1
|
Kutanan W, Woravatin W, Srikummool M, Suwannapoom C, Hübner A, Kampuansai J, Khaokiew C, Schaschl H, Översti S, La DD, Arias L, Stoneking M. Maternal genetic origin of Chao Lay coastal maritime populations from Thailand. BMC Biol 2025; 23:146. [PMID: 40437517 PMCID: PMC12121263 DOI: 10.1186/s12915-025-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND The Chao Lay, also known as sea nomads, include the Austronesian-speaking Moken, Moklen, and Urak Lawoi, who traditionally inhabit the coastal regions and islands of the Andaman Sea in southern Thailand. Their maritime lifestyle has attracted significant interest in their genetic origins and relationships with other sea nomad groups in Island Southeast Asia (ISEA); however, comprehensive genetic data on these communities remain scarce. Here, we generated complete mitochondrial genome sequences from Moken and Moklen groups, along with the Tai-Kadai-speaking southern Thai population and additional Austroasiatic-speaking Maniq samples (hunter-gatherer) from southern Thailand. RESULTS Our findings indicate that the Chao Lay display lower genetic diversity compared to the majority of southern Thai populations. Furthermore, the results suggest the absence of recent maternal expansions among the Chao Lay. Notably, haplogroups D4e1a, E1a1a1a, M21b2, M46a, M50a1, and M71c are predominant among the Chao Lay, underscoring their genetic distinctiveness. Bayesian coalescent age estimates of clades characteristic to Chao Lay for these haplogroups point to the time associated with the Austronesian expansion period. CONCLUSIONS The Chao Lay populations were closer to each other than to other groups and exhibited more genetic connections to Mainland Southeast Asian (MSEA) populations than ISEA populations. However, we do not exclude potential origins of the Chao Lay in ISEA or Taiwan, as it is possible that ancestral Chao Lay males incorporated MSEA females into their communities upon arriving in Thailand. Further studies on genome-wide and Y chromosome data would provide more insights into their genetic history.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.
- Center of Excellence for Innovation and Technology for Detection and Advanced Materials (ITDAM), Naresuan University, Phitsanulok, Thailand.
| | - Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Sanni Översti
- Transmission, Infection, Diversification and Evolution Group (Tide), Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Duy Duc La
- Institute of Biology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for Linguistics, Faculty of Humanities, Leiden University, Leiden, 2300, The Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| |
Collapse
|
2
|
D'Amato ME, Ristow P, Livesey M, Heynes K, Huber N, Bravi C, Hansen AJ, Parson W. Persistence of Ancestral KhoeSan Mitochondrial Patterns in Contemporary South African Populations. Ann Hum Genet 2025:e12589. [PMID: 39775598 DOI: 10.1111/ahg.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Southern Africa has been inhabited by hunter-gatherers for at least 20,000 years and has received diverse immigration flows in the last 2000 years. The original inhabitants have interacted with the pastoralist migrants from Eastern Africa (∼2000 ybp), followed by the southern Bantu migration arriving some 1000 ybp, and more recently with the European and Asian settlers after the 17th century. Many of the original Khoekhoe and San inhabitants have either become extinct or have disappeared through admixture in South Africa (SA), in a sex-biased manner involving KhoeSan women. METHODS In this study, we generated mitochondrial DNA (mtDNA) control region (CR) sequences for 247 South African individuals. The sampling effort was concentrated in regions and populations with historical links to the KhoeSan population groups: admixed (Coloured, Griqua), Nama (Khoekhoe) and Bantu in three provinces. Here we evaluate the composition and extent of connectivity between population groups and regions, and to assess the distribution of haplotypes for the practical application of mtDNA CR data in forensic identifications. RESULTS The analysis of the newly generated sequences revealed 142 distinct haplotypes, of which 122 were unique. Haplogroup L0 was predominant (overall 71.7%). A high-frequency L0d2a haplotype dominated the pool of the admixed groups with 10%-12.5% incidence overall or per region. Comparative analysis with 545 extant mtDNA CR sequences from South African KhoeSan and admixed descendants revealed extensive population structure and high within-group haplotype sharing. CONCLUSION The observed population and regional variations, combined with the prevalence of high-frequency haplotypes, align with patterns of matrilocality. These findings highlight the limitations of using mtDNA control region analysis for forensic applications in South Africa.
Collapse
Affiliation(s)
- Maria Eugenia D'Amato
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Peter Ristow
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Michelle Livesey
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Kirsty Heynes
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Kobenhavn, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Thao DH, Dinh TH, Mitsunaga S, Duy LD, Phuong NT, Anh NP, Anh NT, Duc BM, Hue HTT, Ha NH, Ton ND, Hübner A, Pakendorf B, Stoneking M, Inoue I, Duong NT, Hai NV. Investigating demic versus cultural diffusion and sex bias in the spread of Austronesian languages in Vietnam. PLoS One 2024; 19:e0304964. [PMID: 38885215 PMCID: PMC11182502 DOI: 10.1371/journal.pone.0304964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Austronesian (AN) is the second-largest language family in the world, particularly widespread in Island Southeast Asia (ISEA) and Oceania. In Mainland Southeast Asia (MSEA), groups speaking these languages are concentrated in the highlands of Vietnam. However, our knowledge of the spread of AN-speaking populations in MSEA remains limited; in particular, it is not clear if AN languages were spread by demic or cultural diffusion. In this study, we present and analyze new data consisting of complete mitogenomes from 369 individuals and 847 Y-chromosomal single nucleotide polymorphisms (SNPs) from 170 individuals from all five Vietnamese Austronesian groups (VN-AN) and five neighboring Vietnamese Austroasiatic groups (VN-AA). We found genetic signals consistent with matrilocality in some, but not all, of the VN-AN groups. Population affinity analyses indicated connections between the AN-speaking Giarai and certain Taiwanese AN groups (Rukai, Paiwan, and Bunun). However, overall, there were closer genetic affinities between VN-AN groups and neighboring VN-AA groups, suggesting language shifts. Our study provides insights into the genetic structure of AN-speaking communities in MSEA, characterized by some contact with Taiwan and language shift in neighboring groups, indicating that the expansion of AN speakers in MSEA was a combination of cultural and demic diffusion.
Collapse
Affiliation(s)
- Dinh Huong Thao
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Huu Dinh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Shigeki Mitsunaga
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - La Duc Duy
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thanh Phuong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Nguyen Phuong Anh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tho Anh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Bui Minh Duc
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Huynh Thi Thu Hue
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
4
|
Chen C, Guo Y, Fang Y, Shi J, Meng H, Qu L, Zhang X, Zhu B. The maternal phylogenetic insights of Yunnan Miao group revealed by complete mitogenomes. Gene 2024; 901:148046. [PMID: 38081335 DOI: 10.1016/j.gene.2023.148046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
The Miao group is one of the representative Hmong-Mien-speaking populations and primarily scattered in southern China and Southeast Asia, which has experienced massive migrations in history and thus forms distinctive evolutionary genetics. Yet, the genetic explorations of Miao group are relatively limited based on complete mitochondrial genome (mitogenome), especially for the Miao group from Yunnan Province (YNM). Here, we sequenced complete mitogenomes of 132 Miao individuals from Yunnan Province using massively parallel sequencing method. Total 132 Miao individuals could be allocated to 119 various haplotypes, which were mainly dominated by haplogroups prevalent in southern East Asia (B, F, M7 and R9), and rarely occupied by northern lineages (A, D, G and M8). In order to dissect the genetic background of YNM more comprehensively, we introduced 99 published population data with 7135 complete mitochondrial sequences for population genetic comparisons. YNM exhibited closer genetic relationships with Hmong-Mien, Tai-Kadai, Sino-Tibetan and Austroasiatic populations, especially for Hmong-Mien populations; we further speculated that Miao group might have certain direct or indirect gene exchanges with ancient Baiyue groups. Several maternal lineages, such as B5a1c1a, F1g1, B4a5 and D4e1a3, were found to be specifically shared by YNM and other Hmong-Mien populations, and these matrilineal expansions occurred roughly during the Neolithic period. Eventually, according to the population dynamic analyses of YNM, the population size began to emerge recovery ∼1-0.5 kya after a long-term population reduction ∼1-5 kya, during which the B5a1c1a haplogroup manifested relatively apparent lineage expansion.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Department of Forensic Medicine, Faculty of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yating Fang
- School of Basic Medical Sciences, Anhui Medical University, Anhui 230031, China
| | - Jianfeng Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Haotian Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Qu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Syukriani Y, Wulandari AS, Wanranto B, Hidayat Y. Thousands of years of Malay and Chinese population history in Indonesia and its implication on Paternity Index in DNA paternity testing. Sci Justice 2023; 63:229-237. [PMID: 36870702 DOI: 10.1016/j.scijus.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The existence of the Chinese population in the predominantly Malay population in Indonesia can be traced back thousands of years, and it has been suspected that it played an essential role in the history of the Malay population origin in Maritime South East Asia. With the fact that the Malay-Indonesian population is currently predominant compared to the Chinese population in Indonesia (Chinese-Indonesian), the selection of the origin of the STRs allele frequency panel population becomes an issue in DNA profiling, including in paternity testing. This study analyses the genetic relationship between the Chinese-Indonesian and Malay-Indonesian populations and how this affects the Paternity Index (PI) calculation in paternity test cases. The study of the relationship between populations was carried out using neighbour-joining (NJ) tree analysis and multidimensional scaling (MDS) on the allele frequency panel of 19 autosomal STRs loci of Malay-Indonesian (n = 210) and Chinese-Indonesian (n = 78) populations. Four population groups were used as references: Malay-Malaysian, Filipino, Chinese, and Caucasian. An MDS analysis was also performed based on the pairwise FST calculation. The combined Paternity Index (CPI) calculation was carried out on 132 paternity cases from the Malay-Indonesian population with inclusive results using a panel of allele frequencies from the six populations. The pairwise FST MDS indicates a closer relationship between the Chinese-Indonesian and Malay-Indonesian compared to the Chinese population, which is in line with the CPIs comparison test. The outcome suggests that the alternative use of allele frequency database between Malay-Indonesian and Chinese-Indonesian for CPI calculations is not very influential. These results can also be considered in studying the extent of genetic assimilation between the two populations. In addition, these results support the robustness claim of multivariate analysis to represent phenomena that phylogenetic analyses may not be able to demonstrate, especially for massive panel data.
Collapse
Affiliation(s)
- Yoni Syukriani
- Department of Forensic and Legal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Ari Sri Wulandari
- Department of Forensic and Legal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Busyra Wanranto
- Department of Forensic and Legal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Yuyun Hidayat
- Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Nguyen NN, Hoang TL, Nguyen TH, Le PT, Nguyen CH, Tran VV, Chu HH, Hoang H. The mitochondrial DNA HVI and HVII sequences and haplogroup distribution in a population sample from Vietnam. Ann Hum Biol 2022; 49:367-371. [PMID: 36437685 DOI: 10.1080/03014460.2022.2152488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) analysis has been used in forensics and requires well-established population databases for statistical interpretations. However, high-quality mtDNA data from Vietnamese population samples have been limited. AIM To examine the mtDNA sequences and haplogroup compositions of a Vietnamese population to provide an mtDNA dataset that can further be used to construct a Vietnamese-specific reference database. SUBJECTS AND METHODS A total of 173 Vietnamese individuals were analysed for two hypervariable regions (HVI and HVII) of mtDNA. Forensic parameters were calculated and haplogroup assignment was performed based on the resulting mtDNA haplotypes. Genetic relationships between the Vietnamese and other Asian populations were investigated through principal component analysis (PCA) and pairwise Fst. RESULTS The Vietnamese population sample consisted of 145 different haplotypes with a random match probability of 0.96%, a power of discrimination of 0.9904, and a haplotype diversity of 0.9962. The samples were assigned to 83 haplogroups that were commonly reported in Asia. PCA and pairwise Fst revealed close relationships of the Vietnamese population with other Asian populations, especially with populations in proximity. CONCLUSION The results from this study can contribute to the current genetic information content as a supplementary mtDNA reference dataset for forensic investigations and phylogenetic research.
Collapse
Affiliation(s)
- Nam Ngoc Nguyen
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trong Luc Hoang
- Department of Forensic Science, People's Police Academy, Hanoi, Vietnam
| | - Trang Hong Nguyen
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phuong Thi Le
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chi Hung Nguyen
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Viet Vinh Tran
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hoang Ha Chu
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Hoang
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
7
|
Rodriguez JJRB, Cuales JMD, Herrera MJB, Zubiri LAM, Muallil RN, Ishmael AI, Jimenez EB, Stoneking M, De Ungria MCA. Ethical challenges in genetic research among Philippine Indigenous Peoples: Insights from fieldwork in Zamboanga and the Sulu Archipelago. Front Genet 2022; 13:901515. [PMID: 36324515 PMCID: PMC9619191 DOI: 10.3389/fgene.2022.901515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/21/2022] [Indexed: 09/07/2024] Open
Abstract
The Philippines, with the recent discovery of an archaic hominin in Luzon and an extensive ethnolinguistic diversity of more than 100 Indigenous peoples, is crucial to understanding human evolution and population history in Island Southeast Asia. Advances in DNA sequencing technologies enable the rapid generation of genomic data to robustly address questions about origins, relatedness, and population movements. With the increased genetic sampling in the country, especially by international scientists, it is vital to revisit ethical rules and guidelines relevant to conducting research among Indigenous peoples. Our team led fieldwork expeditions between 2019 and February 2020 in Zamboanga and the Sulu Archipelago, a chain of islands connecting the Mindanao and Borneo landmasses. The trips concluded with a collection of 2,149 DNA samples from 104 field sites. We present our fieldwork experience among the mostly sea-oriented Sama-Bajaw and Tausug-speaking communities and propose recommendations to address the ethical challenges of conducting such research. This work contributes toward building an enabling research environment in the Philippines that respects the rights and autonomy of Indigenous peoples, who are the rightful owners of their DNA and all genetic information contained therein.
Collapse
Affiliation(s)
- Jae Joseph Russell B. Rodriguez
- DNA Analysis Laboratory, Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Genetic and Molecular Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - John Meldwin D. Cuales
- DNA Analysis Laboratory, Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | - Richard N. Muallil
- Office of Continuing Education and Extension Services, Mindanao State University—Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Altan I. Ishmael
- Sama Studies Center, Mindanao State University—Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Edlyn B. Jimenez
- National Institutes of Health, University of the Philippines Manila, Manila City, Philippines
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Maria Corazon A. De Ungria
- DNA Analysis Laboratory, Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Program on Biodiversity, Ethnicity, and Forensics, Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| |
Collapse
|
8
|
Aghakhanian F, Hoh BP, Yew CW, Kumar Subbiah V, Xue Y, Tyler-Smith C, Ayub Q, Phipps ME. Sequence analyses of Malaysian Indigenous communities reveal historical admixture between Hoabinhian hunter-gatherers and Neolithic farmers. Sci Rep 2022; 12:13743. [PMID: 35962005 PMCID: PMC9374673 DOI: 10.1038/s41598-022-17884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Southeast Asia comprises 11 countries that span mainland Asia across to numerous islands that stretch from the Andaman Sea to the South China Sea and Indian Ocean. This region harbors an impressive diversity of history, culture, religion and biology. Indigenous people of Malaysia display substantial phenotypic, linguistic, and anthropological diversity. Despite this remarkable diversity which has been documented for centuries, the genetic history and structure of indigenous Malaysians remain under-studied. To have a better understanding about the genetic history of these people, especially Malaysian Negritos, we sequenced whole genomes of 15 individuals belonging to five indigenous groups from Peninsular Malaysia and one from North Borneo to high coverage (30X). Our results demonstrate that indigenous populations of Malaysia are genetically close to East Asian populations. We show that present-day Malaysian Negritos can be modeled as an admixture of ancient Hoabinhian hunter-gatherers and Neolithic farmers. We observe gene flow from South Asian populations into the Malaysian indigenous groups, but not into Dusun of North Borneo. Our study proposes that Malaysian indigenous people originated from at least three distinct ancestral populations related to the Hoabinhian hunter-gatherers, Neolithic farmers and Austronesian speakers.
Collapse
Affiliation(s)
- Farhang Aghakhanian
- MUM Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,TropMed and Biology Multidisciplinary Platform, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.,Department of Medicine, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia
| | - Boon-Peng Hoh
- Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Chee-Wei Yew
- Biotechnology Research Institute, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Qasim Ayub
- MUM Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,TropMed and Biology Multidisciplinary Platform, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Maude E Phipps
- MUM Genomics Facility, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
9
|
Hayashi A, Pietrusewsky M. Discriminant function analysis of craniometric data for distinguishing Japanese and Filipino crania. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2057589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atsuko Hayashi
- Social Welfare and War Victims’ Relief Bureau, Ministry of Labour, Health, and Welfare, Chiyoda-ku, Tokyo, Japan
| | - Michael Pietrusewsky
- Department of Anthropology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA
| |
Collapse
|
10
|
De AK, Sawhney S, Ponraj P, Muthiyan R, Muniswamy K, Ravi SK, Malakar D, Alyethodi RR, Mondal S, Sunder J, Banik S, Kundu A, Bhattacharya D. Maternal lineage of Nicobari pig ( Sus scrofa nicobaricus) correlated with migration of Nicobarese, a native tribal population of Andaman and Nicobar Islands, India. Anim Biotechnol 2021; 34:156-165. [PMID: 34310265 DOI: 10.1080/10495398.2021.1950742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicobari pig is reared by Nicobarese, a native tribal population of Andaman and Nicobar Islands. Nicobari pig has maintained its genetic identity due to geographical isolation. This communication is the first report on maternal inheritance of Nicobari pigs. DNA polymorphism data showed seven haplotypes. D-loop sequence information and mitogenome analysis were able to earmark Nicobari pigs to Asian clade. The domestication process of pigs and its expansion pattern help to understand human migration pattern. Based on this hypothesis, this communication elucidates the probable origin of Nicobarese. Earlier studies indicated that Nicobarese had genetic affinities to races distributed in China, Malaysia and Thailand. Our data on maternal inheritance of Nicobari pig correlates with the data on migration of Nicobarese. Moreover, we could establish a novel connection of Nicobarese with people of Northeastern parts of India, Philippines and Vietnam through phylogenetic signal and geographical provenance of Nicobari pig. We further concluded that migration of Nicobarese happened during Western route of migration (WRM) ∼4000 years before present. Therefore, we propose one wave hypothesis of peopling of Nicobar based on our study and existence of Ausrtroasiatic language, Mon-Khmer in these islands.
Collapse
Affiliation(s)
- Arun Kumar De
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Sneha Sawhney
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Perumal Ponraj
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Ramachandran Muthiyan
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Kangayan Muniswamy
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Sanjay Kumar Ravi
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - R R Alyethodi
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Jai Sunder
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Santanu Banik
- Department of Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Guwahati, India
| | - Anandamoy Kundu
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Debasis Bhattacharya
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| |
Collapse
|
11
|
Ta MTA, Nguyen NN, Tran DM, Nguyen TH, Vu TA, Le DT, Le PT, Do TTH, Hoang H, Chu HH. Massively parallel sequencing of human skeletal remains in Vietnam using the precision ID mtDNA control region panel on the Ion S5™ system. Int J Legal Med 2021; 135:2285-2294. [PMID: 34196785 DOI: 10.1007/s00414-021-02649-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
Mitochondrial DNA (mtDNA) analysis using Sanger sequencing has been a routine practice for the identification of human skeletal remains. However, this process is usually challenging since DNA from the remains is highly degraded and at low concentration. Recently, the advent and implementation of massively parallel sequencing (MPS) have been offered the ability to improve mtDNA sequence data for forensic analysis. To assess the utility of the Ion S5™ system - an MPS platform for mtDNA analysis in challenging samples, we sequenced the mitochondrial control region of 52 age-old skeletal remains. Using the Precision ID mtDNA Control Region Panel, 50 full and two partial control region haplotypes at relatively high mean coverage of 2494 × were achieved for variant calling. Further variant analysis at 10% threshold for point heteroplasmy showed high degradation degree in terms of DNA damage in our bone samples. A higher point heteroplasmy threshold of 20% was required to diminish most of background noise caused by the damage. The results from this study indicated the potential application of the Ion S5™ system in sequencing degraded samples in Vietnam and provided valuable data sources for forensic analyses in the future.
Collapse
Affiliation(s)
- May Thi Anh Ta
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nam Ngoc Nguyen
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Duc Minh Tran
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Trang Hong Nguyen
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Tuan Anh Vu
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dung Thi Le
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phuong Thi Le
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thu Thi Hong Do
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Hoang
- Centre for DNA Identification, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Hoang Ha Chu
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
12
|
Tätte K, Metspalu E, Post H, Palencia-Madrid L, Luis JR, Reidla M, Rea A, Tamm E, Moding EJ, de Pancorbo MM, Garcia-Bertrand R, Metspalu M, Herrera RJ. The Ami and Yami aborigines of Taiwan and their genetic relationship to East Asian and Pacific populations. Eur J Hum Genet 2021; 29:1092-1102. [PMID: 33753914 PMCID: PMC8298601 DOI: 10.1038/s41431-021-00837-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
This article reports on the genetic characteristics of the Ami and Yami, two aboriginal populations of Taiwan. Y-SNP and mtDNA markers as well as autosomal SNPs were utilized to investigate the phylogenetic relationships to groups from MSEA (mainland Southeast Asia), ISEA (island Southeast Asia), and Oceania. Both the Ami and Yami have limited genetic diversity, with the Yami having even less diversity than the Ami. The partitioning of populations within the PCA plots based on autosomal SNPs, the profile constitution observed in the structure analyses demonstrating similar composition among specific populations, the average IBD (identical by descent) tract length gradients, the average total length of genome share among the populations, and the outgroup f3 results all indicate genetic affinities among populations that trace a geographical arc from Taiwan south into the Philippine Archipelago, Borneo, Indonesia, and Melanesia. Conversely, a more distant kinship between the Ami/Yami and MSEA based on all the markers examined, the total mtDNA sequences as well as the admixture f3 and f4 analyses argue against strong genetic contribution from MSEA to the Austronesian dispersal. The sharing of long IBD tracts, total genome length, and the large number of segments in common between the Ami/Yami and the Society Archipelago populations East Polynesia standout considering they are located about 10,700 km apart.
Collapse
Affiliation(s)
- Kai Tätte
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helen Post
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Javier Rodríguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maere Reidla
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anneliis Rea
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu, Estonia
| | - Erika Tamm
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, USA.
| |
Collapse
|
13
|
An in-depth analysis of the mitochondrial phylogenetic landscape of Cambodia. Sci Rep 2021; 11:10816. [PMID: 34031453 PMCID: PMC8144189 DOI: 10.1038/s41598-021-90145-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Cambodia harbours a variety of human aboriginal populations that have scarcely been studied in terms of genetic diversity of entire mitochondrial genomes. Here we present the matrilineal gene pool of 299 Cambodian refugees from three different ethnic groups (Cham, Khmer, and Khmer Loeu) deriving from 16 Cambodian districts. After establishing a DNA-saving high-throughput strategy for mitochondrial whole-genome Sanger sequencing, a HaploGrep based workflow was used for quality control, haplogroup classification and phylogenetic reconstruction. The application of diverse phylogenetic algorithms revealed an exciting picture of the genetic diversity of Cambodia, especially in relation to populations from Southeast Asia and from the whole world. A total of 224 unique haplotypes were identified, which were mostly classified under haplogroups B5a1, F1a1, or categorized as newly defined basal haplogroups or basal sub-branches of R, N and M clades. The presence of autochthonous maternal lineages could be confirmed as reported in previous studies. The exceptional homogeneity observed between and within the three investigated Cambodian ethnic groups indicates genetic isolation of the whole population. Between ethnicities, genetic barriers were not detected. The mtDNA data presented here increases the phylogenetic resolution in Cambodia significantly, thereby highlighting the need for an update of the current human mtDNA phylogeny.
Collapse
|
14
|
Sendell-Price AT, Ruegg KC, Robertson BC, Clegg SM. An island-hopping bird reveals how founder events shape genome-wide divergence. Mol Ecol 2021; 30:2495-2510. [PMID: 33826187 DOI: 10.1111/mec.15898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
When populations colonize new areas, both strong selection and strong drift can be experienced due to novel environments and small founding populations, respectively. Empirical studies have predominantly focused on the phenotype when assessing the role of selection, and limited neutral-loci when assessing founder-induced loss of diversity. Consequently, the extent to which processes interact to influence evolutionary trajectories is difficult to assess. Genomic-level approaches provide the opportunity to simultaneously consider these processes. Here, we examine the roles of selection and drift in shaping genomic diversity and divergence in historically documented sequential island colonizations by the silvereye (Zosterops lateralis). We provide the first empirical demonstration of the rapid appearance of highly diverged genomic regions following population founding, the position of which are highly idiosyncratic. As these regions rarely contained loci putatively under selection, it is most likely that these differences arise via the stochastic nature of the founding process. However, selection is required to explain rapid evolution of larger body size in insular silvereyes. Reconciling our genomic data with these phenotypic patterns suggests there may be many genomic routes to the island phenotype, which vary across populations. Finally, we show that accelerated divergence associated with multiple founding steps is the product of genome-wide rather than localized differences, and that diversity erodes due to loss of rare alleles. However, even multiple founder events do not result in divergence and diversity levels seen in evolutionary older subspecies, and therefore do not provide a shortcut to speciation as proposed by founder-effect speciation models.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Kristen C Ruegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Environmental Futures Research Institute, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
15
|
Pugach I, Hübner A, Hung HC, Meyer M, Carson MT, Stoneking M. Ancient DNA from Guam and the peopling of the Pacific. Proc Natl Acad Sci U S A 2021; 118:e2022112118. [PMID: 33443177 PMCID: PMC7817125 DOI: 10.1073/pnas.2022112118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Hsiao-Chun Hung
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT 2601, Australia
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Mike T Carson
- Micronesian Area Research Center, University of Guam, 96923 Mangilao, Guam
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany;
| |
Collapse
|
16
|
Chen C, Li Y, Tao R, Jin X, Guo Y, Cui W, Chen A, Yang Y, Zhang X, Zhang J, Li C, Zhu B. The Genetic Structure of Chinese Hui Ethnic Group Revealed by Complete Mitochondrial Genome Analyses Using Massively Parallel Sequencing. Genes (Basel) 2020; 11:E1352. [PMID: 33202591 PMCID: PMC7698084 DOI: 10.3390/genes11111352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA), coupled with maternal inheritance and relatively high mutation rates, provides a pivotal way for us to investigate the formation histories of populations. The Hui minority with Islamic faith is one of the most widely distributed ethnic groups in China. However, the exploration of Hui's genetic architecture from the complete mitochondrial genome perspective has not been detected yet. Therefore, in this study, we employed the complete mitochondrial genomes of 98 healthy and unrelated individuals from Northwest China, as well as 99 previously published populations containing 7274 individuals from all over the world as reference data, to comprehensively dissect the matrilineal landscape of Hui group. Our results demonstrated that Hui group exhibited closer genetic relationships with Chinese Han populations from different regions, which was largely attributable to the widespread of haplogroups D4, D5, M7, B4, and F1 in these populations. The demographic expansion of Hui group might occur during the Late Pleistocene. Finally, we also found that Hui group might have gene exchanges with Uygur, Tibetan, and Tajik groups in different degrees and retained minor genetic imprint of European-specific lineages, therefore, hinting the existence of multi-ethnic integration events in shaping the genetic landscape of Chinese Hui group.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Yuchun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610017, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Wei Cui
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Anqi Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yue Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Jingyi Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610017, China
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
17
|
Sun J, Wei LH, Wang LX, Huang YZ, Yan S, Cheng HZ, Ong RTH, Saw WY, Fan ZQ, Deng XH, Lu Y, Zhang C, Xu SH, Jin L, Teo YY, Li H. Paternal gene pool of Malays in Southeast Asia and its applications for the early expansion of Austronesians. Am J Hum Biol 2020; 33:e23486. [PMID: 32851723 DOI: 10.1002/ajhb.23486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES The origin and differentiation of Austronesian populations and their languages have long fascinated linguists, archeologists, and geneticists. However, the founding process of Austronesians and when they separated from their close relatives, such as the Daic and Austro-Asiatic populations in the mainland of Asia, remain unclear. In this study, we explored the paternal origin of Malays in Southeast Asia and the early differentiation of Austronesians. MATERIALS AND METHODS We generated whole Y-chromosome sequences of 50 Malays and co-analyzed 200 sequences from other Austronesians and related populations. We generated a revised phylogenetic tree with time estimation. RESULTS We identified six founding paternal lineages among the studied Malays samples. These founding lineages showed a surprisingly coincident expansion age at 5000 to 6000 years ago. We also found numerous mostly close related samples of the founding lineages of Malays among populations from Mainland of Asia. CONCLUSION Our analyses provided a refined phylogenetic resolution for the dominant paternal lineages of Austronesians found by previous studies. We suggested that the co-expansion of numerous founding paternal lineages corresponds to the initial differentiation of the most recent common ancestor of modern Austronesians. The splitting time and divergence pattern in perspective of paternal Y-chromosome evidence are highly consistent with the previous theories of ethnologists, linguists, and archeologists.
Collapse
Affiliation(s)
- Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China.,B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | | | - Yun-Zhi Huang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Zhi-Quan Fan
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Xiao-Hua Deng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China.,Center for collation and studies of Fujian local literature, Fujian University of Technology, Fuzhou, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shu-Hua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Hui Li
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lehmann Urban D, Motlagh Scholle L, Wagner M, Ludolph AC, Rosenbohm A. The m.9143T>C Variant: Recurrent Infections and Immunodeficiency as an Extension of the Phenotypic Spectrum in MT-ATP6 Mutations? Diseases 2020; 8:diseases8020019. [PMID: 32527054 PMCID: PMC7348873 DOI: 10.3390/diseases8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/22/2022] Open
Abstract
Pathogenic variants in the MT-ATP6 are a well-known cause for maternally inherited mitochondrial disorders associated with a wide range of clinical phenotypes. Here, we present a 31- year old female with insulin-dependent diabetes mellitus, recurrent lactic acidosis and ketoacidosis recurrent infections with suspected immunodeficiency with T cell lymphopenia and hypogammaglobulinemia as well as proximal tetraparesis with severe muscle and limb pain and rapid physical exhaustion. Muscle biopsy and respiratory chain activities were normal. Single-exome sequencing revealed a variant in the MT-ATP6 gene: m.9143T>C. Analysis of further specimen of the index and mother (segregation studies) revealed the highest mutation load in muscle (99% level of mtDNA heteroplasmy) of the index patient. Interestingly, acute metabolic and physical decompensation during recurrent illness was documented to be a common clinical feature in patients with MT-ATP6 variants. However, it was not mentioned as a key symptom. Thus, we suggest that the clinical spectrum might be expanded in ATP6-associated diseases.
Collapse
Affiliation(s)
- Diana Lehmann Urban
- Department of Neurology, Ulm University, 89081 Ulm, Germany; (A.C.L.); (A.R.)
- Correspondence: ; Tel.: +49-(0)731-177-1201
| | | | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University Munich, 81675 Munich, Germany;
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Albert C. Ludolph
- Department of Neurology, Ulm University, 89081 Ulm, Germany; (A.C.L.); (A.R.)
| | - Angela Rosenbohm
- Department of Neurology, Ulm University, 89081 Ulm, Germany; (A.C.L.); (A.R.)
| |
Collapse
|
19
|
Abstract
Despite the efforts made to reconstruct the history of modern humans, there are still poorly explored regions that are key for understanding the phylogeography of our species. One of them is the Philippines, which is crucial to unravel the colonization of Southeast Asia and Oceania but where little is known about when and how the first humans arrived. In order to shed light into this settlement, we collected samples from 157 individuals of the Philippines with the four grandparents belonging to the same region and mitochondrial variants older than 20,000 years. Next, we analyzed the hypervariable I mtDNA region by approximate Bayesian computation based on extensive spatially explicit computer simulations to select among several migration routes towards the Philippines and to estimate population genetic parameters of this colonization. We found that the colonization of the Philippines occurred more than 60,000 years ago, with long-distance dispersal and from both north and south migration routes. Our results also suggest an environmental scenario especially optimal for humans, with large carrying capacity and population growth, in comparison to other regions of Asia. In all, our study suggests a rapid expansion of modern humans towards the Philippines that could be associated with the establisment of maritime technologies and favorable environmental conditions.
Collapse
|
20
|
Go MC, Hefner JT. Morphoscopic ancestry estimates in Filipino crania using multivariate probit regression models. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:386-401. [DOI: 10.1002/ajpa.24008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Matthew C. Go
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign 109 Davenport Hall, 607 South Mathews Avenue, Urbana Illinois
- SNA International, supporting the Department of Defense POW/MIA Accounting Agency 590 Moffet Street, Building 4077, Joint Base Pearl Harbor‐Hickam Hawaii
| | - Joseph T. Hefner
- Department of AnthropologyMichigan State University 655 Auditorium Drive, East Lansing Michigan
| |
Collapse
|
21
|
OMOTO KEIICHI, BABA HISAO, KANAZAWA EISAKU, YONEDA MINORU, SHINODA KENICHI, KANZAWA-KIRIYAMA HIDEAKI, KAKUDA TSUNEO, ADACHI NOBORU, SAKAUE KAZUHIRO, ALMEDA, JR. FERNANDOA, BAUZON LESLIEE. An integrated study of the human skeletal remains discovered in Escalon Cave, northeastern Mindanao, the Philippines. ANTHROPOL SCI 2020. [DOI: 10.1537/ase.200706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- KEIICHI OMOTO
- Department of Biological Science, Graduate School of Science, University of Tokyo, Tokyo
| | - HISAO BABA
- National Museum of Nature and Science, Tsukuba
| | | | | | | | | | - TSUNEO KAKUDA
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo
| | - NOBORU ADACHI
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo
| | | | | | - LESLIE E. BAUZON
- College of Social Sciences and Philosophy, University of the Philippines, Quezon
| |
Collapse
|
22
|
Samper Carro SC, Gilbert F, Bulbeck D, O'Connor S, Louys J, Spooner N, Questiaux D, Arnold L, Price GJ, Wood R, Mahirta. Somewhere beyond the sea: Human cranial remains from the Lesser Sunda Islands (Alor Island, Indonesia) provide insights on Late Pleistocene peopling of Island Southeast Asia. J Hum Evol 2019; 134:102638. [PMID: 31446971 DOI: 10.1016/j.jhevol.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/29/2023]
Abstract
The migration of anatomically modern humans (AMH) from Africa to every inhabitable continent included their dispersal through Island Southeast Asia (ISEA) to Australia. Significantly, this involved overwater dispersal through the Lesser Sunda Islands between Sunda (continental Southeast Asia) and Sahul (Australia and New Guinea). However, the timing and direction of this movement is still debated. Here, we report on human skeletal material recovered from excavations at two rockshelters, known locally as Tron Bon Lei, on Alor Island, Indonesia. The remains, dated to the Late Pleistocene, are the first anatomically modern human remains recovered in Wallacea dated to this period and are associated with cultural material demonstrating intentional burial. The human remains from Tron Bon Lei represent a population osteometrically distinct from Late Pleistocene Sunda and Sahul AMH. Instead, morphometrically, they appear more similar to Holocene populations in the Lesser Sundas. Thus, they may represent the remains of a population originally from Sunda whose Lesser Sunda Island descendants survived into the Holocene.
Collapse
Affiliation(s)
- Sofía C Samper Carro
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, 2601, Australia; School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra, 2601, Australia; Centre d'Estudis del Patrimoni Arqueològic de la Prehistòria, Facultat de Lletres-Edifici B, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Felicity Gilbert
- School of Archaeology and Anthropology, College of Arts and Social Sciences, Australian National University, Canberra, 2601, Australia
| | - David Bulbeck
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, 2601, Australia
| | - Sue O'Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, 2601, Australia; ARC Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, Canberra, 2601, Australia
| | - Julien Louys
- Australian Research Centre of Human Evolution (ARCHE), Environmental Futures Research Institute, Griffith University, Nathan, 4111, Australia
| | - Nigel Spooner
- Institute for Photonics and Advanced Sensing & School of Physical Sciences, University of Adelaide, SA, 5005, Australia; Defence Science and Technology Group, PO Box 1500, Edinburgh, SA, 5111, UK
| | - Danielle Questiaux
- Institute for Photonics and Advanced Sensing & School of Physical Sciences, University of Adelaide, SA, 5005, Australia
| | - Lee Arnold
- Institute for Photonics and Advanced Sensing & School of Physical Sciences, University of Adelaide, SA, 5005, Australia
| | - Gilbert J Price
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Rachel Wood
- Earth Chemistry, Research School of Earth Sciences, Australian National University, Canberra, 2601, Australia
| | - Mahirta
- Jurusan Arkeologi, Fakultas Ilmu Budaya, Universitas Gadja Madja, Bulaksumur, Yogjakarta, 55281, Indonesia
| |
Collapse
|
23
|
Trejaut JA, Muyard F, Lai YH, Chen LR, Chen ZS, Loo JH, Huang JY, Lin M. Genetic diversity of the Thao people of Taiwan using Y-chromosome, mitochondrial DNA and HLA gene systems. BMC Evol Biol 2019; 19:64. [PMID: 30813905 PMCID: PMC6391829 DOI: 10.1186/s12862-019-1389-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite attempts in retracing the history of the Thao people in Taiwan using folktales, linguistics, physical anthropology, and ethnic studies, their history remains incomplete. The heritage of Thao has been associated with the Pazeh Western plains peoples and several other mountain peoples of Taiwan. In the last 400 years, their culture and genetic profile have been reshaped by East Asian migrants. They were displaced by the Japanese and the construction of a dam and almost faced extinction. In this paper, genetic information from mitochondrial DNA (mtDNA), Histoleucocyte antigens (HLA), and the non-recombining Y chromosome of 30 Thao individuals are compared to 836 other Taiwan Mountain and Plains Aborigines (TwrIP & TwPp), 384 Non-Aboriginal Taiwanese (non-TwA) and 149 Continental East Asians. RESULTS The phylogeographic analyses of mtDNA haplogroups F4b and B4b1a2 indicated gene flow between Thao, Bunun, and Tsou, and suggested a common ancestry from 10,000 to 3000 years ago. A claim of close contact with the heavily Sinicized Pazeh of the plains was not rejected and suggests that the plains and mountain peoples most likely shared the same Austronesian agriculturist gene pool in the Neolithic. CONCLUSIONS Having been moving repeatedly since their arrival in Taiwan between 6000 and 4500 years ago, the Thao finally settled in the central mountain range. They represent the last plains people whose strong bonds with their original culture allowed them to preserve their genetic heritage, despite significant gene flow from the mainland of Asia. Representing a considerable contribution to the genealogical history of the Thao people, the findings of this study bear on ongoing anthropological and linguistic debates on their origin.
Collapse
Affiliation(s)
- Jean A Trejaut
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Frank Muyard
- Department of French Studies, National Central University, Taoyuan Taiwan & French School of Asian Studies (EFEO), Taoyuan, Taiwan
| | - Ying-Hui Lai
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Lan-Rong Chen
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Zong-Sian Chen
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jin-Yuan Huang
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
24
|
Li L, Xu Y, Luis JR, Alfonso-Sanchez MA, Zeng Z, Garcia-Bertrand R, Herrera RJ. Cebú, Thailand and Taiwanese aboriginal populations according to Y-STR loci. Gene 2019; 721S:100001. [PMID: 34530985 PMCID: PMC7286082 DOI: 10.1016/j.gene.2018.100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 11/20/2022]
Abstract
Here we report for the first time the Y27-STR Yfiler plus profiles of the insular population of Cebú in the central region of the Philippine Archipelago and the general continental population of Thailand, two strategic locations of interest in connection with the Austronesian expansion. Traditionally, the peopling of Taiwan has been envisioned as a single wave of agriculturists migrating from mainland Southeast Asia. Yet, more recent data support a scenario in which a number of migrations from the continent populated the island. Genetic affinity parameters from this study indicate that certain Formosan tribes are genetically closer to geographical distant populations in the Solomon Island than to other nearby Taiwanese tribes. Furthermore, Taiwanese aboriginal populations in this study partition into three clusters, one associated with populations from the Philippines and Thailand, a second one segregating with populations of the Solomon Islands and a third grouping made up exclusively of Taiwanese aboriginal tribes. The populations within each of these three clusters exhibit different degrees of differentiation among them suggesting unique population histories. All together, these differential genetic affinities of specific Taiwanese tribes to groups from different geographical regions and to each other are compatible with multiple origins of the Austronesian expansion from Formosa as well as from mainland Southeast Asia. Partitioning of Taiwanese aboriginal populations into three clusters. The middle cluster includes the populations from Cebú and Thailand. A second cluster segregates with populations of the Solomon Islands. A third cluster is made up exclusively of Taiwanese aboriginal tribes. Some Formosan tribes are genetically closer to geographical distant Solomon Island populations.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics & Gynecology, Zhengzhou Central Hospital, Zhengzhou University, Henan, China
| | - Yanli Xu
- Department of Criminal Police, Chifeng City, China
| | - Javier Rodriguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Campus Sur s/n, 15782, Santiago de Compostela, Spain
| | - Miguel A Alfonso-Sanchez
- Departamento de Genetica y Antropologia Fisica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV/EHU), Bilbao, Spain
| | - Zhaoshu Zeng
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, China
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
25
|
Salvador JM, Apaga DLT, Delfin FC, Calacal GC, Dennis SE, De Ungria MCA. Filipino DNA variation at 12 X-chromosome short tandem repeat markers. Forensic Sci Int Genet 2018; 36:e8-e12. [DOI: 10.1016/j.fsigen.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/11/2023]
|
26
|
Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia. Sci Rep 2018; 8:11651. [PMID: 30076323 PMCID: PMC6076260 DOI: 10.1038/s41598-018-29989-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Vietnam is an important crossroads within Mainland Southeast Asia (MSEA) and a gateway to Island Southeast Asia, and as such exhibits high levels of ethnolinguistic diversity. However, comparatively few studies have been undertaken of the genetic diversity of Vietnamese populations. In order to gain comprehensive insights into MSEA mtDNA phylogeography, we sequenced 609 complete mtDNA genomes from individuals belonging to five language families (Austroasiatic, Tai-Kadai, Hmong-Mien, Sino-Tibetan and Austronesian) and analyzed them in comparison with sequences from other MSEA countries and Taiwan. Within Vietnam, we identified 399 haplotypes belonging to 135 haplogroups; among the five language families, the sequences from Austronesian groups differ the most from the other groups. Phylogenetic analysis revealed 111 novel Vietnamese mtDNA lineages. Bayesian estimates of coalescence times and associated 95% HPD for these show a peak of mtDNA diversification around 2.5–3 kya, which coincides with the Dong Son culture, and thus may be associated with the agriculturally-driven expansion of this culture. Networks of major MSEA haplogroups emphasize the overall distinctiveness of sequences from Taiwan, in keeping with previous studies that suggested at most a minor impact of the Austronesian expansion from Taiwan on MSEA. We also see evidence for population expansions across MSEA geographic regions and language families.
Collapse
|
27
|
Matsumura H, Shinoda KI, Shimanjuntak T, Oktaviana AA, Noerwidi S, Octavianus Sofian H, Prastiningtyas D, Nguyen LC, Kakuda T, Kanzawa-Kiriyama H, Adachi N, Hung HC, Fan X, Wu X, Willis A, Oxenham MF. Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in ancient Island Southeast Asia: Support from Gua Harimau, Indonesia. PLoS One 2018; 13:e0198689. [PMID: 29933384 PMCID: PMC6014653 DOI: 10.1371/journal.pone.0198689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
The Austronesian language is spread from Madagascar in the west, Island Southeast Asia (ISEA) in the east (e.g. the Philippines and Indonesian archipelagoes) and throughout the Pacific, as far east as Easter Island. While it seems clear that the remote ancestors of Austronesian speakers originated in Southern China, and migrated to Taiwan with the development of rice farming by c. 5500 BP and onto the northern Philippines by c. 4000 BP (the Austronesian Dispersal Hypothesis or ADH), we know very little about the origins and emergence of Austronesian speakers in the Indonesian Archipelago. Using a combination of cranial morphometric and ancient mtDNA analyses on a new dataset from Gua Hairmau, that spans the pre-Neolithic through to Metal Period (5712—5591cal BP to 1864—1719 cal BP), we rigorously test the validity of the ADH in ISEA. A morphometric analysis of 23 adult male crania, using 16 of Martin’s standard measurements, was carried out with results compared to an East and Southeast Asian dataset of 30 sample populations spanning the Late Pleistocene through to Metal Period, in addition to 39 modern samples from East and Southeast Asia, near Oceania and Australia. Further, 20 samples were analyzed for ancient mtDNA and assigned to identified haplogroups. We demonstrate that the archaeological human remains from Gua Harimau cave, Sumatra, Indonesia provide clear evidence for at least two (cranio-morphometrically defined) and perhaps even three (in the context of the ancient mtDNA results) distinct populations from two separate time periods. The results of these analyses provide substantive support for the ADH model in explaining the origins and population history of ISEA peoples.
Collapse
Affiliation(s)
| | - Ken-Ichi Shinoda
- Department of Anthropology, National Museum of Nature and Science, Tokyo, Japan
| | | | | | - Sofwan Noerwidi
- The National Research Centre of Archaeology, Jakarta, Indonesia
| | | | | | - Lan Cuong Nguyen
- Institute of Archaeology, Vietnam Academy of Social Science, Hanoi, Vietnam
| | - Tsuneo Kakuda
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | | | - Noboru Adachi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Hsiao-Chun Hung
- Department of Archaeology and Natural History, Australian National University, Canberra, Australia
| | | | - Xiujie Wu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Anna Willis
- College of Arts, Society and Education, James Cook University, Townsville, Australia
| | - Marc F Oxenham
- School of Archeology and Anthropology, Australian National University, Canberra, Australia
| |
Collapse
|
28
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
29
|
Kılınç GM, Kashuba N, Yaka R, Sümer AP, Yüncü E, Shergin D, Ivanov GL, Kichigin D, Pestereva K, Volkov D, Mandryka P, Kharinskii A, Tishkin A, Ineshin E, Kovychev E, Stepanov A, Alekseev A, Fedoseeva SA, Somel M, Jakobsson M, Krzewińska M, Storå J, Götherström A. Investigating Holocene human population history in North Asia using ancient mitogenomes. Sci Rep 2018; 8:8969. [PMID: 29895902 PMCID: PMC5997703 DOI: 10.1038/s41598-018-27325-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Archaeogenomic studies have largely elucidated human population history in West Eurasia during the Stone Age. However, despite being a broad geographical region of significant cultural and linguistic diversity, little is known about the population history in North Asia. We present complete mitochondrial genome sequences together with stable isotope data for 41 serially sampled ancient individuals from North Asia, dated between c.13,790 BP and c.1,380 BP extending from the Palaeolithic to the Iron Age. Analyses of mitochondrial DNA sequences and haplogroup data of these individuals revealed the highest genetic affinity to present-day North Asian populations of the same geographical region suggesting a possible long-term maternal genetic continuity in the region. We observed a decrease in genetic diversity over time and a reduction of maternal effective population size (Ne) approximately seven thousand years before present. Coalescent simulations were consistent with genetic continuity between present day individuals and individuals dating to 7,000 BP, 4,800 BP or 3,000 BP. Meanwhile, genetic differences observed between 7,000 BP and 3,000 BP as well as between 4,800 BP and 3,000 BP were inconsistent with genetic drift alone, suggesting gene flow into the region from distant gene pools or structure within the population. These results indicate that despite some level of continuity between ancient groups and present-day populations, the region exhibits a complex demographic history during the Holocene.
Collapse
Affiliation(s)
- Gülşah Merve Kılınç
- Department of Archaeology and Classical Studies, Stockholm University, 10691, Stockholm, Sweden.
| | - Natalija Kashuba
- Department of Archaeology and Classical Studies, Stockholm University, 10691, Stockholm, Sweden.,University of Oslo, Museum of Cultural History, 0164, Oslo, Norway
| | - Reyhan Yaka
- Middle East Technical University, Department of Biological Sciences, 06800, Ankara, Turkey
| | - Arev Pelin Sümer
- Middle East Technical University, Department of Biological Sciences, 06800, Ankara, Turkey
| | - Eren Yüncü
- Middle East Technical University, Department of Biological Sciences, 06800, Ankara, Turkey
| | - Dmitrij Shergin
- Laboratory of Archaeology and Ethnography, Faculty of History and Methods, Department of Humanitarian and Aesthetic Education, Pedagogical Institute, Irkutsk State University, Irkutsk, 664011, Irkutsk, Oblast, Russia
| | | | - Dmitrii Kichigin
- Irkutsk National Research Technical University, Laboratory of Archaeology, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, Irkutsk State Technical University, Irkutsk, 664074, Irkutsk Oblast, Russia
| | - Kjunnej Pestereva
- M. K. Ammosov North-Eastern Federal University (NEFU), Federal State Autonomous Educational Institution of Higher Education, Yakutsk, 677000, Sakha Republic, Russia
| | - Denis Volkov
- The Center for Preservation of Historical and Cultural Heritage of the Amur Region, Blagoveshchensk, 675000, Amur Oblast, Russia
| | - Pavel Mandryka
- Siberian Federal University, Krasnoyarsk, 660041, Krasnoyarskiy Kray, Russia
| | - Artur Kharinskii
- Irkutsk National Research Technical University, Laboratory of Archaeology, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, Irkutsk State Technical University, Irkutsk, 664074, Irkutsk Oblast, Russia
| | - Alexey Tishkin
- The Laboratory of Interdisciplinary Studies in Archaeology of Western Siberia and Altai, Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Altaiskiy Kray, Russia
| | - Evgenij Ineshin
- Laboratory of Archaeology and Ethnography, Faculty of History and Methods, Department of Humanitarian and Aesthetic Education, Pedagogical Institute, Irkutsk State University, Irkutsk, 664011, Irkutsk, Oblast, Russia
| | - Evgeniy Kovychev
- Faculty of History, Transbaikal State University, Chita, 672039, Zabaykalsky Kray, Russia
| | - Aleksandr Stepanov
- M. K. Ammosov North-Eastern Federal University (NEFU), Federal State Autonomous Educational Institution of Higher Education, Yakutsk, 677000, Sakha Republic, Russia
| | - Aanatolij Alekseev
- The Institute for Humanities Research and Indigenous Studies (IHRISN), Academy of Sciences of the Sakha Republic, Yakutsk, 677000, Sakha Republic, Russia
| | | | - Mehmet Somel
- Middle East Technical University, Department of Biological Sciences, 06800, Ankara, Turkey
| | - Mattias Jakobsson
- Department of Organismal Biology and SciLife Lab, Evolutionary Biology Centre, 75236, Uppsala, Sweden
| | - Maja Krzewińska
- Department of Archaeology and Classical Studies, Stockholm University, 10691, Stockholm, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, 10691, Stockholm, Sweden
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
30
|
Yew CW, Hoque MZ, Pugh-Kitingan J, Minsong A, Voo CLY, Ransangan J, Lau STY, Wang X, Saw WY, Ong RTH, Teo YY, Xu S, Hoh BP, Phipps ME, Kumar SV. Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genome-wide SNP data. Ann Hum Genet 2018. [PMID: 29521412 DOI: 10.1111/ahg.12246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (FST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent strong genetic differentiation. This report contributes to addressing the paucity of genetic data on representatives from this strategic region of ancient human migration event(s).
Collapse
Affiliation(s)
- Chee Wei Yew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Mohd Zahirul Hoque
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | | | - Alexander Minsong
- Faculty of Humanities, Arts & Heritage, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | | | - Julian Ransangan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Sophia Tiek Ying Lau
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| | - Xu Wang
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Woei Yuh Saw
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Rick Twee-Hee Ong
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yik-Ying Teo
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology (PICB), Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTec University, Shanghai, China.,Collaborative Innovation Centre of Genetics and Development, Shanghai, China
| | - Boon-Peng Hoh
- Institute for Molecular Medical Biotechnology, Universiti Teknologi MARA, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - S Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia
| |
Collapse
|
31
|
Yew CW, Lu D, Deng L, Wong LP, Ong RTH, Lu Y, Wang X, Yunus Y, Aghakhanian F, Mokhtar SS, Hoque MZ, Voo CLY, Abdul Rahman T, Bhak J, Phipps ME, Xu S, Teo YY, Kumar SV, Hoh BP. Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia. Hum Genet 2018; 137:161-173. [DOI: 10.1007/s00439-018-1869-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
|
32
|
Pischedda S, Barral-Arca R, Gómez-Carballa A, Pardo-Seco J, Catelli ML, Álvarez-Iglesias V, Cárdenas JM, Nguyen ND, Ha HH, Le AT, Martinón-Torres F, Vullo C, Salas A. Phylogeographic and genome-wide investigations of Vietnam ethnic groups reveal signatures of complex historical demographic movements. Sci Rep 2017; 7:12630. [PMID: 28974757 PMCID: PMC5626762 DOI: 10.1038/s41598-017-12813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023] Open
Abstract
The territory of present-day Vietnam was the cradle of one of the world’s earliest civilizations, and one of the first world regions to develop agriculture. We analyzed the mitochondrial DNA (mtDNA) complete control region of six ethnic groups and the mitogenomes from Vietnamese in The 1000 Genomes Project (1000G). Genome-wide data from 1000G (~55k SNPs) were also investigated to explore different demographic scenarios. All Vietnamese carry South East Asian (SEA) haplotypes, which show a moderate geographic and ethnic stratification, with the Mong constituting the most distinctive group. Two new mtDNA clades (M7b1a1f1 and F1f1) point to historical gene flow between the Vietnamese and other neighboring countries. Bayesian-based inferences indicate a time-deep and continuous population growth of Vietnamese, although with some exceptions. The dramatic population decrease experienced by the Cham 700 years ago (ya) fits well with the Nam tiến (“southern expansion”) southwards from their original heartland in the Red River Delta. Autosomal SNPs consistently point to important historical gene flow within mainland SEA, and add support to a main admixture event occurring between Chinese and a southern Asian ancestral composite (mainly represented by the Malay). This admixture event occurred ~800 ya, again coinciding with the Nam tiến.
Collapse
Affiliation(s)
- S Pischedda
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain.,Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - R Barral-Arca
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain.,Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - A Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain.,Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - J Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain.,Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - M L Catelli
- Equipo Argentino de Antropología Forense, Independencia, 644, Córdoba, Argentina
| | - V Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - J M Cárdenas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain.,Grupo de Investigación en Genética Forense - Instituto Nacional de Medicina Legal y Ciencias Forenses, Bogotá, Colombia
| | - N D Nguyen
- National Institute of Forensic Medicine, Ministry of Health, Ha Noi, Vietnam
| | - H H Ha
- National Institute of Forensic Medicine, Ministry of Health, Ha Noi, Vietnam
| | - A T Le
- National Institute of Forensic Medicine, Ministry of Health, Ha Noi, Vietnam
| | - F Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - C Vullo
- Equipo Argentino de Antropología Forense, Independencia, 644, Córdoba, Argentina
| | - A Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain. .,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain.
| |
Collapse
|
33
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
34
|
Nagle N, van Oven M, Wilcox S, van Holst Pellekaan S, Tyler-Smith C, Xue Y, Ballantyne KN, Wilcox L, Papac L, Cooke K, van Oorschot RAH, McAllister P, Williams L, Kayser M, Mitchell RJ. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity. Sci Rep 2017; 7:43041. [PMID: 28287095 PMCID: PMC5347126 DOI: 10.1038/srep43041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Sheila van Holst Pellekaan
- Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Kaye N. Ballantyne
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Luka Papac
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - R. John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Nagle N, Ballantyne KN, van Oven M, Tyler-Smith C, Xue Y, Wilcox S, Wilcox L, Turkalov R, van Oorschot RAH, van Holst Pellekaan S, Schurr TG, McAllister P, Williams L, Kayser M, Mitchell RJ. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania. J Hum Genet 2017; 62:343-353. [PMID: 27904152 DOI: 10.1038/jhg.2016.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
Abstract
Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Kaye N Ballantyne
- Office of the Chief Forensic Scientist, Victorian Police Forensic Services Department, Melbourne, VIC, Australia
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, VIC, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Rust Turkalov
- Australian Genome Research Facility, Melbourne, VIC, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victorian Police Forensic Services Department, Melbourne, VIC, Australia
| | - Sheila van Holst Pellekaan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Biological Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, QLD, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R John Mitchell
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Mitochondrial haplogroup M9a1a1c1b is associated with hypoxic adaptation in the Tibetans. J Hum Genet 2016; 61:1021-1026. [PMID: 27465874 DOI: 10.1038/jhg.2016.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022]
Abstract
While hypoxic environment at high altitude remains a major challenge for travelers from low-altitude areas, Tibetans have adapted to the high-altitude environment. Mitochondria are the energy conversion and supplement centers in eukaryotic cells. In recent years, studies have found that the diversity of the mitochondrial genome may have a role in the adaptation to hypoxia in Tibetans. In this study, mitochondrial haplogroup classification and variant genotyping were performed in Tibetan and Han Chinese populations living at different altitudes. The frequencies of mitochondrial haplogroups B and M7 in the high-altitude population were significantly lower compared with those in the low-altitude population (P=0.003 and 0.029, respectively), whereas the frequencies of haplogroups G and M9a1a1c1b in the high-altitude group were significantly higher compared with those in the low-altitude group (P=0.01 and 0.002, respectively). The frequencies of T3394C and G7697A, which are the definition sites of haplogroup M9a1a1c1b, were significantly higher in the high-altitude group compared with that in the low-altitude group (P=0.012 and 0.02, respectively). Our results suggest that mitochondrial haplogroups B and M7 are associated with inadaptability to hypoxic environments, whereas haplogroups G and M9a1a1c1b may be associated with hypoxic adaptation. In particular, the T3394C and G7697A variants on haplogroup M9a1a1c1b may be the primary cause of adaptation to hypoxia.
Collapse
|
37
|
Norhalifah HK, Syaza FH, Chambers GK, Edinur HA. The genetic history of Peninsular Malaysia. Gene 2016; 586:129-35. [DOI: 10.1016/j.gene.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022]
|
38
|
Brandão A, Eng KK, Rito T, Cavadas B, Bulbeck D, Gandini F, Pala M, Mormina M, Hudson B, White J, Ko TM, Saidin M, Zafarina Z, Oppenheimer S, Richards MB, Pereira L, Soares P. Quantifying the legacy of the Chinese Neolithic on the maternal genetic heritage of Taiwan and Island Southeast Asia. Hum Genet 2016; 135:363-376. [PMID: 26875094 PMCID: PMC4796337 DOI: 10.1007/s00439-016-1640-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/30/2022]
Abstract
There has been a long-standing debate concerning the extent to which the spread of Neolithic ceramics and Malay-Polynesian languages in Island Southeast Asia (ISEA) were coupled to an agriculturally driven demic dispersal out of Taiwan 4000 years ago (4 ka). We previously addressed this question using founder analysis of mitochondrial DNA (mtDNA) control-region sequences to identify major lineage clusters most likely to have dispersed from Taiwan into ISEA, proposing that the dispersal had a relatively minor impact on the extant genetic structure of ISEA, and that the role of agriculture in the expansion of the Austronesian languages was therefore likely to have been correspondingly minor. Here we test these conclusions by sequencing whole mtDNAs from across Taiwan and ISEA, using their higher chronological precision to resolve the overall proportion that participated in the "out-of-Taiwan" mid-Holocene dispersal as opposed to earlier, postglacial expansions in the Early Holocene. We show that, in total, about 20% of mtDNA lineages in the modern ISEA pool result from the "out-of-Taiwan" dispersal, with most of the remainder signifying earlier processes, mainly due to sea-level rises after the Last Glacial Maximum. Notably, we show that every one of these founder clusters previously entered Taiwan from China, 6-7 ka, where rice-farming originated, and remained distinct from the indigenous Taiwanese population until after the subsequent dispersal into ISEA.
Collapse
Affiliation(s)
- Andreia Brandão
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK
- ICBAS (Instituto Ciências Biomédicas Abel Salazar), Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Ken Khong Eng
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Centre for Global Archaeological Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Teresa Rito
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Cavadas
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
| | - David Bulbeck
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Acton ACT, Canberra, 2601, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK
| | - Maru Mormina
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Applied Social Studies, University of Winchester, Sparkford Road, Winchester, SO22 4NR, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, New South Wales, 2006, Australia
| | - Joyce White
- Department of Anthropology, University of Pennsylvania Museum, 3260 South St., Philadelphia, USA
| | - Tsang-Ming Ko
- Department of Obstetrics and Gynecology, National Taiwan University, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Mokhtar Saidin
- Centre for Global Archaeological Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Zainuddin Zafarina
- Malaysian Institute of Pharmaceuticals and Nutraceuticals Malaysia, National Institutes of Biotechnology Malaysia, Penang, Malaysia
- Human Identification Unit, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Stephen Oppenheimer
- School of Anthropology, Institute of Human Sciences, The Pauling Centre, University of Oxford, 58a Banbury Road, Oxford, OX2 6QS, UK
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, HD1 3DH, UK.
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Luísa Pereira
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
- Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Pedro Soares
- IPATIMUP (Institute of Molecular Pathology and Immunology of the University of Porto), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200, Porto, Portugal
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
39
|
Chaitanya L, Ralf A, van Oven M, Kupiec T, Chang J, Lagacé R, Kayser M. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine. Hum Mutat 2015; 36:1236-47. [PMID: 26387877 PMCID: PMC5057296 DOI: 10.1002/humu.22905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022]
Abstract
Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications.
Collapse
Affiliation(s)
- Lakshmi Chaitanya
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Arwin Ralf
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mannis van Oven
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Tomasz Kupiec
- Institute of Forensic ResearchSection of Forensic GeneticsKrakówPoland
| | - Joseph Chang
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Robert Lagacé
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
40
|
Autosomal indels distribution in Metropolitan Manila, Philippines. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Kang L, Wang CC, Chen F, Yao D, Jin L, Li H. Northward genetic penetration across the Himalayas viewed from Sherpa people. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:342-9. [PMID: 24617465 DOI: 10.3109/19401736.2014.895986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Himalayas have been suggested as a natural barrier for human migrations, especially the northward dispersals from the Indian Subcontinent to Tibetan Plateau. However, although the majority of Sherpa have a Tibeto-Burman origin, considerable genetic components from Indian Subcontinent have been observed in Sherpa people living in Tibet. The western Y chromosomal haplogroups R1a1a-M17, J-M304, and F*-M89 comprise almost 17% of Sherpa paternal gene pool. In the maternal side, M5c2, M21d, and U from the west also count up to 8% of Sherpa people. Those lineages with South Asian origin indicate that the Himalayas have been permeable to bidirectional gene flow.
Collapse
Affiliation(s)
- Longli Kang
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and
| | - Chuan-Chao Wang
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Feng Chen
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and
| | - Dali Yao
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Li Jin
- b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| | - Hui Li
- a Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet , Ministry of Education, Tibet University for Nationalities , Xianyang , Shaanxi , China and.,b Ministry of Education Key Laboratory of Contemporary Anthropology , School of Life Sciences, Fudan University , Shanghai , China
| |
Collapse
|
42
|
Morrison MA, Magalhaes TR, Ramke J, Smith SE, Ennis S, Simpson CL, Portas L, Murgia F, Ahn J, Dardenne C, Mayne K, Robinson R, Morgan DJ, Brian G, Lee L, Woo SJ, Zacharaki F, Tsironi EE, Miller JW, Kim IK, Park KH, Bailey-Wilson JE, Farrer LA, Stambolian D, DeAngelis MM. Ancestry of the Timorese: age-related macular degeneration associated genotype and allele sharing among human populations from throughout the world. Front Genet 2015. [PMID: 26217379 PMCID: PMC4496576 DOI: 10.3389/fgene.2015.00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We observed that the third leading cause of blindness in the world, age-related macular degeneration (AMD), occurs at a very low documented frequency in a population-based cohort from Timor-Leste. Thus, we determined a complete catalog of the ancestry of the Timorese by analysis of whole exome chip data and haplogroup analysis of SNP genotypes determined by sequencing the Hypervariable I and II regions of the mitochondrial genome and 17 genotyped YSTR markers obtained from 535 individuals. We genotyped 20 previously reported AMD-associated SNPs in the Timorese to examine their allele frequencies compared to and between previously documented AMD cohorts of varying ethnicities. For those without AMD (average age > 55 years), genotype and allele frequencies were similar for most SNPs with a few exceptions. The major risk allele of HTRA1 rs11200638 (10q26) was at a significantly higher frequency in the Timorese, as well as 3 of the 5 protective CFH (1q32) SNPs (rs800292, rs2284664, and rs12066959). Additionally, the most commonly associated AMD-risk SNP, CFH rs1061170 (Y402H), was also seen at a much lower frequency in the Korean and Timorese populations than in the assessed Caucasian populations (C ~7 vs. ~40%, respectively). The difference in allele frequencies between the Timorese population and the other genotyped populations, along with the haplogroup analysis, also highlight the genetic diversity of the Timorese. Specifically, the most common ancestry groupings were Oceanic (Melanesian and Papuan) and Eastern Asian (specifically Han Chinese). The low prevalence of AMD in the Timorese population (2 of 535 randomly selected participants) may be due to the enrichment of protective alleles in this population at the 1q32 locus.
Collapse
Affiliation(s)
- Margaux A Morrison
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Tiago R Magalhaes
- National Children's Research Centre, Our Lady's Children's Hospital Dublin, Ireland ; Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | | | - Silvia E Smith
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Sean Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin Dublin, Ireland ; National Centre for Medical Genetics, Our Lady's Children's Hospital Dublin, Ireland
| | - Claire L Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA
| | - Laura Portas
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA ; Institute of Population Genetics, The National Research Council Sassari, Italy
| | - Federico Murgia
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA ; Institute of Population Genetics, The National Research Council Sassari, Italy
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine Seoul, South Korea ; Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center Seoul, South Korea
| | - Caitlin Dardenne
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Katie Mayne
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Rosann Robinson
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Denise J Morgan
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Garry Brian
- The Fred Hollows Foundation New Zealand Auckland, New Zealand
| | - Lucy Lee
- The Fred Hollows Foundation New Zealand Auckland, New Zealand ; London School of Hygiene and Tropical Medicine, University of London London, UK
| | - Se J Woo
- Department of Ophthalmology, Seoul National University College of Medicine Seoul, South Korea ; Department of Ophthalmology, Seoul National University Bundang Hospital Seoungnam, South Korea
| | - Fani Zacharaki
- Department of Ophthalmology, University of Thessaly School of Medicine Larissa, Greece
| | - Evangelia E Tsironi
- Department of Ophthalmology, University of Thessaly School of Medicine Larissa, Greece
| | - Joan W Miller
- Retina Service and Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Ivana K Kim
- Retina Service and Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Kyu H Park
- Department of Ophthalmology, Seoul National University College of Medicine Seoul, South Korea ; Department of Ophthalmology, Seoul National University Bundang Hospital Seoungnam, South Korea
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health Baltimore, MD, USA
| | - Lindsay A Farrer
- Departments of Medicine, Ophthalmology, Neurology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health Boston, MA, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania Philadelphia, PA, USA
| | - Margaret M DeAngelis
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
43
|
Li YC, Wang HW, Tian JY, Liu LN, Yang LQ, Zhu CL, Wu SF, Kong QP, Zhang YP. Ancient inland human dispersals from Myanmar into interior East Asia since the Late Pleistocene. Sci Rep 2015; 5:9473. [PMID: 25826227 PMCID: PMC4379912 DOI: 10.1038/srep09473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/27/2015] [Indexed: 01/08/2023] Open
Abstract
Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible that some inland route(s) might have been adopted by the initial settlers to migrate into the interior of East Asia. Here we analyzed mitochondrial DNA (mtDNA) HVS variants of 845 newly collected individuals from 14 Myanmar populations and 5,907 published individuals from 115 populations from Myanmar and its surroundings. Enrichment of basal lineages with the highest genetic diversity in Myanmar suggests that Myanmar was likely one of the differentiation centers of the early modern humans. Intriguingly, some haplogroups were shared merely between Myanmar and southwestern China, hinting certain genetic connection between both regions. Further analyses revealed that such connection was in fact attributed to both recent gene flow and certain ancient dispersals from Myanmar to southwestern China during 25-10 kya, suggesting that, besides the coastal route, the early modern humans also adopted an inland dispersal route to populate the interior of East Asia.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Wei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Na Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Chun-Ling Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
44
|
Gomes SM, Bodner M, Souto L, Zimmermann B, Huber G, Strobl C, Röck AW, Achilli A, Olivieri A, Torroni A, Côrte-Real F, Parson W. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. BMC Genomics 2015; 16:70. [PMID: 25757516 PMCID: PMC4342813 DOI: 10.1186/s12864-014-1201-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. RESULTS In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. CONCLUSIONS The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.
Collapse
Affiliation(s)
- Sibylle M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Luis Souto
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
- Cencifor Centro de Ciências Forenses, Coimbra, Portugal.
| | - Bettina Zimmermann
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Alexander W Röck
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Perugia, Italy.
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
- Penn State Eberly College of Science, University Park, PA, USA.
| |
Collapse
|
45
|
Matisoo-Smith E. Ancient DNA and the human settlement of the Pacific: a review. J Hum Evol 2015; 79:93-104. [PMID: 25556846 DOI: 10.1016/j.jhevol.2014.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/01/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
The Pacific region provides unique opportunities to study human evolution including through analyses of ancient DNA. While some of the earliest studies involving ancient DNA from skeletal remains focused on Pacific samples, in the following 25 years, several factors meant that little aDNA research, particularly research focused on human populations, has emerged. This paper briefly presents the genetic evidence for population origins, reviews what ancient DNA work has been undertaken to address human history and evolution in the Pacific region, and argues that the future is bright but research requires a collaborative approach between academic disciplines but also with local communities.
Collapse
Affiliation(s)
- Elizabeth Matisoo-Smith
- Department of Anatomy and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
46
|
Genetic structure of Qiangic populations residing in the western Sichuan corridor. PLoS One 2014; 9:e103772. [PMID: 25090432 PMCID: PMC4121179 DOI: 10.1371/journal.pone.0103772] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/02/2014] [Indexed: 12/20/2022] Open
Abstract
The Qiangic languages in western Sichuan (WSC) are believed to be the oldest branch of the Sino-Tibetan linguistic family, and therefore, all Sino-Tibetan populations might have originated in WSC. However, very few genetic investigations have been done on Qiangic populations and no genetic evidences for the origin of Sino-Tibetan populations have been provided. By using the informative Y chromosome and mitochondrial DNA (mtDNA) markers, we analyzed the genetic structure of Qiangic populations. Our results revealed a predominantly Northern Asian-specific component in Qiangic populations, especially in maternal lineages. The Qiangic populations are an admixture of the northward migrations of East Asian initial settlers with Y chromosome haplogroup D (D1-M15 and the later originated D3a-P47) in the late Paleolithic age, and the southward Di-Qiang people with dominant haplogroup O3a2c1*-M134 and O3a2c1a-M117 in the Neolithic Age.
Collapse
|
47
|
Isolation, contact and social behavior shaped genetic diversity in West Timor. J Hum Genet 2014; 59:494-503. [PMID: 25078354 PMCID: PMC4521296 DOI: 10.1038/jhg.2014.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/17/2023]
Abstract
Timor, an eastern Indonesian island linking mainland Asia with Australia and the Pacific world, had a complex history, including its role as a contact zone between two language families (Austronesian and Trans-New Guinean), as well as preserving elements of a rich Austronesian cultural heritage, such as matrilocal marriage practices. Using an array of biparental (autosomal and X-chromosome single-nucleotide polymorphisms) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstruct a broad genetic profile of Timorese in the Belu regency of West Timor, including the traditional princedom of Wehali, focusing on the effects of cultural practices, such as language and social change, on patterns of genetic diversity. Sex-linked data highlight the different histories and social pressures experienced by women and men. Measures of diversity and population structure show that Timorese men had greater local mobility than women, as expected in matrilocal communities, where women remain in their natal village, whereas men move to the home village of their wife. Reaching further back in time, maternal loci (mitochondrial DNA and the X chromosome) are dominated by lineages with immigrant Asian origins, whereas paternal loci (Y chromosome) tend to exhibit lineages of the earliest settlers in the eastern Indonesian region. The dominance of Asian female lineages is especially apparent in the X chromosome compared with the autosomes, suggesting that women played a paramount role during and after the period of Asian immigration into Timor, perhaps driven by the matrilocal marriage practices of expanding Austronesian communities.
Collapse
|
48
|
Zhang W, Tang J, Zhang AM, Peng MS, Xie HB, Tan L, Xu L, Zhang YP, Chen X, Yao YG. A Matrilineal Genetic Legacy from the Last Glacial Maximum Confers Susceptibility to Schizophrenia in Han Chinese. J Genet Genomics 2014; 41:397-407. [DOI: 10.1016/j.jgg.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
49
|
Trejaut JA, Poloni ES, Yen JC, Lai YH, Loo JH, Lee CL, He CL, Lin M. Taiwan Y-chromosomal DNA variation and its relationship with Island Southeast Asia. BMC Genet 2014; 15:77. [PMID: 24965575 PMCID: PMC4083334 DOI: 10.1186/1471-2156-15-77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 06/10/2014] [Indexed: 01/12/2023] Open
Abstract
Background Much of the data resolution of the haploid non-recombining Y chromosome (NRY) haplogroup O in East Asia are still rudimentary and could be an explanatory factor for current debates on the settlement history of Island Southeast Asia (ISEA). Here, 81 slowly evolving markers (mostly SNPs) and 17 Y-chromosomal short tandem repeats were used to achieve higher level molecular resolution. Our aim is to investigate if the distribution of NRY DNA variation in Taiwan and ISEA is consistent with a single pre-Neolithic expansion scenario from Southeast China to all ISEA, or if it better fits an expansion model from Taiwan (the OOT model), or whether a more complex history of settlement and dispersals throughout ISEA should be envisioned. Results We examined DNA samples from 1658 individuals from Vietnam, Thailand, Fujian, Taiwan (Han, plain tribes and 14 indigenous groups), the Philippines and Indonesia. While haplogroups O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 follow a decreasing cline from Taiwan towards Western Indonesia, O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 decline northward from Western Indonesia towards Taiwan. Compared to the Taiwan plain tribe minority groups the Taiwanese Austronesian speaking groups show little genetic paternal contribution from Han. They are also characterized by low Y-chromosome diversity, thus testifying for fast drift in these populations. However, in contrast to data provided from other regions of the genome, Y-chromosome gene diversity in Taiwan mountain tribes significantly increases from North to South. Conclusion The geographic distribution and the diversity accumulated in the O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 haplogroups on one hand, and in the O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 haplogroups on the other, support a pincer model of dispersals and gene flow from the mainland to the islands which likely started during the late upper Paleolithic, 18,000 to 15,000 years ago. The branches of the pincer contributed separately to the paternal gene pool of the Philippines and conjointly to the gene pools of Madagascar and the Solomon Islands. The North to South increase in diversity found for Taiwanese Austronesian speaking groups contrasts with observations based on mitochondrial DNA, thus hinting to a differentiated demographic history of men and women in these populations.
Collapse
Affiliation(s)
- Jean A Trejaut
- Mackay Memorial Hospital, Taipei, Molecular Anthropology Laboratory, 45 Min-Sheng Road,225115 Tamsui, New Taipei city, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Matsumura H, Oxenham MF. Demographic transitions and migration in prehistoric East/Southeast Asia through the lens of nonmetric dental traits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:45-65. [DOI: 10.1002/ajpa.22537] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/04/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Hirofumi Matsumura
- School of Health Science; Sapporo Medical University; Sapporo 060-8556 Japan
| | - Marc F. Oxenham
- School of Archaeology and Anthropology; Australian National University; Canberra ACT 0200 Australia
| |
Collapse
|