1
|
Tao G, Ahrendt S, Miyauchi S, Zhu X, Peng H, Labutti K, Clum A, Hayes R, Chain PSG, Grigoriev IV, Bonito G, Martin FM. Characterisation and comparative analysis of mitochondrial genomes of false, yellow, black and blushing morels provide insights on their structure and evolution. IMA Fungus 2025; 16:e138363. [PMID: 40052075 PMCID: PMC11881001 DOI: 10.3897/imafungus.16.138363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 03/09/2025] Open
Abstract
Morchella species have considerable significance in terrestrial ecosystems, exhibiting a range of ecological lifestyles along the saprotrophism-to-symbiosis continuum. However, the mitochondrial genomes of these ascomycetous fungi have not been thoroughly studied, thereby impeding a comprehensive understanding of their genetic makeup and ecological role. In this study, we analysed the mitogenomes of 30 Morchellaceae species, including yellow, black, blushing and false morels. These mitogenomes are either circular or linear DNA molecules with lengths ranging from 217 to 565 kbp and GC content ranging from 38% to 48%. Fifteen core protein-coding genes, 28-37 tRNA genes and 3-8 rRNA genes were identified in these Morchellaceae mitogenomes. The gene order demonstrated a high level of conservation, with the cox1 gene consistently positioned adjacent to the rnS gene and cob gene flanked by apt genes. Some exceptions were observed, such as the rearrangement of atp6 and rps3 in Morchellaimportuna and the reversed order of atp6 and atp8 in certain morel mitogenomes. However, the arrangement of the tRNA genes remains conserved. We additionally investigated the distribution and phylogeny of homing endonuclease genes (HEGs) of the LAGLIDADG (LAGs) and GIY-YIG (GIYs) families. A total of 925 LAG and GIY sequences were detected, with individual species containing 19-48HEGs. These HEGs were primarily located in the cox1, cob, cox2 and nad5 introns and their presence and distribution displayed significant diversity amongst morel species. These elements significantly contribute to shaping their mitogenome diversity. Overall, this study provides novel insights into the phylogeny and evolution of the Morchellaceae.
Collapse
Affiliation(s)
- Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
- Université de Lorraine, INRAE, UnitéMixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, FranceGuizhou Minzu UniversityGuiyangChina
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, JapanOkinawa Institute of Science and Technology Graduate UniversityOnna, OkinawaJapan
| | - XiaoJie Zhu
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
| | - Hao Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
| | - Kurt Labutti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Richard Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Patrick S. G. Chain
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USALos Alamos National LaboratoryLos AlamosUnited States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USAUniversity of California BerkeleyBerkeleyUnited States of America
| | - Gregory Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USAMichigan State UniversityEast LansingUnited States of America
| | - Francis M. Martin
- Université de Lorraine, INRAE, UnitéMixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, FranceGuizhou Minzu UniversityGuiyangChina
| |
Collapse
|
2
|
Zubaer A, Wai A, Hausner G. Comparative mitogenomics of Leptographium procerum, Leptographium terebrantis, and Leptographium wingfieldii, an invasive fungal species in Canadian forests. Can J Microbiol 2025; 71:1-13. [PMID: 39666963 DOI: 10.1139/cjm-2024-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Leptographium wingfieldii is a fungal associate of Tomicus piniperda (the pine shoot beetle) and pathogen of pines and this species is an agent of blue stain in sapwood on infected trees. This fungus was first reported from Europe and has been recently introduced to Canadian forests. Ten new mitogenomes have been sequenced and characterized, including seven strains of L. wingfieldii, two strains of L. procerum and one strain of L. terebrantis. The data were combined with other members of the Ophiostomatales collected from NCBI to gain more insight into the genetic diversity, evolution, and systematics of these fungi. The size of the studied mitogenomes of Leptographium species ranged from 41 to 126 kb with the number of potential mobile introns embedded within these mitogenomes ranging from 13 to 45. These data show that introns generate genetic diversity and confirms the contribution of mobile introns in genome expansion in Ophiostomatales fungi. This study also uncovered complex intron arrangements (twintrons) suggesting the potential of mobile introns generating complex ribozymes that may have implications in gene regulation.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster E, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. An intron endonuclease facilitates interference competition between coinfecting viruses. Science 2024; 385:105-112. [PMID: 38963841 PMCID: PMC11620839 DOI: 10.1126/science.adl1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.
Collapse
Affiliation(s)
- Erica A. Birkholz
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Chase J. Morgan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Thomas G. Laughlin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Rebecca K. Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Amy Prichard
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sahana Rangarajan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Gabrielle N. Meza
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Jina Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Emily Armbruster
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sergey Suslov
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kit Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA
| | - Kevin D. Corbett
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Joe Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
4
|
Özkale E, Doğan Ö, Budak M, Mahir Korkmaz E. Mitogenome evolution in Trichoderma afroharzianum strains: for a better understanding of distinguishing genus. Genome 2024; 67:139-150. [PMID: 38118129 DOI: 10.1139/gen-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Trichoderma afroharzianum (Hypocreales) is known as an important mycoparasite and biocontrol fungus and feeds on fungal material by parasitizing other fungi. Recent studies indicate that this species is also an ear rot pathogen in Europe. Here, the complete mitochondrial genome of three T. afroharzianum strains was sequenced using next-generation sequencing and comparatively characterized by the reported Trichoderma mitogenomes. T. afroharzianum mitogenomes were varying between 29 511 bp and 29 517 bp in length, with an average A + T content of 72.32%. These mitogenomes contain 14 core protein coding genes (PCGs), 22 tRNAs, two rRNAs, one gene encoding the ribosomal protein S3, and three or four genes including conserved domains for the homing endonucleases (HEGs; GIY-YIG type and LAGLIDADG type). All PCGs are initiated by ATG codons, except for atp8, and all are terminated with TAA. A significant correlation was observed between nucleotide composition and codon preference. Four introns belonging to the group I intron class were predicted, accounting for about 14.54% of the size of the mitogenomes. Phylogenetic analyses confirmed the positions of T. afroharzianum strains within the genus of Trichoderma and supported a sister group relationship between T. afroharzianum and T. simmonsii. The recovered trees also supported the monophyly of all included families and of the genus of Acremonium. The characterization of mitochondrial genome of T. afroharzianum contributes to the understanding of phylogeny and evolution of Hypocreales.
Collapse
Affiliation(s)
- Evrim Özkale
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa 45140, Turkiye
| | - Özgül Doğan
- Vocational School of Health Services, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Mahir Budak
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
- Institute of Science, Department of Bioinformatics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Ertan Mahir Korkmaz
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
- Institute of Science, Department of Bioinformatics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| |
Collapse
|
5
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster EG, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. A mobile intron facilitates interference competition between co-infecting viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560319. [PMID: 37808663 PMCID: PMC10557746 DOI: 10.1101/2023.09.30.560319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.
Collapse
|
6
|
Fatma T, Ahmed Khan H, Ahmed A, Adnan F, Zeshan, Virk N, Faraz Bhatti M. Functional annotation and comparative analysis of four Botrytis cinerea mitogenomes reported from Punjab, Pakistan. Saudi J Biol Sci 2023; 30:103605. [PMID: 36950365 PMCID: PMC10025148 DOI: 10.1016/j.sjbs.2023.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Botrytis cinerea is one of the top phytopathogenic fungus which ubiquitously cause grey mold on a variety of horticultural plants. The mechanism of respiration in the fungus occurs within the mitochondria. Mitogenomes serve as a key molecular marker for the investigation of fungal evolutionary patterns. This study aimed at the complete assembly, characterization, and comparative relationship of four mitogenomes of Botrytis cinerea strains including Kst5C, Kst14A, Kst32B, Kst33A, respectively. High throughput sequencing of four mitogenomes allowed the full assembly and annotation of these sequences. The total genome length of these 4 isolates Kst5C Kst14A, Kst32B, Kst33A was 69,986 bp, 77,303 bp, 76,204 bp and 55, 226 bp respectively. The distribution of features represented 2 ribosomal RNA genes,14 respiration encoding proteins, 1 mitochondrial ribosomal protein-encoding gene, along with varying numbers of transfer RNA genes, protein-coding genes, mobile intronic regions and homing endonuclease genes including LAGLIDADG and GIY-YIG domains were found in all four mitogenomes. The comparative analyses performed also decipher significant results for four mitogenomes among fungal isolates included in the study. This is the first report on the detailed annotation of mitogenomes as a proof for investigation of variation patterns present with in the B. cinerea causing grey mold on strawberries in Pakistan. This study will also contribute to the rapid evolutionary analysis and population patterns present among Botrytis cinerea.
Collapse
Affiliation(s)
- Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Aqeel Ahmed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Zeshan
- Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
- Corresponding author.
| |
Collapse
|
7
|
Hoffman JR, Karol KG, Ohmura Y, Pogoda CS, Keepers KG, McMullin RT, Lendemer JC. Mitochondrial genomes in the iconic reindeer lichens: Architecture, variation, and synteny across multiple evolutionary scales. Mycologia 2023; 115:187-205. [PMID: 36736327 DOI: 10.1080/00275514.2022.2157665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Variation in mitochondrial genome composition across intraspecific, interspecific, and higher taxonomic scales has been little studied in lichen obligate symbioses. Cladonia is one of the most diverse and ecologically important lichen genera, with over 500 species representing an array of unique morphologies and chemical profiles. Here, we assess mitochondrial genome diversity and variation in this flagship genus, with focused sampling of two clades of the "true" reindeer lichens, Cladonia subgenus Cladina, and additional genomes from nine outgroup taxa. We describe composition and architecture at the gene and the genome scale, examining patterns in organellar genome size in larger taxonomic groups in Ascomycota. Mitochondrial genomes of Cladonia, Pilophorus, and Stereocaulon were consistently larger than those of Lepraria and contained more introns, suggesting a selective pressure in asexual morphology in Lepraria driving it toward genomic simplification. Collectively, lichen mitochondrial genomes were larger than most other fungal life strategies, reaffirming the notion that coevolutionary streamlining does not correlate to genome size reductions. Genomes from Cladonia ravenelii and Stereocaulon pileatum exhibited ATP9 duplication, bearing paralogs that may still be functional. Homing endonuclease genes (HEGs), though scarce in Lepraria, were diverse and abundant in Cladonia, exhibiting variable evolutionary histories that were sometimes independent of the mitochondrial evolutionary history. Intraspecific HEG diversity was also high, with C. rangiferina especially bearing a range of HEGs with one unique to the species. This study reveals a rich history of events that have transformed mitochondrial genomes of Cladonia and related genera, allowing future study alongside a wealth of assembled genomes.
Collapse
Affiliation(s)
- Jordan R Hoffman
- Department of Biology, The City University of New York Graduate Center, 365 5th Avenue, New York, New York 10016
- Institute of Systemic Botany, The New York Botanical Garden, Bronx, New York 10458-5126
| | - Kenneth G Karol
- Institute of Systemic Botany, The New York Botanical Garden, Bronx, New York 10458-5126
| | - Yoshihito Ohmura
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan
| | - Cloe S Pogoda
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309
| | - Kyle G Keepers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309
| | - Richard T McMullin
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - James C Lendemer
- Institute of Systemic Botany, The New York Botanical Garden, Bronx, New York 10458-5126
| |
Collapse
|
8
|
Megarioti AH, Kouvelis VN. The Coevolution of Fungal Mitochondrial Introns and Their Homing Endonucleases (GIY-YIG and LAGLIDADG). Genome Biol Evol 2021; 12:1337-1354. [PMID: 32585032 PMCID: PMC7487136 DOI: 10.1093/gbe/evaa126] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal mitochondrial (mt) genomes exhibit great diversity in size which is partially attributed to their variable intergenic regions and most importantly to the inclusion of introns within their genes. These introns belong to group I or II, and both of them are self-splicing. The majority of them carry genes encoding homing endonucleases, either LAGLIDADG or GIY-YIG. In this study, it was found that these intronic homing endonucleases genes (HEGs) may originate from mt free-standing open reading frames which can be found nowadays in species belonging to Early Diverging Fungi as “living fossils.” A total of 487 introns carrying HEGs which were located in the publicly available mt genomes of representative species belonging to orders from all fungal phyla was analyzed. Their distribution in the mt genes, their insertion target sequence, and the phylogenetic analyses of the HEGs showed that these introns along with their HEGs form a composite structure in which both selfish elements coevolved. The invasion of the ancestral free-standing HEGs in the introns occurred through a perpetual mechanism, called in this study as “aenaon” hypothesis. It is based on recombination, transpositions, and horizontal gene transfer events throughout evolution. HEGs phylogenetically clustered primarily according to their intron hosts and secondarily to the mt genes carrying the introns and their HEGs. The evolutionary models created revealed an “intron-early” evolution which was enriched by “intron-late” events through many different independent recombinational events which resulted from both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
9
|
Mayers CG, Harrington TC, Wai A, Hausner G. Recent and Ongoing Horizontal Transfer of Mitochondrial Introns Between Two Fungal Tree Pathogens. Front Microbiol 2021; 12:656609. [PMID: 34149643 PMCID: PMC8208691 DOI: 10.3389/fmicb.2021.656609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Two recently introduced fungal plant pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) are responsible for Rapid ‘ōhi‘a Death (ROD) in Hawai‘i. Despite being sexually incompatible, the two pathogens often co-occur in diseased ‘ōhi‘a sapwood, where genetic interaction is possible. We sequenced and annotated 33 mitochondrial genomes of the two pathogens and related species, and investigated 35 total Ceratocystis mitogenomes. Ten mtDNA regions [one group I intron, seven group II introns, and two autonomous homing endonuclease (HE) genes] were heterogeneously present in C. lukuohia mitogenomes, which were otherwise identical. Molecular surveys with specific primers showed that the 10 regions had uneven geographic distribution amongst populations of C. lukuohia. Conversely, identical orthologs of each region were present in every studied isolate of C. huliohia regardless of geographical origin. Close relatives of C. lukuohia lacked or, rarely, had few and dissimilar orthologs of the 10 regions, whereas most relatives of C. huliohia had identical or nearly identical orthologs. Each region included or worked in tandem with HE genes or reverse transcriptase/maturases that could facilitate interspecific horizontal transfers from intron-minus to intron-plus alleles. These results suggest that the 10 regions originated in C. huliohia and are actively moving to populations of C. lukuohia, perhaps through transient cytoplasmic contact of hyphal tips (anastomosis) in the wound surface of ‘ōhi‘a trees. Such contact would allow for the transfer of mitochondria followed by mitochondrial fusion or cytoplasmic exchange of intron intermediaries, which suggests that further genomic interaction may also exist between the two pathogens.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Wai A, Hausner G. The mitochondrial genome of Ophiostoma himal-ulmi and comparison with other fungi causing Dutch elm disease. Can J Microbiol 2021; 67:584-598. [PMID: 33566742 DOI: 10.1139/cjm-2020-0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial genome of Ophiostoma himal-ulmi, a species endemic to the Western Himalayas and one of the fungi that cause Dutch elm disease, has been sequenced and characterized. The mitochondrial genome was compared with other available genomes for members of the Ophiostomatales, including other agents of Dutch elm disease (Ophiostoma ulmi, Ophiostoma novo-ulmi subspecies novo-ulmi, and Ophiostoma novo-ulmi subspecies americana), and it was observed that gene synteny is highly conserved, and variability among members of the fungi that cause Dutch-elm disease is primarily due to the number of intron insertions. Among the fungi that cause Dutch elm disease that we examined, O. himal-ulmi has the largest mitochondrial genomes (ranging from 94 934 to 111 712 bp), owing to the expansion of the number of introns.
Collapse
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Mitogenome of Tolypocladium guangdongense. Appl Microbiol Biotechnol 2020; 104:9295-9308. [PMID: 32918580 DOI: 10.1007/s00253-020-10889-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
Tolypocladium guangdongense is a high-value edible fungus with various medicinal and food safety properties. However, its evolutionary and genetic information is still limited. Mitochondrial genomes are potential models for molecular evolution and phylogenetic studies. In this study, we sequenced the complete mitogenome of T. guangdongense, demonstrating circular sequence of 46,102 bp, containing 14 standard protein-coding genes (PCGs), 2 ribosomal RNA subunit genes, and 28 tRNA genes. Phylogenetic analysis based on mitochondrial genes indicated that T. guangdongense was clustered into the Tolypocladium genus with high support value, based on the core PCG dataset. In addition, rps3 is also a suitable marker in the phylogenetic analysis in Hypocreales. Gene rearrangement analysis indicated that the gene order of PCGs was highly consistent in Hypocreales, and tRNA rearrangement events occurred in most species of Hypocreales; however, the rearrangement rates were not taxonomically correlated. Divergence time estimation based on the old fossil record and previous reports revealed that T. guangdongense originated approximately in the middle Cenozoic (42 Mya, 95% highest posterior density interval: 43-116) with the Tolypocladium genus differentiation. Our results provided more mitogenomic information of T. guangdongense and shed new insights into evolution of the Tolypocladium genus. KEY POINTS: • The general and unique features of T. guangdongense mitogenome are firstly reported. • Phylogenetic analysis further verified the taxonomic status of T. guangdongense. • Divergence time estimation provides more evolutionary information of T. guangdongense.
Collapse
|
13
|
Yildiz G, Ozkilinc H. First characterization of the complete mitochondrial genome of fungal plant-pathogen Monilinia laxa which represents the mobile intron rich structure. Sci Rep 2020; 10:13644. [PMID: 32788650 PMCID: PMC7424523 DOI: 10.1038/s41598-020-70611-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
Monilinia laxa is an important fungal plant pathogen causing brown rot on many stone and pome fruits worldwide. Mitochondrial genome (mitogenome) plays a critical role in evolutionary biology of the organisms. This study aimed to characterize the complete mitogenome of M. laxa by using next-generation sequencing and approaches of de novo assembly and annotation. The total length of the mitogenome of M. laxa was 178,357 bp, and its structure was circular. GC content of the mitogenome was 30.1%. Annotation of the mitogenome presented 2 ribosomal RNA (rRNA) genes, 32 transfer RNA genes (tRNA), 1 gene encoding mitochondrial ribosomal protein S3, 14 protein-coding genes and 15 open reading frame encoding hypothetical proteins. Moreover, the group I mobile introns encoding homing endonucleases including LAGLIDADG and GIY-YIG families were found both within coding regions (genic) and intergenic regions of the mitogenome, indicating an enlarged size and a dynamic structure of the mitogenome. Furthermore, a comparative mitogenomic analysis was performed between M. laxa and the three closely related fungal phytopathogen species (Botryotinia fuckeliana, Sclerotinia sclerotiorum and, S. borealis). Due to the number and distribution of introns, the large extent of structural rearrangements and diverse mitogenome sizes were detected among the species investigated. Monilinia laxa presented the highest number of homing endonucleases among the fungal species considered in the analyses. This study is the first to report a detailed annotation of the mitogenome of an isolate of M. laxa, providing a solid basis for further investigations of mitogenome variations for the other Monilinia pathogens causing brown rot disease.
Collapse
Affiliation(s)
- Gozde Yildiz
- Graduate School of Natural and Applied Sciences, MSc Program in Biomolecular Sciences, Canakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hilal Ozkilinc
- Graduate School of Natural and Applied Sciences, MSc Program in Biomolecular Sciences, Canakkale Onsekiz Mart University, Çanakkale, Turkey.
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
14
|
Lambert AR, Hallinan JP, Werther R, Glöw D, Stoddard BL. Optimization of Protein Thermostability and Exploitation of Recognition Behavior to Engineer Altered Protein-DNA Recognition. Structure 2020; 28:760-775.e8. [PMID: 32359399 PMCID: PMC7347439 DOI: 10.1016/j.str.2020.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/17/2020] [Accepted: 04/11/2020] [Indexed: 01/07/2023]
Abstract
The redesign of a macromolecular binding interface and corresponding alteration of recognition specificity is a challenging endeavor that remains recalcitrant to computational approaches. This is particularly true for the redesign of DNA binding specificity, which is highly dependent upon bending, hydrogen bonds, electrostatic contacts, and the presence of solvent and counterions throughout the molecular interface. Thus, redesign of protein-DNA binding specificity generally requires iterative rounds of amino acid randomization coupled to selections. Here, we describe the importance of scaffold thermostability for protein engineering, coupled with a strategy that exploits the protein's specificity profile, to redesign the specificity of a pair of meganucleases toward three separate genomic targets. We determine and describe a series of changes in protein sequence, stability, structure, and activity that accumulate during the engineering process, culminating in fully retargeted endonucleases.
Collapse
Affiliation(s)
- Abigail R. Lambert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle WA 98109 USA
| | - Jazmine P. Hallinan
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle WA 98109 USA
| | - Rachel Werther
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle WA 98109 USA
| | - Dawid Glöw
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle WA 98109 USA,Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle WA 98109 USA,Corresponding Author and Lead Contact:
| |
Collapse
|
15
|
McMurrough TA, Brown CM, Zhang K, Hausner G, Junop MS, Gloor GB, Edgell DR. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases. Nucleic Acids Res 2019; 46:11990-12007. [PMID: 30357419 PMCID: PMC6294521 DOI: 10.1093/nar/gky976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/05/2018] [Indexed: 12/30/2022] Open
Abstract
LAGLIDADG homing endonucleases (meganucleases) are site-specific mobile endonucleases that can be adapted for genome-editing applications. However, one problem when reprogramming meganucleases on non-native substrates is indirect readout of DNA shape and flexibility at the central 4 bases where cleavage occurs. To understand how the meganuclease active site regulates DNA cleavage, we used functional selections and deep sequencing to profile the fitness landscape of 1600 I-LtrI and I-OnuI active site variants individually challenged with 67 substrates with central 4 base substitutions. The wild-type active site was not optimal for cleavage on many substrates, including the native I-LtrI and I-OnuI targets. Novel combinations of active site residues not observed in known meganucleases supported activity on substrates poorly cleaved by the wild-type enzymes. Strikingly, combinations of E or D substitutions in the two metal-binding residues greatly influenced cleavage activity, and E184D variants had a broadened cleavage profile. Analyses of I-LtrI E184D and the wild-type proteins co-crystallized with the non-cognate AACC central 4 sequence revealed structural differences that correlated with kinetic constants for cleavage of individual DNA strands. Optimizing meganuclease active sites to enhance cleavage of non-native central 4 target sites is a straightforward addition to engineering workflows that will expand genome-editing applications.
Collapse
Affiliation(s)
- Thomas A McMurrough
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Christopher M Brown
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Kun Zhang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Murray S Junop
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - Gregory B Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1
| |
Collapse
|
16
|
Kolesnikova AI, Putintseva YA, Simonov EP, Biriukov VV, Oreshkova NV, Pavlov IN, Sharov VV, Kuzmin DA, Anderson JB, Krutovsky KV. Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species. BMC Genomics 2019; 20:351. [PMID: 31068137 PMCID: PMC6506933 DOI: 10.1186/s12864-019-5732-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/24/2019] [Indexed: 12/03/2022] Open
Abstract
Background Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. Results Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes. Conclusions Our study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5732-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna I Kolesnikova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
| | - Evgeniy P Simonov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia.,Institute of Animal Systematics and Ecology, Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia
| | - Vladislav V Biriukov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia
| | - Natalya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia.,Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Igor N Pavlov
- Laboratory of Reforestation, Mycology and Plant Pathology, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Vadim V Sharov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk, 660036, Russia.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Dmitry A Kuzmin
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - James B Anderson
- Department of Biology, University of Toronto, Mississauga, ON, l5L 1C6, Canada
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia. .,Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077, Göttingen, Germany. .,Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia. .,Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
17
|
Wai A, Shen C, Carta A, Dansen A, Crous PW, Hausner G. Intron-encoded ribosomal proteins and N-acetyltransferases within the mitochondrial genomes of fungi: here today, gone tomorrow? Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:573-584. [DOI: 10.1080/24701394.2019.1580272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Chen Shen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrell Carta
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alexandra Dansen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Pedro W. Crous
- The Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, The Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Stone CL, Frederick RD, Tooley PW, Luster DG, Campos B, Winegar RA, Melcher U, Fletcher J, Blagden T. Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases. PLoS One 2018; 13:e0207062. [PMID: 30403741 PMCID: PMC6221350 DOI: 10.1371/journal.pone.0207062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.
Collapse
Affiliation(s)
- Christine L. Stone
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Reid D. Frederick
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Paul W. Tooley
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Douglas G. Luster
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Brittany Campos
- MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America
| | - Richard A. Winegar
- MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Trenna Blagden
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
19
|
Korovesi AG, Ntertilis M, Kouvelis VN. Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes. Mol Phylogenet Evol 2018; 127:74-86. [PMID: 29763662 DOI: 10.1016/j.ympev.2018.04.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/24/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
The nuclear ribosomal protein S3 (Rps3) is implicated in the assembly of the ribosomal small subunit. Fungi and plants present a gene copy in their mitochondrial (mt) genomes. An analysis of 303 complete fungal mt genomes showed that, when rps3 is found, it is either a free-standing gene or an anchored gene within the omega intron of the rnl gene. Early divergent fungi, Basidiomycota and all yeasts but the CTG group belong to the first case, and Pezizomycotina to the second. Its position, size and genetic code employed are conserved within species of the same Order. Size variability is attributed to different number of repeats. These repeats consist of AT-rich sequences. MtRps3 proteins lack the KH domain, necessary for binding to rRNA, in their N-terminal region. Their C-terminal region is conserved in all Domains of life. Phylogenetic analysis showed that nuclear and mtRps3 proteins are descendants of archaeal and a-proteobacterial homologues, respectively. Thus, fungal mt-rps3 gene is an ancient gene which evolved within the endosymbiotic model and presents different evolutionary routes: (a) coming from a-proteobacteria, it was relocated to another region of the mt genome, (b) via its insertion to the omega intron, it was transferred to the nucleus and/or got lost, and (c) it was re-routed to the mt genome again. Today, Basidiomycota and Saccharomycetales seem to follow the first evolutionary route and almost all Pezizomycotina support the second scenario with their exceptions being the result of the third scenario, i.e., the gene's re-entry to the mt genome.
Collapse
Affiliation(s)
- Artemis G Korovesi
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Ntertilis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
20
|
Abboud TG, Zubaer A, Wai A, Hausner G. The complete mitochondrial genome of the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. Can J Microbiol 2018; 64:339-348. [DOI: 10.1139/cjm-2017-0605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ophiostoma novo-ulmi, a member of the Ophiostomatales (Ascomycota), is the causal agent of the current Dutch elm disease pandemic in Europe and North America. The complete mitochondrial genome (mtDNA) of Ophiostoma novo-ulmi subsp. novo-ulmi, the European component of O. novo-ulmi, has been sequenced and annotated. Gene order (synteny) among the currently available members of the Ophiostomatales was examined and appears to be conserved, and mtDNA size variability among the Ophiostomatales is due in part to the presence of introns and their encoded open reading frames. Phylogenetic analysis of concatenated mitochondrial protein-coding genes yielded phylogenetic estimates for various members of the Ophiostomatales, with strong statistical support showing that mtDNA analysis may provide valuable insights into the evolution of the Ophiostomatales.
Collapse
Affiliation(s)
- Talal George Abboud
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
21
|
Pogoda CS, Keepers KG, Lendemer JC, Kane NC, Tripp EA. Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol Ecol 2018; 27:1155-1169. [DOI: 10.1111/mec.14519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/21/2017] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
|
22
|
Franco MEE, López SMY, Medina R, Lucentini CG, Troncozo MI, Pastorino GN, Saparrat MCN, Balatti PA. The mitochondrial genome of the plant-pathogenic fungus Stemphylium lycopersici uncovers a dynamic structure due to repetitive and mobile elements. PLoS One 2017; 12:e0185545. [PMID: 28972995 PMCID: PMC5626475 DOI: 10.1371/journal.pone.0185545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Stemphylium lycopersici (Pleosporales) is a plant-pathogenic fungus that has been associated with a broad range of plant-hosts worldwide. It is one of the causative agents of gray leaf spot disease in tomato and pepper. The aim of this work was to characterize the mitochondrial genome of S. lycopersici CIDEFI-216, to use it to trace taxonomic relationships with other fungal taxa and to get insights into the evolutionary history of this phytopathogen. The complete mitochondrial genome was assembled into a circular double-stranded DNA molecule of 75,911 bp that harbors a set of 37 protein-coding genes, 2 rRNA genes (rns and rnl) and 28 tRNA genes, which are transcribed from both sense and antisense strands. Remarkably, its gene repertoire lacks both atp8 and atp9, contains a free-standing gene for the ribosomal protein S3 (rps3) and includes 13 genes with homing endonuclease domains that are mostly located within its 15 group I introns. Strikingly, subunits 1 and 2 of cytochrome oxidase are encoded by a single continuous open reading frame (ORF). A comparative mitogenomic analysis revealed the large extent of structural rearrangements among representatives of Pleosporales, showing the plasticity of their mitochondrial genomes. Finally, an exhaustive phylogenetic analysis of the subphylum Pezizomycotina based on mitochondrial data reconstructed their relationships in concordance with several studies based on nuclear data. This is the first report of a mitochondrial genome belonging to a representative of the family Pleosporaceae.
Collapse
Affiliation(s)
- Mario Emilio Ernesto Franco
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Silvina Marianela Yanil López
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Rocio Medina
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - César Gustavo Lucentini
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Maria Inés Troncozo
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Graciela Noemí Pastorino
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales y Museo-Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
23
|
Werther R, Hallinan JP, Lambert AR, Havens K, Pogson M, Jarjour J, Galizi R, Windbichler N, Crisanti A, Nolan T, Stoddard BL. Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Res 2017; 45:8621-8634. [PMID: 28637173 PMCID: PMC5737575 DOI: 10.1093/nar/gkx544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
The retargeting of protein-DNA specificity, outside of extremely modular DNA binding proteins such as TAL effectors, has generally proved to be quite challenging. Here, we describe structural analyses of five different extensively retargeted variants of a single homing endonuclease, that have been shown to function efficiently in ex vivo and in vivo applications. The redesigned proteins harbor mutations at up to 53 residues (18%) of their amino acid sequence, primarily distributed across the DNA binding surface, making them among the most significantly reengineered ligand-binding proteins to date. Specificity is derived from the combined contributions of DNA-contacting residues and of neighboring residues that influence local structural organization. Changes in specificity are facilitated by the ability of all those residues to readily exchange both form and function. The fidelity of recognition is not precisely correlated with the fraction or total number of residues in the protein-DNA interface that are actually involved in DNA contacts, including directional hydrogen bonds. The plasticity of the DNA-recognition surface of this protein, which allows substantial retargeting of recognition specificity without requiring significant alteration of the surrounding protein architecture, reflects the ability of the corresponding genetic elements to maintain mobility and persistence in the face of genetic drift within potential host target sites.
Collapse
Affiliation(s)
- Rachel Werther
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Jazmine P. Hallinan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Abigail R. Lambert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Kyle Havens
- Bluebird Bio Inc., Suite 207 1616 Eastlake Ave. E., Seattle, WA 98102, USA
| | - Mark Pogson
- Bluebird Bio Inc., Suite 207 1616 Eastlake Ave. E., Seattle, WA 98102, USA
| | - Jordan Jarjour
- Bluebird Bio Inc., Suite 207 1616 Eastlake Ave. E., Seattle, WA 98102, USA
| | - Roberto Galizi
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Nikolai Windbichler
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Andrea Crisanti
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Tony Nolan
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Barry L. Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
24
|
Bilto IM, Guha TK, Wai A, Hausner G. Three new active members of the I-OnuI family of homing endonucleases. Can J Microbiol 2017; 63:671-681. [PMID: 28414922 DOI: 10.1139/cjm-2017-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro characterization of 3 LAGLIDADG-type homing endonucleases (HEs) (I-CcaI, I-CcaII, and I-AstI) that belong to the I-OnuI family showed that they are functional HEs that cleave their respective cognate target sites. These endonucleases are encoded within group ID introns and appear to be orthologues that have inserted into 3 different mitochondrial genes: rns, rnl, and cox3. The endonuclease activity of I-CcaI was tested using various substrates, and its minimum DNA recognition sequence was estimated to be 26 nt. This set of HEs may provide some insight into how these types of mobile elements can migrate into new locations. This study provides additional endonucleases that can be added to the catalog of currently available HEs that may have various biotechnology applications.
Collapse
Affiliation(s)
- Iman M Bilto
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tuhin K Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
25
|
Wolfs JM, Hamilton TA, Lant JT, Laforet M, Zhang J, Salemi LM, Gloor GB, Schild-Poulter C, Edgell DR. Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease. Proc Natl Acad Sci U S A 2016; 113:14988-14993. [PMID: 27956611 PMCID: PMC5206545 DOI: 10.1073/pnas.1616343114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.
Collapse
Affiliation(s)
- Jason M Wolfs
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Thomas A Hamilton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Jeremy T Lant
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Marcon Laforet
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Jenny Zhang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Louisa M Salemi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - Gregory B Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Caroline Schild-Poulter
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada;
| |
Collapse
|
26
|
Deng Y, Zhang Q, Ming R, Lin L, Lin X, Lin Y, Li X, Xie B, Wen Z. Analysis of the Mitochondrial Genome in Hypomyces aurantius Reveals a Novel Twintron Complex in Fungi. Int J Mol Sci 2016; 17:ijms17071049. [PMID: 27376282 PMCID: PMC4964425 DOI: 10.3390/ijms17071049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/29/2022] Open
Abstract
Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification.
Collapse
Affiliation(s)
- Youjin Deng
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qihui Zhang
- Gutian Edible Fungal Research and Development Center, Ningde 352200, China.
| | - Ray Ming
- Gutian Edible Fungal Research and Development Center, Ningde 352200, China.
| | - Longji Lin
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiangzhi Lin
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiying Lin
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao Li
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqiang Wen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species. PLoS One 2016; 11:e0156104. [PMID: 27272523 PMCID: PMC4894602 DOI: 10.1371/journal.pone.0156104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023] Open
Abstract
In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far.
Collapse
|
28
|
Lambert AR, Hallinan JP, Shen BW, Chik JK, Bolduc JM, Kulshina N, Robins LI, Kaiser BK, Jarjour J, Havens K, Scharenberg AM, Stoddard BL. Indirect DNA Sequence Recognition and Its Impact on Nuclease Cleavage Activity. Structure 2016; 24:862-73. [PMID: 27133026 DOI: 10.1016/j.str.2016.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
LAGLIDADG meganucleases are DNA cleaving enzymes used for genome engineering. While their cleavage specificity can be altered using several protein engineering and selection strategies, their overall targetability is limited by highly specific indirect recognition of the central four base pairs within their recognition sites. In order to examine the physical basis of indirect sequence recognition and to expand the number of such nucleases available for genome engineering, we have determined the target sites, DNA-bound structures, and central four cleavage fidelities of nine related enzymes. Subsequent crystallographic analyses of a meganuclease bound to two noncleavable target sites, each containing a single inactivating base pair substitution at its center, indicates that a localized slip of the mutated base pair causes a small change in the DNA backbone conformation that results in a loss of metal occupancy at one binding site, eliminating cleavage activity.
Collapse
Affiliation(s)
- Abigail R Lambert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA
| | - Jazmine P Hallinan
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA
| | - Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA
| | - Jennifer K Chik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA
| | - Jill M Bolduc
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA
| | - Nadia Kulshina
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA
| | - Lori I Robins
- Physical Sciences Division, School of STEM, University of Washington, 18115 Campus Way Northeast, Bothell, WA 98011, USA
| | - Brett K Kaiser
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Jordan Jarjour
- bluebird bio Inc. Suite 207, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Kyle Havens
- bluebird bio Inc. Suite 207, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Andrew M Scharenberg
- Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
29
|
Lin R, Liu C, Shen B, Bai M, Ling J, Chen G, Mao Z, Cheng X, Xie B. Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiol 2015; 15:5. [PMID: 25636983 PMCID: PMC4360972 DOI: 10.1186/s12866-015-0341-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in Hypocreales. Results The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50% of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04% identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium spp.) and Hypocrea jecorina. A comparison of mitogenome sizes shows that the length of the intergenic regions or the intronic regions is the major size contributor in most of mitogenomes in Sordariomycetes. Evolutionary analysis shows that rps3 is under positive selection, leading to the display of unique evolutionary characteristics in Hypocreales. Moreover, the variability of trn distribution has a clear impact on gene order in mitogenomes. Gene rearrangement analysis shows that operation of transposition drives the rearrangement events in Pezizomycotina, and most events involve in trn position changes, but no rearrangement was found in Clavicipitaceae. Conclusions We present the complete annotated mitogenome sequence of P. chlamydosporia. Based on evolutionary and phylogenetic analyses, we have determined the relationships between the invertebrate-pathogenic fungi in Hypocreales. The invertebrate-pathogenic fungi in Hypocreales referred to in this paper form a monophyletic group sharing a most recent common ancestor. Our rps3 and trn gene order results also establish a foundation for further exploration of the evolutionary trajectory of the fungi in Hypocreales. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chichuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Baoming Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Miao Bai
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guohua Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Boissel S, Scharenberg AM. Assembly and characterization of megaTALs for hyperspecific genome engineering applications. Methods Mol Biol 2015; 1239:171-96. [PMID: 25408406 DOI: 10.1007/978-1-4939-1862-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Rare-cleaving nucleases have emerged as valuable tools for creating targeted genomic modification for both therapeutic and research applications. MegaTALs are novel monomeric nucleases composed of a site-specific meganuclease cleavage head with additional affinity and specificity provided by a TAL effector DNA binding domain. This fusion product facilitates the transformation of meganucleases into hyperspecific and highly active genome engineering tools that are amenable to multiplexing and compatible with multiple cellular delivery methods. In this chapter, we describe the process of assembling a megaTAL from a meganuclease, as well as a method for characterization of nuclease cleavage activity in vivo using a fluorescence reporter assay.
Collapse
Affiliation(s)
- Sandrine Boissel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | | |
Collapse
|
31
|
Teixeira MM, de Almeida LGP, Kubitschek-Barreira P, Alves FL, Kioshima ÉS, Abadio AKR, Fernandes L, Derengowski LS, Ferreira KS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LDF, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FFM, dos Santos TC, Barros ALN, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MML, de Hoog S, da Silveira JF, Henrissat B, Niño-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos ATR, Felipe MSS. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 2014; 15:943. [PMID: 25351875 PMCID: PMC4226871 DOI: 10.1186/1471-2164-15-943] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/25/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Collapse
Affiliation(s)
- Marcus M Teixeira
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | | | - Paula Kubitschek-Barreira
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Fernanda L Alves
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Érika S Kioshima
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR Brazil
| | - Ana KR Abadio
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Larissa Fernandes
- />Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Ceilândia, Brasília, DF Brazil
| | - Lorena S Derengowski
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Karen S Ferreira
- />Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP Brazil
| | - Rangel C Souza
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | - Jeronimo C Ruiz
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Nathalia C de Andrade
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Hugo C Paes
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - André M Nicola
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia Albuquerque
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | | | - Vicente P Martins
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Luisa DF Peconick
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Alan Viggiano Neto
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Claudia B Chaucanez
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia A Silva
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Oberdan L Cunha
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | | | - Tayná C dos Santos
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Amanda LN Barros
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Marco A Soares
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luciana M de Oliveira
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Programa de pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marjorie M Marini
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Héctor Villalobos-Duno
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Marcel ML Cunha
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Sybren de Hoog
- />CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - José F da Silveira
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Bernard Henrissat
- />Centre National de la Recherche Scientifique, Aix-Marseille, Université, CNRS, Marseille, France
| | - Gustavo A Niño-Vega
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Patrícia S Cisalpino
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | | | - Sandro R Almeida
- />Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP Brazil
| | - Jason E Stajich
- />Department of Plant Pathology & Microbiology, University of California, Riverside, CA USA
| | - Leila M Lopes-Bezerra
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Maria SS Felipe
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
32
|
Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV. The 203 kbp mitochondrial genome of the phytopathogenic fungus Sclerotinia borealis reveals multiple invasions of introns and genomic duplications. PLoS One 2014; 9:e107536. [PMID: 25216190 PMCID: PMC4162613 DOI: 10.1371/journal.pone.0107536] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/19/2014] [Indexed: 01/13/2023] Open
Abstract
Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.
Collapse
Affiliation(s)
| | | | | | | | - Nikolai V. Ravin
- Centre “Bioengineering”, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Hafez M, Guha TK, Hausner G. I-OmiI and I-OmiII: two intron-encoded homing endonucleases within the Ophiostoma minus rns gene. Fungal Biol 2014; 118:721-31. [PMID: 25110134 DOI: 10.1016/j.funbio.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The mitochondrial small subunit ribosomal RNA (rns) gene of the ascomycetous fungus Ophiostoma minus [strain WIN(M)371] was found to contain a group IC2 and a group IIB1 intron at positions mS569 and mS952 respectively. Both introns have open reading frames (ORFs) embedded that encode double motif LAGLIDADG homing endonucleases (I-OmiI and I-OmiII respectively). Codon-optimized versions of I-OmiI and I-OmiII were synthesized for overexpression in Escherichia coli. The in vitro characterization of I-OmiII showed that it is a functional homing endonuclease that cleaves the rns target site two nucleotides upstream (sense strand) of the intron insertion site generating 4 nucleotide 3' overhangs. The endonuclease activity of I-OmiII was tested using linear and circular substrates and cleavage activity was evaluated at various temperatures. The I-OmiI protein was expressed in E. coli, but purification was difficult, thus the endonuclease activity of this protein was tested via in vivo assays. Overall this study showed that there are many native forms of functional homing endonucleases yet to be discovered among fungal mtDNA genomes.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
34
|
Salavirta H, Oksanen I, Kuuskeri J, Mäkelä M, Laine P, Paulin L, Lundell T. Mitochondrial genome of Phlebia radiata is the second largest (156 kbp) among fungi and features signs of genome flexibility and recent recombination events. PLoS One 2014; 9:e97141. [PMID: 24824642 PMCID: PMC4019555 DOI: 10.1371/journal.pone.0097141] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/15/2014] [Indexed: 01/28/2023] Open
Abstract
Mitochondria are eukaryotic organelles supporting individual life-style via generation of proton motive force and cellular energy, and indispensable metabolic pathways. As part of genome sequencing of the white rot Basidiomycota species Phlebia radiata, we first assembled its mitochondrial genome (mtDNA). So far, the 156 348 bp mtDNA is the second largest described for fungi, and of considerable size among eukaryotes. The P. radiata mtDNA assembled as single circular dsDNA molecule containing genes for the large and small ribosomal RNAs, 28 transfer RNAs, and over 100 open reading frames encoding the 14 fungal conserved protein subunits of the mitochondrial complexes I, III, IV, and V. Two genes (atp6 and tRNA-IleGAU) were duplicated within 6.1 kbp inverted region, which is a unique feature of the genome. The large mtDNA size, however, is explained by the dominance of intronic and intergenic regions (sum 80% of mtDNA sequence). The intergenic DNA stretches harness short (≤ 200 nt) repetitive, dispersed and overlapping sequence elements in abundance. Long self-splicing introns of types I and II interrupt eleven of the conserved genes (cox1,2,3; cob; nad1,2,4,4L,5; rnl; rns). The introns embrace a total of 57 homing endonucleases with LAGLIDADGD and GYI-YIG core motifs, which makes P. radiata mtDNA to one of the largest known reservoirs of intron-homing endonucleases. The inverted duplication, intergenic stretches, and intronic features are indications of dynamics and genetic flexibility of the mtDNA, not fully recognized to this extent in fungal mitochondrial genomes previously, thus giving new insights for the evolution of organelle genomes in eukaryotes.
Collapse
Affiliation(s)
- Heikki Salavirta
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ilona Oksanen
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Miia Mäkelä
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Taina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Guha TK, Hausner G. A homing endonuclease with a switch: Characterization of a twintron encoded homing endonuclease. Fungal Genet Biol 2014; 65:57-68. [DOI: 10.1016/j.fgb.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
36
|
Gutiérrez P, Alzate J, Yepes MS, Marín M. Complete mitochondrial genome sequence of the common bean anthracnose pathogenColletotrichum lindemuthianum. ACTA ACUST UNITED AC 2014; 27:136-7. [DOI: 10.3109/19401736.2013.878912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Hafez M, Guha TK, Shen C, Sethuraman J, Hausner G. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes. Methods Mol Biol 2014; 1123:37-53. [PMID: 24510258 DOI: 10.1007/978-1-62703-968-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing and gene therapy applications. Bioprospecting and characterization of naturally occurring homing endonucleases offers an alternative to synthesizing artificial endonucleases. Here, we describe methods for PCR-based screening of fungal mitochondrial rRNA genes for homing endonuclease encoding sequences, and we also provide protocols for the purification and biochemical characterization of putative native homing endonucleases.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
38
|
Torriani SF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC. Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet Biol 2014; 62:34-42. [DOI: 10.1016/j.fgb.2013.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 01/07/2023]
|
39
|
Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis. Fungal Biol 2013; 117:791-806. [DOI: 10.1016/j.funbio.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
|
40
|
Youssar L, Grüning BA, Günther S, Hüttel W. Characterization and phylogenetic analysis of the mitochondrial genome of Glarea lozoyensis indicates high diversity within the order Helotiales. PLoS One 2013; 8:e74792. [PMID: 24086376 PMCID: PMC3783487 DOI: 10.1371/journal.pone.0074792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/07/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glarea lozoyensis is a filamentous fungus used for the industrial production of non-ribosomal peptide pneumocandin B0. In the scope of a whole genome sequencing the complete mitochondrial genome of the fungus has been assembled and annotated. It is the first one of the large polyphyletic Helotiaceae family. A phylogenetic analysis was performed based on conserved proteins of the oxidative phosphorylation system in mitochondrial genomes. RESULTS The total size of the mitochondrial genome is 45,038 bp. It contains the expected 14 genes coding for proteins related to oxidative phosphorylation,two rRNA genes, six hypothetical proteins, three intronic genes of which two are homing endonucleases and a ribosomal protein rps3. Additionally there is a set of 33 tRNA genes. All genes are located on the same strand. Phylogenetic analyses based on concatenated mitochondrial protein sequences confirmed that G. lozoyensis belongs to the order of Helotiales and that it is most closely related to Phialocephala subalpina. However, a comparison with the three other mitochondrial genomes known from Helotialean species revealed remarkable differences in size, gene content and sequence. Moreover, it was found that the gene order found in P. subalpina and Sclerotinia sclerotiorum is not conserved in G. lozoyensis. CONCLUSION The arrangement of genes and other differences found between the mitochondrial genome of G. lozoyensis and those of other Helotiales indicates a broad genetic diversity within this large order. Further mitochondrial genomes are required in order to determine whether there is a continuous transition between the different forms of mitochondrial genomes or G. lozoyensis belongs to a distinct subgroup within Helotiales.
Collapse
Affiliation(s)
- Loubna Youssar
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Björn Andreas Grüning
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences; University of Freiburg, Freiburg, Germany
| | - Wolfgang Hüttel
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
The mtDNA rns gene landscape in the Ophiostomatales and other fungal taxa: Twintrons, introns, and intron-encoded proteins. Fungal Genet Biol 2013; 53:71-83. [DOI: 10.1016/j.fgb.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/06/2013] [Accepted: 01/15/2013] [Indexed: 12/17/2022]
|
42
|
Ambrosio AB, do Nascimento LC, Oliveira BV, Teixeira PJPL, Tiburcio RA, Toledo Thomazella DP, Leme AFP, Carazzolle MF, Vidal RO, Mieczkowski P, Meinhardt LW, Pereira GAG, Cabrera OG. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics 2013; 14:91. [PMID: 23394930 PMCID: PMC3605234 DOI: 10.1186/1471-2164-14-91] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/27/2013] [Indexed: 12/02/2022] Open
Abstract
Background The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated “omics” approaches. Results The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. Conclusions The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.
Collapse
Affiliation(s)
- Alinne Batista Ambrosio
- Laboratório de Genômica e Expressão, Departamento de Genética Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CEP: 13083-970, Campinas, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rudski SM, Hausner G. The mtDNA rps3 locus has been invaded by a group I intron in some species of Grosmannia. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-012-0183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
45
|
Baxter S, Lambert AR, Kuhar R, Jarjour J, Kulshina N, Parmeggiani F, Danaher P, Gano J, Baker D, Stoddard BL, Scharenberg AM. Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases. Nucleic Acids Res 2012; 40:7985-8000. [PMID: 22684507 PMCID: PMC3439895 DOI: 10.1093/nar/gks502] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although engineered LAGLIDADG homing endonucleases (LHEs) are finding increasing applications in biotechnology, their generation remains a challenging, industrial-scale process. As new single-chain LAGLIDADG nuclease scaffolds are identified, however, an alternative paradigm is emerging: identification of an LHE scaffold whose native cleavage site is a close match to a desired target sequence, followed by small-scale engineering to modestly refine recognition specificity. The application of this paradigm could be accelerated if methods were available for fusing N- and C-terminal domains from newly identified LHEs into chimeric enzymes with hybrid cleavage sites. Here we have analyzed the structural requirements for fusion of domains extracted from six single-chain I-OnuI family LHEs, spanning 40–70% amino acid identity. Our analyses demonstrate that both the LAGLIDADG helical interface residues and the linker peptide composition have important effects on the stability and activity of chimeric enzymes. Using a simple domain fusion method in which linker peptide residues predicted to contact their respective domains are retained, and in which limited variation is introduced into the LAGLIDADG helix and nearby interface residues, catalytically active enzymes were recoverable for ∼70% of domain chimeras. This method will be useful for creating large numbers of chimeric LHEs for genome engineering applications.
Collapse
Affiliation(s)
- Sarah Baxter
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van de Sande WWJ. Phylogenetic analysis of the complete mitochondrial genome of Madurella mycetomatis confirms its taxonomic position within the order Sordariales. PLoS One 2012; 7:e38654. [PMID: 22701687 PMCID: PMC3368884 DOI: 10.1371/journal.pone.0038654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. RESULTS The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. CONCLUSION Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Jacoby K, Metzger M, Shen BW, Certo MT, Jarjour J, Stoddard BL, Scharenberg AM. Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space. Nucleic Acids Res 2012; 40:4954-64. [PMID: 22334611 PMCID: PMC3367166 DOI: 10.1093/nar/gkr1303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
LAGLIDADG homing endonucleases (LHEs) are a family of highly specific DNA endonucleases capable of recognizing target sequences ≈ 20 bp in length, thus drawing intense interest for their potential academic, biotechnological and clinical applications. Methods for rational design of LHEs to cleave desired target sites are presently limited by a small number of high-quality native LHEs to serve as scaffolds for protein engineering-many are unsatisfactory for gene targeting applications. One strategy to address such limitations is to identify close homologs of existing LHEs possessing superior biophysical or catalytic properties. To test this concept, we searched public sequence databases to identify putative LHE open reading frames homologous to the LHE I-AniI and used a DNA binding and cleavage assay using yeast surface display to rapidly survey a subset of the predicted proteins. These proteins exhibited a range of capacities for surface expression and also displayed locally altered binding and cleavage specificities with a range of in vivo cleavage activities. Of these enzymes, I-HjeMI demonstrated the greatest activity in vivo and was readily crystallizable, allowing a comparative structural analysis. Taken together, our results suggest that even highly homologous LHEs offer a readily accessible resource of related scaffolds that display diverse biochemical properties for biotechnological applications.
Collapse
Affiliation(s)
- Kyle Jacoby
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA
| | - Michael Metzger
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA
| | - Betty W. Shen
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA
| | - Michael T. Certo
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA
| | - Jordan Jarjour
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA
| | - Barry L. Stoddard
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA
| | - Andrew M. Scharenberg
- Program in Molecular and Cellular Biology, University of Washington, Box 357275, Seattle, WA 98195 Center of Immunity and Immunotherapies, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. A3-025, Seattle, WA 98109 and Pregenen, 454 N.34th Street, Seattle, WA 98103, USA,*To whom correspondence should be addressed. Tel: +1 206 987 7314; Fax: +1 206 987 7310;
| |
Collapse
|
48
|
Xavier BB, Miao VPW, Jónsson ZO, Andrésson ÓS. Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biol 2012; 116:802-14. [PMID: 22749167 DOI: 10.1016/j.funbio.2012.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/15/2022]
Abstract
Mitochondrial genomes from the fungal partners of two terricolous foliose lichen symbioses, Peltigera membranacea and Peltigera malacea, have been determined using metagenomic approaches, including RNA-seq. The roughly 63 kb genomes show all the major features found in other Pezizomycotina, such as unidirectional transcription, 14 conserved protein genes, genes for the two subunit rRNAs and for a set of 26 tRNAs used in translating the 62 amino acid codons. In one of the tRNAs a CAU anticodon is proposed to be modified, via the action of the nuclear-encoded enzyme, tRNA Ile lysidine synthase, so that it recognizes the codon AUA (Ile) instead of AUG (Met). The overall arrangements and sequences of the two circular genomes are similar, the major difference being the inversion and deterioration of a gene encoding a type B DNA polymerase. Both genomes encode the RNA component of RNAse P, a feature seldom found in ascomycetes. The difference in genome size from the minimal ascomycete mitochondrial genomes is largely due to 17 and 20 group I introns, respectively, most associated with homing endonucleases and all found within protein-coding genes and the gene encoding the large subunit rRNA. One new intron insertion point was found, and an unusually small exon of seven nucleotides (nt) was identified and verified by RNA sequencing. Comparative analysis of mitochondrion-encoded proteins places the Peltigera spp., representatives of the class Lecanoromycetes, close to Leotiomycetes, Dothidiomycetes, and Sordariomycetes, in contrast to phylogenies found using nuclear genes.
Collapse
Affiliation(s)
- Basil Britto Xavier
- Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | | |
Collapse
|
49
|
Duò A, Bruggmann R, Zoller S, Bernt M, Grünig CR. Mitochondrial genome evolution in species belonging to the Phialocephala fortinii s.l. - Acephala applanata species complex. BMC Genomics 2012; 13:166. [PMID: 22559219 PMCID: PMC3434094 DOI: 10.1186/1471-2164-13-166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/04/2012] [Indexed: 01/01/2023] Open
Abstract
Background Mitochondrial (mt) markers are successfully applied in evolutionary biology and systematics because mt genomes often evolve faster than the nuclear genomes. In addition, they allow robust phylogenetic analysis based on conserved proteins of the oxidative phosphorylation system. In the present study we sequenced and annotated the complete mt genome of P. subalpina, a member of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC). PAC belongs to the Helotiales, which is one of the most diverse groups of ascomycetes including more than 2,000 species. The gene order was compared to deduce the mt genome evolution in the Pezizomycotina. Genetic variation in coding and intergenic regions of the mtDNA was studied for PAC to assess the usefulness of mt DNA for species diagnosis. Results The mt genome of P. subalpina is 43,742 bp long and codes for 14 mt genes associated with the oxidative phosphorylation. In addition, a GIY-YIG endonuclease, the ribosomal protein S3 (Rps3) and a putative N-acetyl-transferase were recognized. A complete set of tRNA genes as well as the large and small rRNA genes but no introns were found. All protein-coding genes were confirmed by EST sequences. The gene order in P. subalpina deviated from the gene order in Sclerotinia sclerotiorum, the only other helotialean species with a fully sequenced and annotated mt genome. Gene order analysis within Pezizomycotina suggests that the evolution of gene orders is mostly driven by transpositions. Furthermore, sequence diversity in coding and non-coding mtDNA regions in seven additional PAC species was pronounced and allowed for unequivocal species diagnosis in PAC. Conclusions The combination of non-interrupted ORFs and EST sequences resulted in a high quality annotation of the mt genome of P. subalpina, which can be used as a reference for the annotation of other mt genomes in the Helotiales. In addition, our analyses show that mtDNA loci will be the marker of choice for future analysis of PAC communities.
Collapse
Affiliation(s)
- Angelo Duò
- Forest Pathology and Dendrology, Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci U S A 2012; 109:4203-8. [PMID: 22371583 DOI: 10.1073/pnas.1120192109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the small subunit rRNA serves as a prominent tool for the phylogenetic analysis and classification of Bacteria and Archaea owing to its high degree of conservation and its fundamental function in living organisms. Here we show that the 16S rRNA genes of not-yet-cultivated large sulfur bacteria, among them the largest known bacterium Thiomargarita namibiensis, regularly contain numerous self-splicing introns of variable length. The 16S rRNA genes can thus be enlarged to up to 3.5 kb. Remarkably, introns have never been identified in bacterial 16S rRNA genes before, although they are the most frequently sequenced genes today. This may be caused in part by a bias during the PCR amplification step that discriminates against longer homologs, as we show experimentally. Such length heterogeneity of 16S rRNA genes has so far never been considered when constructing 16S rRNA-based clone libraries, even though an elongation of rRNA genes due to intervening sequences has been reported previously. The detection of elongated 16S rRNA genes has profound implications for common methods in molecular ecology and may cause systematic biases in several techniques. In this study, catalyzed reporter deposition-fluorescence in situ hybridization on both ribosomes and rRNA precursor molecules as well as in vitro splicing experiments were performed and confirmed self-splicing of the introns. Accordingly, the introns do not inhibit the formation of functional ribosomes.
Collapse
|