1
|
Becher H, Charlesworth B. A model of Hill-Robertson interference caused by purifying selection in a nonrecombining genome. Genetics 2025; 230:iyaf048. [PMID: 40120130 PMCID: PMC12059647 DOI: 10.1093/genetics/iyaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
A new approach to modeling the effects of Hill-Robertson interference on levels of adaptation and patterns of variability in a nonrecombining genome or genomic region is described. The model assumes a set of L diallelic sites subject to reversible mutations between beneficial and deleterious alleles, with the same selection coefficient at each site. The assumption of reversibility allows the system to reach a stable statistical equilibrium with respect to the frequencies of deleterious mutations, in contrast to many previous models that assume irreversible mutations to deleterious alleles. The model is therefore appropriate for understanding the long-term properties of nonrecombining genomes such as Y chromosomes, and is applicable to haploid genomes or to diploid genomes when there is intermediate dominance with respect to the effects of mutations on fitness. Approximations are derived for the equilibrium frequencies of deleterious mutations, the effective population size that controls the fixation probabilities of mutations at sites under selection, the nucleotide site diversity at neutral sites located within the nonrecombining region, and the site frequency spectrum for segregating neutral variants. The approximations take into account the effects of linkage disequilibrium on the genetic variance at sites under selection. Comparisons with published and new computer simulation results show that the approximations are sufficiently accurate to be useful, and can provide insights into a wider range of parameter sets than is accessible by simulation. The relevance of the findings to data on nonrecombining genome regions is discussed.
Collapse
Affiliation(s)
- Hannes Becher
- Royal (Dick) School of Veterinary Science, The Roslin Institute, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Brian Charlesworth
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Szasz-Green T, Shores K, Vanga V, Zacharias L, Lawton AK, Dapper AL. Comparative Phylogenetics Reveal Clade-specific Drivers of Recombination Rate Evolution Across Vertebrates. Mol Biol Evol 2025; 42:msaf100. [PMID: 40331240 PMCID: PMC12100477 DOI: 10.1093/molbev/msaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Meiotic recombination is an integral cellular process, required for the production of viable gametes. Recombination rate is a fundamental genomic parameter, modulating genomic responses to selection. Our increasingly detailed understanding of its molecular underpinnings raises the prospect that we can gain insight into trait divergence by examining the molecular evolution of recombination genes from a pathway perspective, as in mammals, where protein-coding changes in later stages of the recombination pathway are connected to divergence in intra-clade recombination rate. Here, we leverage increased availability of avian and teleost genomes to reconstruct the evolution of the recombination pathway across two additional vertebrate clades: birds, which have higher and more variable rates of recombination and similar divergence times to mammals, and teleost fish, which have much deeper divergence times. Rates of molecular evolution of recombination genes are highly correlated between vertebrate clades and significantly elevated compared to control panels, suggesting that they experience similar selective pressures. Avian recombination genes are significantly more likely to exhibit signatures of positive selection than other clades, unrestricted to later stages of the pathway. Signatures of positive selection in genes linked to recombination rate variation in mammalian populations and those with signatures of positive selection across the avian phylogeny are highly correlated. In contrast, teleost fish recombination genes have significantly less evidence of positive selection despite high intra-clade recombination rate variability. Gaining clade-specific understanding of patterns of variation in recombination genes can elucidate drivers of recombination rate and thus, factors influencing genetic diversity, selection efficacy, and species divergence.
Collapse
Affiliation(s)
- Taylor Szasz-Green
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Katherynne Shores
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Vineel Vanga
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Luke Zacharias
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Andrew K Lawton
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Amy L Dapper
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
3
|
Soni V, Jensen JD. Inferring demographic and selective histories from population genomic data using a 2-step approach in species with coding-sparse genomes: an application to human data. G3 (BETHESDA, MD.) 2025; 15:jkaf019. [PMID: 39883523 PMCID: PMC12005166 DOI: 10.1093/g3journal/jkaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
The demographic history of a population, and the distribution of fitness effects (DFE) of newly arising mutations in functional genomic regions, are fundamental factors dictating both genetic variation and evolutionary trajectories. Although both demographic and DFE inference has been performed extensively in humans, these approaches have generally either been limited to simple demographic models involving a single population, or, where a complex population history has been inferred, without accounting for the potentially confounding effects of selection at linked sites. Taking advantage of the coding-sparse nature of the genome, we propose a 2-step approach in which coalescent simulations are first used to infer a complex multi-population demographic model, utilizing large non-functional regions that are likely free from the effects of background selection. We then use forward-in-time simulations to perform DFE inference in functional regions, conditional on the complex demography inferred and utilizing expected background selection effects in the estimation procedure. Throughout, recombination and mutation rate maps were used to account for the underlying empirical rate heterogeneity across the human genome. Importantly, within this framework it is possible to utilize and fit multiple aspects of the data, and this inference scheme represents a generalized approach for such large-scale inference in species with coding-sparse genomes.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
Hey J, Pavinato VAC. Isolating selective from non-selective forces using site frequency ratios. PLoS Genet 2025; 21:e1011427. [PMID: 40258089 PMCID: PMC12064048 DOI: 10.1371/journal.pgen.1011427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 05/09/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
A new method is introduced for estimating the distribution of mutation fitness effects using site frequency spectra. Unlike previous methods, which make assumptions about non-selective factors, or that try to incorporate such factors into the underlying model, this new method mostly avoids non-selective effects by working with the ratios of counts of selected sites to neutral sites. An expression for the likelihood of a set of selected/neutral ratios is found by treating the ratio of two Poisson random variables as the ratio of two gaussian random variables. This approach also avoids the need to estimate the relative mutation rates of selected and neutral sites. Simulations over a wide range of demographic models, with linked selection effects show that the new SFRatios method performs well for statistical tests of selection, and it performs well for estimating the distribution of selection effects. Performance was better with weak selection models and for expansion and structured demographic models than for bottleneck models. Applications to two populations of Drosophila melanogaster reveal clear but very weak selection on synonymous sites. For nonsynonymous sites, selection was found to be consistent with previous estimates and stronger for an African population than for one from North Carolina.
Collapse
Affiliation(s)
- Jody Hey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vitor A. C. Pavinato
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Perkins SA, Neafsey DE, Early AM. Heterogeneous constraint and adaptation across the malaria parasite life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.636054. [PMID: 39990389 PMCID: PMC11844417 DOI: 10.1101/2025.02.11.636054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Evolutionary forces vary across genomes, creating disparities in how traits evolve. In organisms with complex life cycles, it is unclear how intrinsic differences among discrete life stages impact evolution. We looked for life history-driven changes in patterns of adaptation in Plasmodium falciparum, a malaria-causing parasite with a multi-stage life cycle. Categorizing genes based on their expression in different life stages, we compared patterns of between- and within-species polymorphism across stages by estimating nonsynonymous to synonymous substitution rate ratios (dN/dS) and mean pairwise nucleotide diversity ( π NS/ π S). Considering these alongside estimates of Tajima's D, fixation probability, adaptive divergence proportion and rate, and F ST , we looked for changes in the drift-selection balance in life stages subject to transmission bottlenecks and changes in ploidy. We observed signals of reduced selection efficacy in genes exclusively expressed in sporozoites, the parasite form transmitted from mosquitoes to humans and often targeted by vaccines and monoclonal antibodies. We discuss implications for how parasites evolve to resist therapeutics and consider functional, molecular, and population genetic factors that could contribute to these patterns.
Collapse
Affiliation(s)
- Sarah A Perkins
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Lu Y, Li M, Gao Z, Ma H, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Advances in Whole Genome Sequencing: Methods, Tools, and Applications in Population Genomics. Int J Mol Sci 2025; 26:372. [PMID: 39796227 PMCID: PMC11719799 DOI: 10.3390/ijms26010372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
With the rapid advancement of high-throughput sequencing technologies, whole genome sequencing (WGS) has emerged as a crucial tool for studying genetic variation and population structure. Utilizing population genomics tools to analyze resequencing data allows for the effective integration of selection signals with population history, precise estimation of effective population size, historical population trends, and structural insights, along with the identification of specific genetic loci and variations. This paper reviews current whole genome sequencing technologies, detailing primary research methods, relevant software, and their advantages and limitations within population genomics. The goal is to examine the application and progress of resequencing technologies in this field and to consider future developments, including deep learning models and machine learning algorithms, which promise to enhance analytical methodologies and drive further advancements in population genomics.
Collapse
Affiliation(s)
- Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.L.); (Z.G.); (H.M.); (Y.C.); (J.H.); (J.W.); (D.W.)
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
8
|
Soni V, Versoza CJ, Pfeifer SP, Jensen JD. Estimating the distribution of fitness effects in aye-ayes ( Daubentonia madagascariensis ), accounting for population history as well as mutation and recombination rate heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631144. [PMID: 39803457 PMCID: PMC11722344 DOI: 10.1101/2025.01.02.631144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The distribution of fitness effects (DFE) characterizes the range of selection coefficients from which new mutations are sampled, and thus holds a fundamentally important role in evolutionary genomics. To date, DFE inference in primates has been largely restricted to haplorrhines, with limited data availability leaving the other suborder of primates, strepsirrhines, largely under-explored. To advance our understanding of the population genetics of this important taxonomic group, we here map exonic divergence in aye-ayes ( Daubentonia madagascariensis ) - the only extant member of the Daubentoniidae family of the Strepsirrhini suborder. We further infer the DFE in this highly-endangered species, utilizing a recently published high-quality annotated reference genome, a well-supported model of demographic history, as well as both direct and indirect estimates of underlying mutation and recombination rates. The inferred distribution is generally characterized by a greater proportion of deleterious mutations relative to humans, providing evidence of a larger long-term effective population size. In addition however, both immune-related and sensory-related genes were found to be amongst the most rapidly evolving in the aye-aye genome.
Collapse
|
9
|
Wang X, Feng QH, Zeng ZH, Zhang ZQ, Cai J, Chen G, Li DZ, Wang H, Zhou W. Effects of mode of reproduction on genetic polymorphism and divergence in wild yams (Dioscoreaceae: Dioscorea). PLANT DIVERSITY 2025; 47:136-147. [PMID: 40041563 PMCID: PMC11873583 DOI: 10.1016/j.pld.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 03/06/2025]
Abstract
Evolutionary transitions from sexual to asexual reproduction should have significant influences on genetic divergence and polymorphism at the genome level. Plant lineages with diverse reproductive systems provide opportunities to investigate this question using comparative approaches and studies of molecular evolution. We investigated evidence for differences among the transcriptomes of 19 Dioscorea species (wild yams) with diverse reproductive systems. These included sexual species, those that propagate primarily by bulbils, and those with mixed sexual and asexual reproductive modes. We examined how transitions between these reproductive systems affected between-species divergence and within-species polymorphism. Primarily asexual species exhibited a reduced efficacy of natural selection and accumulation of deleterious mutations for both divergence and polymorphism. In contrast, species with mixed reproductive strategies involving both seed and clonal reproduction showed no evidence of an increased fixation of harmful mutations at the divergence level, while an accumulation of genetic load present in polymorphism was evident. Our study indicates that the genetic consequences of evolutionary transitions from sexual to predominantly clonal reproduction is likely to depend on both the duration and extent of asexuality occurring in populations.
Collapse
Affiliation(s)
- Xin Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Hong Feng
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
- Research Institute of Tropical Forestry, Yunnan Academy of Forestry and Grassland, Xishuangbanna, Yunnan 666102, China
| | - Zhi-Hua Zeng
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Jie Cai
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Gao Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wei Zhou
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan 674100, China
| |
Collapse
|
10
|
Latrille T, Joseph J, Hartasánchez DA, Salamin N. Estimating the proportion of beneficial mutations that are not adaptive in mammals. PLoS Genet 2024; 20:e1011536. [PMID: 39724093 PMCID: PMC11709321 DOI: 10.1371/journal.pgen.1011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/08/2025] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment. In contrast to adaptive mutations, these beneficial non-adaptive mutations can be predicted if the underlying fitness landscape is stable and known. The contribution of such non-adaptive mutations to molecular evolution has been widely neglected mainly because their detection is very challenging. We have here reconstructed protein-coding gene fitness landscapes shared between mammals, using mutation-selection models and a multi-species alignments across 87 mammals. These fitness landscapes have allowed us to predict the fitness effect of polymorphisms found in 28 mammalian populations. Using methods that quantify selection at the population level, we have confirmed that beneficial non-adaptive mutations are indeed positively selected in extant populations. Our work confirms that deleterious substitutions are accumulating in mammals and are being reverted, generating a balance in which genomes are damaged and restored simultaneously at different loci. We observe that beneficial non-adaptive mutations represent between 15% and 45% of all beneficial mutations in 24 of 28 populations analyzed, suggesting that a substantial part of ongoing positive selection is not driven solely by adaptation to environmental change in mammals.
Collapse
Affiliation(s)
- Thibault Latrille
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Nicolas Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Salvador-Martínez I, Murga-Moreno J, Nieto JC, Alsinet C, Enard D, Heyn H. Adaptation in human immune cells residing in tissues at the frontline of infections. Nat Commun 2024; 15:10329. [PMID: 39609395 PMCID: PMC11605006 DOI: 10.1038/s41467-024-54603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Human immune cells are under constant evolutionary pressure, primarily through their role as first line of defence against pathogens. Most studies on immune adaptation are, however, based on protein-coding genes without considering their cellular context. Here, using data from the Human Cell Atlas, we infer the gene adaptation rate of the human immune landscape at cellular resolution. We find abundant cell types, like progenitor cells during development and adult cells in barrier tissues, to harbour significantly increased adaptation rates. We confirm the adaptation of tissue-resident T and NK cells in the adult lung located in compartments directly facing external challenges, such as respiratory pathogens. Analysing human iPSC-derived macrophages responding to various challenges, we find adaptation in early immune responses. Together, our study suggests host benefits to control pathogen spread at early stages of infection, providing a retrospect of forces that shaped the complexity, architecture, and function of the human body.
Collapse
Affiliation(s)
| | - Jesus Murga-Moreno
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Juan C Nieto
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Clara Alsinet
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Holger Heyn
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
12
|
Soni V, Jensen JD. Inferring demographic and selective histories from population genomic data using a two-step approach in species with coding-sparse genomes: an application to human data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613979. [PMID: 39605418 PMCID: PMC11601476 DOI: 10.1101/2024.09.19.613979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The demographic history of a population, and the distribution of fitness effects (DFE) of newly arising mutations in functional genomic regions, are fundamental factors dictating both genetic variation and evolutionary trajectories. Although both demographic and DFE inference has been performed extensively in humans, these approaches have generally either been limited to simple demographic models involving a single population, or, where a complex population history has been inferred, without accounting for the potentially confounding effects of selection at linked sites. Taking advantage of the coding-sparse nature of the genome, we propose a 2-step approach in which coalescent simulations are first used to infer a complex multi-population demographic model, utilizing large non-functional regions that are likely free from the effects of background selection. We then use forward-in-time simulations to perform DFE inference in functional regions, conditional on the complex demography inferred and utilizing expected background selection effects in the estimation procedure. Throughout, recombination and mutation rate maps were used to account for the underlying empirical rate heterogeneity across the human genome. Importantly, within this framework it is possible to utilize and fit multiple aspects of the data, and this inference scheme represents a generalized approach for such large-scale inference in species with coding-sparse genomes.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ, US
| | - Jeffrey D. Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ, US
| |
Collapse
|
13
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
14
|
Filatov DA, Kirkpatrick M. How does evolution work in superabundant microbes? Trends Microbiol 2024; 32:836-846. [PMID: 38360431 DOI: 10.1016/j.tim.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Marine phytoplankton play crucial roles in the Earth's ecological, chemical, and geological processes. They are responsible for about half of global primary production and drive the ocean biological carbon pump. Understanding how plankton species may adapt to the Earth's rapidly changing environments is evidently an urgent priority. This problem requires evolutionary genetic approaches as evolution occurs at the level of allele frequency change within populations driven by genetic drift and natural selection (microevolution). Plankters such as the coccolithophore Gephyrocapsa huxleyi and the cyanobacterium Prochlorococcus 'marinus' are among Earth's most abundant organisms. In this opinion paper we discuss how evolution in astronomically large populations of superabundant microbes (SAMs) may act fundamentally differently than it does in the populations of more modest size found in well-studied organisms. This offers exciting opportunities to study evolution in the conditions that have yet to be explored and also leads to unique challenges. Exploring these opportunities and challenges is the goal of this article.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
15
|
Marsh JI, Johri P. Biases in ARG-Based Inference of Historical Population Size in Populations Experiencing Selection. Mol Biol Evol 2024; 41:msae118. [PMID: 38874402 PMCID: PMC11245712 DOI: 10.1093/molbev/msae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Inferring the demographic history of populations provides fundamental insights into species dynamics and is essential for developing a null model to accurately study selective processes. However, background selection and selective sweeps can produce genomic signatures at linked sites that mimic or mask signals associated with historical population size change. While the theoretical biases introduced by the linked effects of selection have been well established, it is unclear whether ancestral recombination graph (ARG)-based approaches to demographic inference in typical empirical analyses are susceptible to misinference due to these effects. To address this, we developed highly realistic forward simulations of human and Drosophila melanogaster populations, including empirically estimated variability of gene density, mutation rates, recombination rates, purifying, and positive selection, across different historical demographic scenarios, to broadly assess the impact of selection on demographic inference using a genealogy-based approach. Our results indicate that the linked effects of selection minimally impact demographic inference for human populations, although it could cause misinference in populations with similar genome architecture and population parameters experiencing more frequent recurrent sweeps. We found that accurate demographic inference of D. melanogaster populations by ARG-based methods is compromised by the presence of pervasive background selection alone, leading to spurious inferences of recent population expansion, which may be further worsened by recurrent sweeps, depending on the proportion and strength of beneficial mutations. Caution and additional testing with species-specific simulations are needed when inferring population history with non-human populations using ARG-based approaches to avoid misinference due to the linked effects of selection.
Collapse
Affiliation(s)
- Jacob I Marsh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Raas MWD, Dutheil JY. The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations. Mol Ecol 2024; 33:e16980. [PMID: 37157166 DOI: 10.1111/mec.16980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive (ω a ) and non-adaptive (ω na ) non-synonymous substitutions in protein-coding genes. We report an overall limited contribution of positive selection to S. cerevisiae protein evolution, albeit with higher rates of adaptive evolution in wild compared to domesticated populations. Our analyses revealed the signature of background selection and possibly Hill-Robertson interference, as recombination was found to be negatively correlated withω na and positively correlated withω a . However, the effect of recombination onω a was found to be labile, as it is only apparent after removing the impact of codon usage bias on the synonymous site frequency spectrum and disappears if we control for the correlation withω na , suggesting that it could be an artefact of the decreasing population size. Furthermore, the rate of adaptive non-synonymous substitutions is significantly correlated with the residue solvent exposure, a relation that cannot be explained by the population's demography. Together, our results provide a detailed characterisation of adaptive mutations in protein-coding genes across S. cerevisiae populations.
Collapse
Affiliation(s)
- Maximilian W D Raas
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Julien Y Dutheil
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Unité Mixte de Recherche 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Murga-Moreno J, Casillas S, Barbadilla A, Uricchio L, Enard D. An efficient and robust ABC approach to infer the rate and strength of adaptation. G3 (BETHESDA, MD.) 2024; 14:jkae031. [PMID: 38365205 PMCID: PMC11090462 DOI: 10.1093/g3journal/jkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Inferring the effects of positive selection on genomes remains a critical step in characterizing the ultimate and proximate causes of adaptation across species, and quantifying positive selection remains a challenge due to the confounding effects of many other evolutionary processes. Robust and efficient approaches for adaptation inference could help characterize the rate and strength of adaptation in nonmodel species for which demographic history, mutational processes, and recombination patterns are not currently well-described. Here, we introduce an efficient and user-friendly extension of the McDonald-Kreitman test (ABC-MK) for quantifying long-term protein adaptation in specific lineages of interest. We characterize the performance of our approach with forward simulations and find that it is robust to many demographic perturbations and positive selection configurations, demonstrating its suitability for applications to nonmodel genomes. We apply ABC-MK to the human proteome and a set of known virus interacting proteins (VIPs) to test the long-term adaptation in genes interacting with viruses. We find substantially stronger signatures of positive selection on RNA-VIPs than DNA-VIPs, suggesting that RNA viruses may be an important driver of human adaptation over deep evolutionary time scales.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
18
|
Zhao W, Gao J, Hall D, Andersson BA, Bruxaux J, Tomlinson KW, Drouzas AD, Suyama Y, Wang XR. Evolutionary radiation of the Eurasian Pinus species under pervasive gene flow. THE NEW PHYTOLOGIST 2024. [PMID: 38515228 DOI: 10.1111/nph.19694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers withc . $$ c. $$ 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - David Hall
- Forestry Research Institute of Sweden (Skogforsk), Sävar, SE-91833, Sweden
| | - Bea Angelica Andersson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
| | - Kyle W Tomlinson
- Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephant, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Miyagi, 989-6711, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, SE-90187, Sweden
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
19
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
20
|
Zurita AMI, Kyriazis CC, Lohmueller KE. The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579314. [PMID: 38370782 PMCID: PMC10871344 DOI: 10.1101/2024.02.07.579314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The distribution of fitness effects (DFE) describes the proportions of new mutations that have different effects on reproductive fitness. Accurate measurements of the DFE are important because the DFE is a fundamental parameter in evolutionary genetics and has implications for our understanding of other phenomena like complex disease or inbreeding depression. Current computational methods to infer the DFE for nonsynonymous mutations from natural variation first estimate demographic parameters from synonymous variants to control for the effects of demography and background selection. Then, conditional on these parameters, the DFE is then inferred for nonsynonymous mutations. This approach relies on the assumption that synonymous variants are neutrally evolving. However, some evidence points toward synonymous mutations having measurable effects on fitness. To test whether selection on synonymous mutations affects inference of the DFE of nonsynonymous mutations, we simulated several possible models of selection on synonymous mutations using SLiM and attempted to recover the DFE of nonsynonymous mutations using Fit∂a∂i, a common method for DFE inference. Our results show that the presence of selection on synonymous variants leads to incorrect inferences of recent population growth. Furthermore, under certain parameter combinations, inferences of the DFE can have an inflated proportion of highly deleterious nonsynonymous mutations. However, this bias can be eliminated if the correct demographic parameters are used for DFE inference instead of the biased ones inferred from synonymous variants. Our work demonstrates how unmodeled selection on synonymous mutations may affect downstream inferences of the DFE.
Collapse
Affiliation(s)
- Aina Martinez I Zurita
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Kirk E Lohmueller
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| |
Collapse
|
21
|
Galtier N. Half a Century of Controversy: The Neutralist/Selectionist Debate in Molecular Evolution. Genome Biol Evol 2024; 16:evae003. [PMID: 38311843 PMCID: PMC10839204 DOI: 10.1093/gbe/evae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2024] [Indexed: 02/06/2024] Open
Abstract
The neutral and nearly neutral theories, introduced more than 50 yr ago, have raised and still raise passionate discussion regarding the forces governing molecular evolution and their relative importance. The debate, initially focused on the amount of within-species polymorphism and constancy of the substitution rate, has spread, matured, and now underlies a wide range of topics and questions. The neutralist/selectionist controversy has structured the field and influences the way molecular evolutionary scientists conceive their research.
Collapse
Affiliation(s)
- Nicolas Galtier
- ISEM, CNRS, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Chase MA, Vilcot M, Mugal CF. The role of recombination dynamics in shaping signatures of direct and indirect selection across the Ficedula flycatcher genome †. Proc Biol Sci 2024; 291:20232382. [PMID: 38228173 DOI: 10.1098/rspb.2023.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Recombination is a central evolutionary process that reshuffles combinations of alleles along chromosomes, and consequently is expected to influence the efficacy of direct selection via Hill-Robertson interference. Additionally, the indirect effects of selection on neutral genetic diversity are expected to show a negative relationship with recombination rate, as background selection and genetic hitchhiking are stronger when recombination rate is low. However, owing to the limited availability of recombination rate estimates across divergent species, the impact of evolutionary changes in recombination rate on genomic signatures of selection remains largely unexplored. To address this question, we estimate recombination rate in two Ficedula flycatcher species, the taiga flycatcher (Ficedula albicilla) and collared flycatcher (Ficedula albicollis). We show that recombination rate is strongly correlated with signatures of indirect selection, and that evolutionary changes in recombination rate between species have observable impacts on this relationship. Conversely, signatures of direct selection on coding sequences show little to no relationship with recombination rate, even when restricted to genes where recombination rate is conserved between species. Thus, using measures of indirect and direct selection that bridge micro- and macro-evolutionary timescales, we demonstrate that the role of recombination rate and its dynamics varies for different signatures of selection.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34293 Montpellier 5, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, 69622 Villeurbanne cedex, France
| |
Collapse
|
23
|
Chase MA, Vilcot M, Mugal CF. Evidence that genetic drift not adaptation drives fast-Z and large-Z effects in Ficedula flycatchers. Mol Ecol 2024:e17262. [PMID: 38193599 DOI: 10.1111/mec.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The sex chromosomes have been hypothesized to play a key role in driving adaptation and speciation across many taxa. The reason for this is thought to be the hemizygosity of the heteromorphic part of sex chromosomes in the heterogametic sex, which exposes recessive mutations to natural and sexual selection. The exposure of recessive beneficial mutations increases their rate of fixation on the sex chromosomes, which results in a faster rate of evolution. In addition, genetic incompatibilities between sex-linked loci are exposed faster in the genomic background of hybrids of divergent lineages, which makes sex chromosomes contribute disproportionately to reproductive isolation. However, in birds, which show a Z/W sex determination system, the role of adaptation versus genetic drift as the driving force of the faster differentiation of the Z chromosome (fast-Z effect) and the disproportionate role of the Z chromosome in reproductive isolation (large-Z effect) are still debated. Here, we address this debate in the bird genus Ficedula flycatchers based on population-level whole-genome sequencing data of six species. Our analysis provides evidence for both faster lineage sorting and reduced gene flow on the Z chromosome than the autosomes. However, these patterns appear to be driven primarily by the increased role of genetic drift on the Z chromosome, rather than an increased rate of adaptive evolution. Genomic scans of selective sweeps and fixed differences in fact suggest a reduced action of positive selection on the Z chromosome.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, Villeurbanne, France
| |
Collapse
|
24
|
Russo CAM, Eyre-Walker A, Katz LA, Gaut BS. Forty Years of Inferential Methods in the Journals of the Society for Molecular Biology and Evolution. Mol Biol Evol 2024; 41:msad264. [PMID: 38197288 PMCID: PMC10763999 DOI: 10.1093/molbev/msad264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
We are launching a series to celebrate the 40th anniversary of the first issue of Molecular Biology and Evolution. In 2024, we will publish virtual issues containing selected papers published in the Society for Molecular Biology and Evolution journals, Molecular Biology and Evolution and Genome Biology and Evolution. Each virtual issue will be accompanied by a perspective that highlights the historic and contemporary contributions of our journals to a specific topic in molecular evolution. This perspective, the first in the series, presents an account of the broad array of methods that have been published in the Society for Molecular Biology and Evolution journals, including methods to infer phylogenies, to test hypotheses in a phylogenetic framework, and to infer population genetic processes. We also mention many of the software implementations that make methods tractable for empiricists. In short, the Society for Molecular Biology and Evolution community has much to celebrate after four decades of publishing high-quality science including numerous important inferential methods.
Collapse
Affiliation(s)
- Claudia A M Russo
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Brandon S Gaut
- School of Biological Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
25
|
Soni V, Pfeifer SP, Jensen JD. The effects of mutation and recombination rate heterogeneity on the inference of demography and the distribution of fitness effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566703. [PMID: 38014252 PMCID: PMC10680612 DOI: 10.1101/2023.11.11.566703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Disentangling the effects of demography and selection has remained a focal point of population genetic analysis. Knowledge about mutation and recombination is essential in this endeavour; however, despite clear evidence that both mutation and recombination rates vary across genomes, it is common practice to model both rates as fixed. In this study, we quantify how this unaccounted for rate heterogeneity may impact inference using common approaches for inferring selection (DFE-alpha, Grapes, and polyDFE) and/or demography (fastsimcoal2 and δaδi). We demonstrate that, if not properly modelled, this heterogeneity can increase uncertainty in the estimation of demographic and selective parameters and in some scenarios may result in mis-leading inference. These results highlight the importance of quantifying the fundamental evolutionary parameters of mutation and recombination prior to utilizing population genomic data to quantify the effects of genetic drift (i.e., as modulated by demographic history) and selection; or, at the least, that the effects of uncertainty in these parameters can and should be directly modelled in downstream inference.
Collapse
Affiliation(s)
- Vivak Soni
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine
| | - Susanne P. Pfeifer
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine
| | - Jeffrey D. Jensen
- Arizona State University, School of Life Sciences, Center for Evolution & Medicine
| |
Collapse
|
26
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Shen R, Wenzel M, Messer PW, Aquadro CF. Evolution under a model of functionally buffered deleterious mutations can lead to positive selection in protein-coding genes. Evolution 2023; 77:2200-2212. [PMID: 37464886 PMCID: PMC10547125 DOI: 10.1093/evolut/qpad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Selective pressures on DNA sequences often result in departures from neutral evolution that can be captured by the McDonald-Kreitman (MK) test. However, the nature of such selective forces often remains unknown to experimentalists. Amino acid fixations driven by natural selection in protein-coding genes are commonly associated with a genetic arms race or changing biological purposes, leading to proteins with new functionality. Here, we evaluate the expectations of population genetic patterns under a buffering mechanism driving selective amino acids to fixation, which is motivated by an observed phenotypic rescue of otherwise deleterious nonsynonymous substitutions at bag of marbles (bam) and Sex lethal (Sxl) in Drosophila melanogaster. These two genes were shown to experience strong episodic bursts of natural selection potentially due to infections of the endosymbiotic bacteria Wolbachia observed among multiple Drosophila species. Using simulations to implement and evaluate the evolutionary dynamics of a Wolbachia buffering model, we demonstrate that selectively fixed amino acid replacements will occur, but that the proportion of adaptive amino acid fixations and the statistical power of the MK test to detect the departure from an equilibrium neutral model are both significantly lower than seen for an arms race/change-in-function model that favors proteins with diversified amino acids. We find that the observed selection pattern at bam in a natural population of D. melanogaster is more consistent with an arms race model than with the buffering model.
Collapse
Affiliation(s)
- Runxi Shen
- Department of Computational Biology, Cornell University, Ithaca, NY, United States
| | - Miwa Wenzel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, United States
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Wang X, Ingvarsson PK. Quantifying adaptive evolution and the effects of natural selection across the Norway spruce genome. Mol Ecol 2023; 32:5288-5304. [PMID: 37622583 DOI: 10.1111/mec.17106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
30
|
Andersson BA, Zhao W, Haller BC, Brännström Å, Wang XR. Inference of the distribution of fitness effects of mutations is affected by single nucleotide polymorphism filtering methods, sample size and population structure. Mol Ecol Resour 2023; 23:1589-1603. [PMID: 37340611 DOI: 10.1111/1755-0998.13825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
The distribution of fitness effects (DFE) of new mutations has been of interest to evolutionary biologists since the concept of mutations arose. Modern population genomic data enable us to quantify the DFE empirically, but few studies have examined how data processing, sample size and cryptic population structure might affect the accuracy of DFE inference. We used simulated and empirical data (from Arabidopsis lyrata) to show the effects of missing data filtering, sample size, number of single nucleotide polymorphisms (SNPs) and population structure on the accuracy and variance of DFE estimates. Our analyses focus on three filtering methods-downsampling, imputation and subsampling-with sample sizes of 4-100 individuals. We show that (1) the choice of missing-data treatment directly affects the estimated DFE, with downsampling performing better than imputation and subsampling; (2) the estimated DFE is less reliable in small samples (<8 individuals), and becomes unpredictable with too few SNPs (<5000, the sum of 0- and 4-fold SNPs); and (3) population structure may skew the inferred DFE towards more strongly deleterious mutations. We suggest that future studies should consider downsampling for small data sets, and use samples larger than 4 (ideally larger than 8) individuals, with more than 5000 SNPs in order to improve the robustness of DFE inference and enable comparative analyses.
Collapse
Affiliation(s)
| | - Wei Zhao
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Åke Brännström
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Japan
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Murga-Moreno J, Casillas S, Barbadilla A, Uricchio L, Enard D. An efficient and robust ABC approach to infer the rate and strength of adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555322. [PMID: 37693550 PMCID: PMC10491248 DOI: 10.1101/2023.08.29.555322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inferring the effects of positive selection on genomes remains a critical step in characterizing the ultimate and proximate causes of adaptation across species, and quantifying positive selection remains a challenge due to the confounding effects of many other evolutionary processes. Robust and efficient approaches for adaptation inference could help characterize the rate and strength of adaptation in non-model species for which demographic history, mutational processes, and recombination patterns are not currently well-described. Here, we introduce an efficient and user-friendly extension of the McDonald-Kreitman test (ABC-MK) for quantifying long-term protein adaptation in specific lineages of interest. We characterize the performance of our approach with forward simulations and find that it is robust to many demographic perturbations and positive selection configurations, demonstrating its suitability for applications to non-model genomes. We apply ABC-MK to the human proteome and a set of known Virus Interacting Proteins (VIPs) to test the long-term adaptation in genes interacting with viruses. We find substantially stronger signatures of positive selection on RNA-VIPs than DNA-VIPs, suggesting that RNA viruses may be an important driver of human adaptation over deep evolutionary time scales.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- University of Arizona Department of Ecology and Evolutionary Biology, Tucson, USA
| | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | - David Enard
- University of Arizona Department of Ecology and Evolutionary Biology, Tucson, USA
| |
Collapse
|
32
|
Rougemont Q, Leroy T, Rondeau EB, Koop B, Bernatchez L. Allele surfing causes maladaptation in a Pacific salmon of conservation concern. PLoS Genet 2023; 19:e1010918. [PMID: 37683018 PMCID: PMC10545117 DOI: 10.1371/journal.pgen.1010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 10/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
How various factors, including demography, recombination or genome duplication, may impact the efficacy of natural selection and the burden of deleterious mutations, is a central question in evolutionary biology and genetics. In this study, we show that key evolutionary processes, including variations in i) effective population size (Ne) ii) recombination rates and iii) chromosome inheritance, have influenced the genetic load and efficacy of selection in Coho salmon (Oncorhynchus kisutch), a widely distributed salmonid species on the west coast of North America. Using whole genome resequencing data from 14 populations at different migratory distances from their southern glacial refugium, we found evidence supporting gene surfing, wherein reduced Ne at the postglacial recolonization front, leads to a decrease in the efficacy of selection and a surf of deleterious alleles in the northernmost populations. Furthermore, our results indicate that recombination rates play a prime role in shaping the load along the genome. Additionally, we identified variation in polyploidy as a contributing factor to within-genome variation of the load. Overall, our results align remarkably well with expectations under the nearly neutral theory of molecular evolution. We discuss the fundamental and applied implications of these findings for evolutionary and conservation genomics.
Collapse
Affiliation(s)
- Quentin Rougemont
- Centre d’Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thibault Leroy
- GenPhySE, INRAE, INP, ENVT, Université de Toulouse, Auzeville- Tolosane, France
| | - Eric B. Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, Canada
| | - Ben Koop
- Department of Biology, University of Victoria, Victoria, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
33
|
Wade EE, Kyriazis CC, Cavassim MIA, Lohmueller KE. Quantifying the fraction of new mutations that are recessive lethal. Evolution 2023; 77:1539-1549. [PMID: 37074880 PMCID: PMC10309970 DOI: 10.1093/evolut/qpad061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023]
Abstract
The presence and impact of recessive lethal mutations have been widely documented in diploid outcrossing species. However, precise estimates of the proportion of new mutations that are recessive lethal remain limited. Here, we evaluate the performance of Fit∂a∂i, a commonly used method for inferring the distribution of fitness effects (DFE), in the presence of lethal mutations. Using simulations, we demonstrate that in both additive and recessive cases, inference of the deleterious nonlethal portion of the DFE is minimally affected by a small proportion (<10%) of lethal mutations. Additionally, we demonstrate that while Fit∂a∂i cannot estimate the fraction of recessive lethal mutations, Fit∂a∂i can accurately infer the fraction of additive lethal mutations. Finally, as an alternative approach to estimate the proportion of mutations that are recessive lethal, we employ models of mutation-selection-drift balance using existing genomic parameters and estimates of segregating recessive lethals for humans and Drosophila melanogaster. In both species, the segregating recessive lethal load can be explained by a very small fraction (<1%) of new nonsynonymous mutations being recessive lethal. Our results refute recent assertions of a much higher proportion of mutations being recessive lethal (4%-5%), while highlighting the need for additional information on the joint distribution of selection and dominance coefficients.
Collapse
Affiliation(s)
- Emma E Wade
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, CA, United States
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS, United States
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, CA, United States
| | - Maria Izabel A Cavassim
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, CA, United States
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, CA, United States
- Interdepartmental Program in Bioinformatics, University of California–Los Angeles, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Johri P, Pfeifer SP, Jensen JD. Developing an evolutionary baseline model for humans: jointly inferring purifying selection with population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536488. [PMID: 37090533 PMCID: PMC10120674 DOI: 10.1101/2023.04.11.536488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Building evolutionarily appropriate baseline models for natural populations is not only important for answering fundamental questions in population genetics - including quantifying the relative contributions of adaptive vs. non-adaptive processes - but it is also essential for identifying candidate loci experiencing relatively rare and episodic forms of selection ( e.g., positive or balancing selection). Here, a baseline model was developed for a human population of West African ancestry, the Yoruba, comprising processes constantly operating on the genome ( i.e. , purifying and background selection, population size changes, recombination rate heterogeneity, and gene conversion). Specifically, to perform joint inference of selective effects with demography, an approximate Bayesian approach was employed that utilizes the decay of background selection effects around functional elements, taking into account genomic architecture. This approach inferred a recent 6-fold population growth together with a distribution of fitness effects that is skewed towards effectively neutral mutations. Importantly, these results further suggest that, while strong and/or frequent recurrent positive selection is inconsistent with observed data, weak to moderate positive selection is consistent but unidentifiable if rare.
Collapse
|
35
|
The use of evolutionary analyses to predict functionally relevant traits in filamentous plant pathogens. Curr Opin Microbiol 2023; 73:102244. [PMID: 36889024 DOI: 10.1016/j.mib.2022.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 03/08/2023]
Abstract
Identifying traits involved in plant-pathogen interactions is one of the major objectives in molecular plant pathology. Evolutionary analyses may assist in the identification of genes encoding traits that are involved in virulence and local adaptation, including adaptation to agricultural intervention strategies. In the past decades, the number of available genome sequences of fungal plant pathogens has rapidly increased, providing a rich source for the discovery of functionally important genes as well as inference of species histories. Positive selection in the form of diversifying or directional selection leaves particular signatures in genome alignments and can be identified with statistical genetics methods. This review summarises the concepts and approaches used in evolutionary genomics and lists major discoveries related to plant-pathogen adaptative evolution. We underline the significant contribution of evolutionary genomics in discovering virulence-related traits and the study of plant-pathogen ecology and adaptive evolution.
Collapse
|
36
|
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu Rev Anim Biosci 2023; 11:93-114. [PMID: 36332644 PMCID: PMC9933137 DOI: 10.1146/annurev-animal-080522-093311] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.
Collapse
Affiliation(s)
- Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, California, USA;
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Stella C Yuan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Murga-Moreno J, Coronado-Zamora M, Casillas S, Barbadilla A. impMKT: the imputed McDonald and Kreitman test, a straightforward correction that significantly increases the evidence of positive selection of the McDonald and Kreitman test at the gene level. G3 GENES|GENOMES|GENETICS 2022; 12:6670623. [PMID: 35976111 PMCID: PMC9526038 DOI: 10.1093/g3journal/jkac206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022]
Abstract
The McDonald and Kreitman test is one of the most powerful and widely used methods to detect and quantify recurrent natural selection in DNA sequence data. One of its main limitations is the underestimation of positive selection due to the presence of slightly deleterious variants segregating at low frequencies. Although several approaches have been developed to overcome this limitation, most of them work on gene pooled analyses. Here, we present the imputed McDonald and Kreitman test (impMKT), a new straightforward approach for the detection of positive selection and other selection components of the distribution of fitness effects at the gene level. We compare imputed McDonald and Kreitman test with other widely used McDonald and Kreitman test approaches considering both simulated and empirical data. By applying imputed McDonald and Kreitman test to humans and Drosophila data at the gene level, we substantially increase the statistical evidence of positive selection with respect to previous approaches (e.g. by 50% and 157% compared with the McDonald and Kreitman test in Drosophila and humans, respectively). Finally, we review the minimum number of genes required to obtain a reliable estimation of the proportion of adaptive substitution (α) in gene pooled analyses by using the imputed McDonald and Kreitman test compared with other McDonald and Kreitman test implementations. Because of its simplicity and increased power to detect recurrent positive selection on genes, we propose the imputed McDonald and Kreitman test as the first straightforward approach for testing specific evolutionary hypotheses at the gene level. The software implementation and population genomics data are available at the web-server imkt.uab.cat.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
| | - Marta Coronado-Zamora
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
| | - Sònia Casillas
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
| | - Antonio Barbadilla
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona , Barcelona 08193, Spain
| |
Collapse
|
38
|
Moutinho AF, Eyre-Walker A, Dutheil JY. Strong evidence for the adaptive walk model of gene evolution in Drosophila and Arabidopsis. PLoS Biol 2022; 20:e3001775. [PMID: 36099311 PMCID: PMC9470001 DOI: 10.1371/journal.pbio.3001775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the dynamics of species adaptation to their environments has long been a central focus of the study of evolution. Theories of adaptation propose that populations evolve by “walking” in a fitness landscape. This “adaptive walk” is characterised by a pattern of diminishing returns, where populations further away from their fitness optimum take larger steps than those closer to their optimal conditions. Hence, we expect young genes to evolve faster and experience mutations with stronger fitness effects than older genes because they are further away from their fitness optimum. Testing this hypothesis, however, constitutes an arduous task. Young genes are small, encode proteins with a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-specific adaptations. Since all these factors lead to increased protein evolutionary rates, they could be masking the effect of gene age. While controlling for these factors, we used population genomic data sets of Arabidopsis and Drosophila and estimated the rate of adaptive substitutions across genes from different phylostrata. We found that a gene’s evolutionary age significantly impacts the molecular rate of adaptation. Moreover, we observed that substitutions in young genes tend to have larger physicochemical effects. Our study, therefore, provides strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale. This study uses population genomic datasets from Arabidopsis and Drosophila to show that young genes adapt faster and are subject to mutations of larger fitness effects, providing strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale.
Collapse
Affiliation(s)
- Ana Filipa Moutinho
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Julien Y. Dutheil
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Unité Mixte de Recherche 5554 Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
39
|
Abstract
We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
40
|
Johri P, Eyre-Walker A, Gutenkunst RN, Lohmueller KE, Jensen JD. On the prospect of achieving accurate joint estimation of selection with population history. Genome Biol Evol 2022; 14:evac088. [PMID: 35675379 PMCID: PMC9254643 DOI: 10.1093/gbe/evac088] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
As both natural selection and population history can affect genome-wide patterns of variation, disentangling the contributions of each has remained as a major challenge in population genetics. We here discuss historical and recent progress towards this goal-highlighting theoretical and computational challenges that remain to be addressed, as well as inherent difficulties in dealing with model complexity and model violations-and offer thoughts on potentially fruitful next steps.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
41
|
Böndel KB, Samuels T, Craig RJ, Ness RW, Colegrave N, Keightley PD. The distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii inferred using frequency changes under experimental evolution. PLoS Genet 2022; 18:e1009840. [PMID: 35704655 PMCID: PMC9239454 DOI: 10.1371/journal.pgen.1009840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/28/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
The distribution of fitness effects (DFE) for new mutations is fundamental for many aspects of population and quantitative genetics. In this study, we have inferred the DFE in the single-celled alga Chlamydomonas reinhardtii by estimating changes in the frequencies of 254 spontaneous mutations under experimental evolution and equating the frequency changes of linked mutations with their selection coefficients. We generated seven populations of recombinant haplotypes by crossing seven independently derived mutation accumulation lines carrying an average of 36 mutations in the haploid state to a mutation-free strain of the same genotype. We then allowed the populations to evolve under natural selection in the laboratory by serial transfer in liquid culture. We observed substantial and repeatable changes in the frequencies of many groups of linked mutations, and, surprisingly, as many mutations were observed to increase as decrease in frequency. Mutation frequencies were highly repeatable among replicates, suggesting that selection was the cause of the observed allele frequency changes. We developed a Bayesian Monte Carlo Markov Chain method to infer the DFE. This computes the likelihood of the observed distribution of changes of frequency, and obtains the posterior distribution of the selective effects of individual mutations, while assuming a two-sided gamma distribution of effects. We infer that the DFE is a highly leptokurtic distribution, and that approximately equal proportions of mutations have positive and negative effects on fitness. This result is consistent with what we have observed in previous work on a different C. reinhardtii strain, and suggests that a high fraction of new spontaneously arisen mutations are advantageous in a simple laboratory environment.
Collapse
Affiliation(s)
- Katharina B. Böndel
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Samuels
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rory J. Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rob W. Ness
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D. Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Johri P, Aquadro CF, Beaumont M, Charlesworth B, Excoffier L, Eyre-Walker A, Keightley PD, Lynch M, McVean G, Payseur BA, Pfeifer SP, Stephan W, Jensen JD. Recommendations for improving statistical inference in population genomics. PLoS Biol 2022; 20:e3001669. [PMID: 35639797 PMCID: PMC9154105 DOI: 10.1371/journal.pbio.3001669] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes. For example, the approach of directly investigating models of adaptive evolution in each newly sequenced population or species often neglects the fact that a thorough characterization of ubiquitous nonadaptive processes is a prerequisite for accurate inference. We here describe the perils of these tendencies, present our consensus views on current best practices in population genomic data analysis, and highlight areas of statistical inference and theory that are in need of further attention. Thereby, we argue for the importance of defining a biologically relevant baseline model tuned to the details of each new analysis, of skepticism and scrutiny in interpreting model fitting results, and of carefully defining addressable hypotheses and underlying uncertainties.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Berne, Berne, Switzerland
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Peter D. Keightley
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susanne P. Pfeifer
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Jeffrey D. Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
43
|
Navarro-Dominguez B, Chang CH, Brand CL, Muirhead CA, Presgraves DC, Larracuente AM. Epistatic selection on a selfish Segregation Distorter supergene - drive, recombination, and genetic load. eLife 2022; 11:e78981. [PMID: 35486424 PMCID: PMC9122502 DOI: 10.7554/elife.78981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive-the driver and the target-linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.
Collapse
Affiliation(s)
| | - Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Cara L Brand
- Department of Biology, University of RochesterRochesterUnited States
| | - Christina A Muirhead
- Department of Biology, University of RochesterRochesterUnited States
- Ronin InstituteMontclairUnited States
| | | | | |
Collapse
|
44
|
Liang YY, Chen XY, Zhou BF, Mitchell-Olds T, Wang B. Globally Relaxed Selection and Local Adaptation in Boechera stricta. Genome Biol Evol 2022; 14:evac043. [PMID: 35349686 PMCID: PMC9011030 DOI: 10.1093/gbe/evac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
45
|
Angst P, Ebert D, Fields PD. Demographic history shapes genomic variation in an intracellular parasite with a wide geographic distribution. Mol Ecol 2022; 31:2528-2544. [DOI: 10.1111/mec.16419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology University of Basel Vesalgasse 1 4051 Basel Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology University of Basel Vesalgasse 1 4051 Basel Switzerland
| | - Peter D. Fields
- Department of Environmental Sciences, Zoology University of Basel Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
46
|
Fields PD, McTaggart S, Reisser CMO, Haag C, Palmer WH, Little TJ, Ebert D, Obbard DJ. Population-genomic analysis identifies a low rate of global adaptive fixation in the proteins of the cyclical parthenogen Daphnia magna. Mol Biol Evol 2022; 39:6542319. [PMID: 35244177 PMCID: PMC8963301 DOI: 10.1093/molbev/msac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Daphnia are well-established ecological and evolutionary models, and the interaction between D. magna and its microparasites is widely considered a paragon of the host-parasite coevolutionary process. Like other well-studied arthropods such as Drosophila melanogaster and Anopheles gambiae, D. magna is a small, widespread, and abundant species that is therefore expected to display a large long-term population size and high rates of adaptive protein evolution. However, unlike these other species, D. magna is cyclically asexual and lives in a highly structured environment (ponds and lakes) with moderate levels of dispersal, both of which are predicted to impact upon long-term effective population size and adaptive protein evolution. To investigate patterns of adaptive protein fixation, we produced the complete coding genomes of 36 D. magna clones sampled from across the European range (Western Palaearctic), along with draft sequences for the close relatives D. similis and D. lumholtzi, used as outgroups. We analyzed genome-wide patterns of adaptive fixation, with a particular focus on genes that have an a priori expectation of high rates, such as those likely to mediate immune responses, RNA interference against viruses and transposable elements, and those with a strongly male-biased expression pattern. We find that, as expected, D. magna displays high levels of diversity and that this is highly structured among populations. However, compared with Drosophila, we find that D. magna proteins appear to have a high proportion of weakly deleterious variants and do not show evidence of pervasive adaptive fixation across its entire range. This is true of the genome as a whole, and also of putative ‘arms race’ genes that often show elevated levels of adaptive substitution in other species. In addition to the likely impact of extensive, and previously documented, local adaptation, we speculate that these findings may reflect reduced efficacy of selection associated with cyclical asexual reproduction.
Collapse
Affiliation(s)
- Peter D Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Seanna McTaggart
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Céline M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France.,MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Christoph Haag
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, campus CNRS, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - William H Palmer
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Tom J Little
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, Basel, CH-4051, Switzerland
| | - Darren J Obbard
- Institute of Evolutionary Biology; School of Biological Sciences University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
47
|
Gilbert KJ, Zdraljevic S, Cook DE, Cutter AD, Andersen EC, Baer CF. The distribution of mutational effects on fitness in Caenorhabditis elegans inferred from standing genetic variation. Genetics 2022; 220:iyab166. [PMID: 34791202 PMCID: PMC8733438 DOI: 10.1093/genetics/iyab166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
The distribution of fitness effects (DFE) for new mutations is one of the most theoretically important but difficult to estimate properties in population genetics. A crucial challenge to inferring the DFE from natural genetic variation is the sensitivity of the site frequency spectrum to factors like population size change, population substructure, genome structure, and nonrandom mating. Although inference methods aim to control for population size changes, the influence of nonrandom mating remains incompletely understood, despite being a common feature of many species. We report the DFE estimated from 326 genomes of Caenorhabditis elegans, a nematode roundworm with a high rate of self-fertilization. We evaluate the robustness of DFE inferences using simulated data that mimics the genomic structure and reproductive life history of C. elegans. Our observations demonstrate how the combined influence of self-fertilization, genome structure, and natural selection on linked sites can conspire to compromise estimates of the DFE from extant polymorphisms with existing methods. These factors together tend to bias inferences toward weakly deleterious mutations, making it challenging to have full confidence in the inferred DFE of new mutations as deduced from standing genetic variation in species like C. elegans. Improved methods for inferring the DFE are needed to appropriately handle strong linked selection and selfing. These results highlight the importance of understanding the combined effects of processes that can bias our interpretations of evolution in natural populations.
Collapse
Affiliation(s)
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
- University of Florida Genetics Institute, Gainesville, FL 32611, USA
| |
Collapse
|
48
|
Soni V, Eyre-Walker A. OUP accepted manuscript. Genome Biol Evol 2022; 14:6528851. [PMID: 35166775 PMCID: PMC8882387 DOI: 10.1093/gbe/evac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
The rate of amino acid substitution has been shown to be correlated to a number of factors including the rate of recombination, the age of the gene, the length of the protein, mean expression level, and gene function. However, the extent to which these correlations are due to adaptive and nonadaptive evolution has not been studied in detail, at least not in hominids. We find that the rate of adaptive evolution is significantly positively correlated to the rate of recombination, protein length and gene expression level, and negatively correlated to gene age. These correlations remain significant when each factor is controlled for in turn, except when controlling for expression in an analysis of protein length; and they also generally remain significant when biased gene conversion is taken into account. However, the positive correlations could be an artifact of population size contraction. We also find that the rate of nonadaptive evolution is negatively correlated to each factor, and all these correlations survive controlling for each other and biased gene conversion. Finally, we examine the effect of gene function on rates of adaptive and nonadaptive evolution; we confirm that virus-interacting proteins (VIPs) have higher rates of adaptive and lower rates of nonadaptive evolution, but we also demonstrate that there is significant variation in the rate of adaptive and nonadaptive evolution between GO categories when removing VIPs. We estimate that the VIP/non-VIP axis explains about 5–8 fold more of the variance in evolutionary rate than GO categories.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
49
|
Abstract
The nearly neutral theory is a common framework to describe natural selection at the molecular level. This theory emphasizes the importance of slightly deleterious mutations by recognizing their ability to segregate and eventually get fixed due to genetic drift in spite of the presence of purifying selection. As genetic drift is stronger in smaller than in larger populations, a correlation between population size and molecular measures of natural selection is expected within the nearly neutral theory. However, this hypothesis was originally formulated under equilibrium conditions. As most natural populations are not in equilibrium, testing the relationship empirically may lead to confounded outcomes. Demographic nonequilibria, for instance following a change in population size, are common scenarios that are expected to push the selection–drift relationship off equilibrium. By explicitly modeling the effects of a change in population size on allele frequency trajectories in the Poisson random field framework, we obtain analytical solutions of the nonstationary allele frequency spectrum. This enables us to derive exact results of measures of natural selection and effective population size in a demographic nonequilibrium. The study of their time-dependent relationship reveals a substantial deviation from the equilibrium selection–drift balance after a change in population size. Moreover, we show that the deviation is sensitive to the combination of different measures. These results therefore constitute relevant tools for empirical studies to choose suitable measures for investigating the selection–drift relationship in natural populations. Additionally, our new modeling approach extends existing population genetics theory and can serve as foundation for methodological developments.
Collapse
Affiliation(s)
- Rebekka Müller
- Department of Mathematics, Uppsala University, 752 37 Uppsala, Sweden
| | - Ingemar Kaj
- Department of Mathematics, Uppsala University, 752 37 Uppsala, Sweden
| | - Carina F. Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
- Corresponding author: E-mail:
| |
Collapse
|
50
|
Abstract
It is known that methods to estimate the rate of adaptive evolution, which are based on the McDonald–Kreitman test, can be biased by changes in effective population size. Here, we demonstrate theoretically that changes in population size can also generate an artifactual correlation between the rate of adaptive evolution and any factor that is correlated to the strength of selection acting against deleterious mutations. In this context, we have investigated whether several site-level factors influence the rate of adaptive evolution in the divergence of humans and chimpanzees, two species that have been inferred to have undergone population size contraction since they diverged. We find that the rate of adaptive evolution, relative to the rate of mutation, is higher for more exposed amino acids, lower for amino acid pairs that are more dissimilar in terms of their polarity, volume, and lower for amino acid pairs that are subject to stronger purifying selection, as measured by the ratio of the numbers of nonsynonymous to synonymous polymorphisms (pN/pS). All of these correlations are opposite to the artifactual correlations expected under contracting population size. We therefore conclude that these correlations are genuine.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ana Filipa Moutinho
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plon, Germany
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|