in penetrance and as a genetic modifier and disease modifier. Development of experimental and bioinformatics methods are needed to uncover additional means of auxiliary genetic information.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
- Corresponding authorE-mail
| | - James R. Iben
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Tatarinova T, Elhaik E, Pellegrini M. Cross-species analysis of genic GC3 content and DNA methylation patterns. Genome Biol Evol 2013; 5:1443-56. [PMID: 23833164 PMCID: PMC3762193 DOI: 10.1093/gbe/evt103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The GC content in the third codon position (GC3) exhibits a unimodal distribution in many plant and animal genomes. Interestingly, grasses and homeotherm vertebrates exhibit a unique bimodal distribution. High GC3 was previously found to be associated with variable expression, higher frequency of upstream TATA boxes, and an increase of GC3 from 5′ to 3′. Moreover, GC3-rich genes are predominant in certain gene classes and are enriched in CpG dinucleotides that are potential targets for methylation. Based on the GC3 bimodal distribution we hypothesize that GC3 has a regulatory role involving methylation and gene expression. To test that hypothesis, we selected diverse taxa (rice, thale cress, bee, and human) that varied in the modality of their GC3 distribution and tested the association between GC3, DNA methylation, and gene expression. We examine the relationship between cytosine methylation levels and GC3, gene expression, genome signature, gene length, and other gene compositional features. We find a strong negative correlation (Pearson’s correlation coefficient r = −0.67, P value < 0.0001) between GC3 and genic CpG methylation. The comparison between 5′-3′ gradients of CG3-skew and genic methylation for the taxa in the study suggests interplay between gene-body methylation and transcription-coupled cytosine deamination effect. Compositional features are correlated with methylation levels of genes in rice, thale cress, human, bee, and fruit fly (which acts as an unmethylated control). These patterns allow us to generate evolutionary hypotheses about the relationships between GC3 and methylation and how these affect expression patterns. Specifically, we propose that the opposite effects of methylation and compositional gradients along coding regions of GC3-poor and GC3-rich genes are the products of several competing processes.
Collapse
Affiliation(s)
- Tatiana Tatarinova
- Laboratory of Applied Pharmacokinetics and Bioinformatics, University of Southern California.
| | | | | |
Collapse
|
20
|
The bat genome: GC-biased small chromosomes associated with reduction in genome size. Chromosoma 2013; 122:535-40. [PMID: 23881029 DOI: 10.1007/s00412-013-0426-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022]
Abstract
Bats are distinct from other mammals in their small genome size as well as their high metabolic rate, possibly related to flight ability. Although the genome sequence has been published in two species, the data lack cytogenetic information. In this study, the size and GC content of each chromosome are measured from the flow karyotype of the mouse-eared bat, Myotis myotis (MMY). The smaller chromosomes are GC-rich compared to the larger chromosomes, and the relative proportions of homologous segments between MMY and human differ among the MMY chromosomes. The MMY genome size calculated from the sum of the chromosome sizes is 2.25 Gb, and the total GC content is 42.3%, compared to human and dog with 41.0 and 41.2%, respectively. The GC-rich small MMY genome is characterised by GC-biased smaller chromosomes resulting from preferential loss of AT-rich sequences. Although the association between GC-rich small chromosomes and small genome size has been reported only in birds so far, we show in this paper, for the first time, that the same phenomenon is observed in at least one group of mammals, implying that this may be a mechanism common to genome evolution in general.
Collapse
|
21
|
IsoPlotter(+): A Tool for Studying the Compositional Architecture of Genomes. ISRN BIOINFORMATICS 2013; 2013:725434. [PMID: 25937951 PMCID: PMC4393066 DOI: 10.1155/2013/725434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
Eukaryotic genomes, particularly animal genomes, have a complex, nonuniform, and nonrandom internal compositional organization. The compositional organization of animal genomes can be described as a mosaic of discrete genomic regions, called “compositional domains,” each with a distinct GC content that significantly differs from those of its upstream and downstream neighboring domains. A typical animal genome consists of a mixture of compositionally homogeneous and nonhomogeneous domains of varying lengths and nucleotide compositions that are interspersed with one another. We have devised IsoPlotter, an unbiased segmentation algorithm for inferring the compositional organization of genomes. IsoPlotter has become an indispensable tool for describing genomic composition and has been used in the analysis of more than a dozen genomes. Applications include describing new genomes, correlating domain composition with gene composition and their density, studying the evolution of genomes, testing phylogenomic hypotheses, and detect regions of potential interbreeding between human and extinct hominines. To extend the use of IsoPlotter, we designed a completely automated pipeline, called IsoPlotter+ to carry out all segmentation analyses, including graphical display, and built a repository for compositional domain maps of all fully sequenced vertebrate and invertebrate genomes. The IsoPlotter+ pipeline and repository offer a comprehensive solution to the study of genome compositional architecture. Here, we demonstrate IsoPlotter+ by applying it to human and insect genomes. The computational tools and data repository are available online.
Collapse
|
22
|
Matsubara K, Kuraku S, Tarui H, Nishimura O, Nishida C, Agata K, Kumazawa Y, Matsuda Y. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake. BMC Genomics 2012; 13:604. [PMID: 23140509 PMCID: PMC3549455 DOI: 10.1186/1471-2164-13-604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. RESULTS Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). CONCLUSION Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Department of Information and Biological Sciences, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Human metapneumovirus (HMPV) is an important agent of acute respiratory tract infection in children, while its pathogenicity and molecular evolution are lacking. Herein, we firstly report the synonymous codon usage patterns of HMPV genome. The relative synonymous codon usage (RSCU) values, effective number of codon (ENC) values, nucleotide contents, and correlation analysis were performed among 17 available whole genome of HMPV, including different genotypes. All preferred codons in HMPV are ended with A/U nucleotide and exhibited a great association with its high proportion of these two nucleotides in their genomes. Mutation pressure rather than natural selection is the main influence factor that determines the bias of synonymous codon usage in HMPV. The complementary pattern of codon usage bias between HMPV and human cell was observed, and this phenomenon suggests that host cells might be also act as an important factor to affect the codon usage bias. Moreover, the codon usage biases in each HMPV genotypes are separated into different clades, which suggest that phylogenetic distance might involve in codon usage bias formation as well. These analyses of synonymous codon usage bias in HMPV provide more information for better understanding its evolution and pathogenicity.
Collapse
|
24
|
Berná L, Chaurasia A, Angelini C, Federico C, Saccone S, D'Onofrio G. The footprint of metabolism in the organization of mammalian genomes. BMC Genomics 2012; 13:174. [PMID: 22568857 PMCID: PMC3384468 DOI: 10.1186/1471-2164-13-174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 05/08/2012] [Indexed: 01/02/2023] Open
Abstract
Background At present five evolutionary hypotheses have been proposed to explain the great variability of the genomic GC content among and within genomes: the mutational bias, the biased gene conversion, the DNA breakpoints distribution, the thermal stability and the metabolic rate. Several studies carried out on bacteria and teleostean fish pointed towards the critical role played by the environment on the metabolic rate in shaping the base composition of genomes. In mammals the debate is still open, and evidences have been produced in favor of each evolutionary hypothesis. Human genes were assigned to three large functional categories (as well as to the corresponding functional classes) according to the KOG database: (i) information storage and processing, (ii) cellular processes and signaling, and (iii) metabolism. The classification was extended to the organisms so far analyzed performing a reciprocal Blastp and selecting the best reciprocal hit. The base composition was calculated for each sequence of the whole CDS dataset. Results The GC3 level of the above functional categories was increasing from (i) to (iii). This specific compositional pattern was found, as footprint, in all mammalian genomes, but not in frog and lizard ones. Comparative analysis of human versus both frog and lizard functional categories showed that genes involved in the metabolic processes underwent the highest GC3 increment. Analyzing the KOG functional classes of genes, again a well defined intra-genomic pattern was found in all mammals. Not only genes of metabolic pathways, but also genes involved in chromatin structure and dynamics, transcription, signal transduction mechanisms and cytoskeleton, showed an average GC3 level higher than that of the whole genome. In the case of the human genome, the genes of the aforementioned functional categories showed a high probability to be associated with the chromosomal bands. Conclusions In the light of different evolutionary hypotheses proposed so far, and contributing with different potential to the genome compositional heterogeneity of mammalian genomes, the one based on the metabolic rate seems to play not a minor role. Keeping in mind similar results reported in bacteria and in teleosts, the specific compositional patterns observed in mammals highlight metabolic rate as unifying factor that fits over a wide range of living organisms.
Collapse
Affiliation(s)
- Luisa Berná
- Genome Evolution and Organization - Department Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Fujita MK, Edwards SV, Ponting CP. The Anolis lizard genome: an amniote genome without isochores. Genome Biol Evol 2011; 3:974-84. [PMID: 21795750 PMCID: PMC3184785 DOI: 10.1093/gbe/evr072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Isochores are large regions of relatively homogeneous nucleotide composition and are present in the genomes of all mammals and birds that have been sequenced to date. The newly sequenced genome of Anolis carolinensis provides the first opportunity to quantify isochore structure in a nonavian reptile. We find Anolis to have the most compositionally homogeneous genome of all amniotes sequenced thus far, a homogeneity exceeding that for the frog Xenopus. Based on a Bayesian algorithm, Anolis has smaller and less GC-rich isochores compared with human and chicken. Correlates generally associated with GC-rich isochores, including shorter introns and higher gene density, have all but disappeared from the Anolis genome. Using genic GC as a proxy for isochore structure so as to compare with other vertebrates, we found that GC content has substantially decreased in the lineage leading to Anolis since diverging from the common ancestor of Reptilia ∼275 Ma, perhaps reflecting weakened or reversed GC-biased gene conversion, a nonadaptive substitution process that is thought to be important in the maintenance and trajectory of isochore evolution. Our results demonstrate that GC composition in Anolis is not associated with important features of genome structure, including gene density and intron size, in contrast to patterns seen in mammal and bird genomes.
Collapse
Affiliation(s)
- Matthew K Fujita
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
26
|
Zhang W, Wu W, Lin W, Zhou P, Dai L, Zhang Y, Huang J, Zhang D. Deciphering heterogeneity in pig genome assembly Sscrofa9 by isochore and isochore-like region analyses. PLoS One 2010; 5:e13303. [PMID: 20948965 PMCID: PMC2952626 DOI: 10.1371/journal.pone.0013303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs. Principal Findings In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51% and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization. Conclusion This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a unique glimpse of in silico gene and repeats prediction.
Collapse
Affiliation(s)
- Wenqian Zhang
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenwu Wu
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenchao Lin
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Pengfang Zhou
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Li Dai
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yang Zhang
- Investigation Group of Molecular Virology, Immunology, Oncology and Systems Biology, and Bioinformatics Center, College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (DZ); (JH)
| | - Deli Zhang
- Investigation Group of Molecular Virology, Immunology, Oncology and Systems Biology, and Bioinformatics Center, College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- * E-mail: (DZ); (JH)
| |
Collapse
|
27
|
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 2010; 11:239-64. [PMID: 20590429 DOI: 10.1146/annurev-genom-082509-141646] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
28
|
Clay OK, Bernardi G. GC3 of Genes Can Be Used as a Proxy for Isochore Base Composition: A Reply to Elhaik et al. Mol Biol Evol 2010; 28:21-3. [DOI: 10.1093/molbev/msq222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Lynch DB, Logue ME, Butler G, Wolfe KH. Chromosomal G + C content evolution in yeasts: systematic interspecies differences, and GC-poor troughs at centromeres. Genome Biol Evol 2010; 2:572-83. [PMID: 20693156 PMCID: PMC2997560 DOI: 10.1093/gbe/evq042] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The G + C content at synonymous codon positions (GC3s) in genes varies along chromosomes in most eukaryotes. In Saccharomyces cerevisiae, regions of high GC3s are correlated with recombination hot spots, probably due to biased gene conversion. Here we examined how GC3s differs among groups of related yeast species in the Saccharomyces and Candida clades. The chromosomal locations of GC3s peaks and troughs are conserved among four Saccharomyces species, but we find that there have been highly consistent small shifts in their GC3s values. For instance, 84% of all S. cerevisiae genes have a lower GC3s value than their S. bayanus orthologs. There are extensive interspecies differences in the Candida clade both in the median value of GC3s (ranging from 22% to 49%) and in the variance of GC3s among genes. In three species—Candida lusitaniae, Pichia stipitis, and Yarrowia lipolytica—there is one region on each chromosome in which GC3s is markedly reduced. We propose that these GC-poor troughs indicate the positions of centromeres because in Y. lipolytica they coincide with the five experimentally identified centromeres. In P. stipitis, the troughs contain clusters of the retrotransposon Tps5. Likewise, in Debaryomyces hansenii, there is one cluster of the retrotransposon Tdh5 per chromosome, and all these clusters are located in GC-poor troughs. Locally reduced G + C content around centromeres is consistent with a model in which G + C content correlates with recombination rate, and recombination is suppressed around centromeres, although the troughs are unexpectedly wide (100–300 kb).
Collapse
Affiliation(s)
- Denise B Lynch
- Conway Institute of Biomedical and Biomolecular Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
30
|
Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res 2010; 20:1001-9. [PMID: 20530252 DOI: 10.1101/gr.104372.109] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The origin, evolution, and functional relevance of genomic variations in GC content are a long-debated topic, especially in mammals. Most of the existing literature, however, has focused on a small number of model species and/or limited sequence data sets. We analyzed more than 1000 orthologous genes in 33 fully sequenced mammalian genomes, reconstructed their ancestral isochore organization in the maximum likelihood framework, and explored the evolution of third-codon position GC content in representatives of 16 orders and 27 families. We showed that the previously reported erosion of GC-rich isochores is not a general trend. Several species (e.g., shrew, microbat, tenrec, rabbit) have independently undergone a marked increase in GC content, with a widening gap between the GC-poorest and GC-richest classes of genes. The intensively studied apes and (especially) murids do not reflect the general placental pattern. We correlated GC-content evolution with species life-history traits and cytology. Significant effects of body mass and genome size were detected, with each being consistent with the GC-biased gene conversion model.
Collapse
|
31
|
Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA. GC3 biology in corn, rice, sorghum and other grasses. BMC Genomics 2010; 11:308. [PMID: 20470436 PMCID: PMC2895627 DOI: 10.1186/1471-2164-11-308] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 05/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for cytosine and guanine at the third position in a subset of transcripts within a single organism. The bias is present in some plant species and warm-blooded vertebrates but not in all plants, or in invertebrates or cold-blooded vertebrates. RESULTS Here we demonstrate that in certain organisms the amount of GC at the wobble position (GC3) can be used to distinguish two classes of genes. We highlight the following features of genes with high GC3 content: they (1) provide more targets for methylation, (2) exhibit more variable expression, (3) more frequently possess upstream TATA boxes, (4) are predominant in certain classes of genes (e.g., stress responsive genes) and (5) have a GC3 content that increases from 5'to 3'. These observations led us to formulate a hypothesis to explain GC3 bimodality in grasses. CONCLUSIONS Our findings suggest that high levels of GC3 typify a class of genes whose expression is regulated through DNA methylation or are a legacy of accelerated evolution through gene conversion. We discuss the three most probable explanations for GC3 bimodality: biased gene conversion, transcriptional and translational advantage and gene methylation.
Collapse
Affiliation(s)
- Tatiana V Tatarinova
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | |
Collapse
|