1
|
Abrar M, Ali S, Hussain I, Khatoon H, Batool F, Ghazanfar S, Corcoran D, Kawakami Y, Abbasi AA. Cis-regulatory control of mammalian Trps1 gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:85-100. [PMID: 38369890 PMCID: PMC10978278 DOI: 10.1002/jez.b.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Collapse
Affiliation(s)
- Muhammad Abrar
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Irfan Hussain
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Center of regenerative medicine and stem cells research Aga Khan University hospital Karachi
| | - Hizran Khatoon
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad-45500, Pakistan
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Amir Ali Abbasi
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
2
|
Mañes-García J, Marco-Ferreres R, Beccari L. Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Curr Top Dev Biol 2024; 159:406-437. [PMID: 38729683 DOI: 10.1016/bs.ctdb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Transcriptional regulation plays a pivotal role in orchestrating the intricate genetic programs governing embryonic development. The expression of developmental genes relies on the combined activity of several cis-regulatory elements (CREs), such as enhancers and silencers, which can be located at long linear distances from the genes that they regulate and that interact with them through establishment of chromatin loops. Mutations affecting their activity or interaction with their target genes can lead to developmental disorders and are thought to have importantly contributed to the evolution of the animal body plan. The income of next-generation-sequencing approaches has allowed identifying over a million of sequences with putative regulatory potential in the human genome. Characterizing their function and establishing gene-CREs maps is essential to decode the logic governing developmental gene expression and is one of the major challenges of the post-genomic era. Chromatin 3D organization plays an essential role in determining how CREs specifically contact their target genes while avoiding deleterious off-target interactions. Our understanding of these aspects has greatly advanced with the income of chromatin conformation capture techniques and fluorescence microscopy approaches to visualize the organization of DNA elements in the nucleus. Here we will summarize relevant aspects of how the interplay between CRE activity and chromatin 3D organization regulates developmental gene expression and how it relates to pathological conditions and the evolution of animal body plan.
Collapse
Affiliation(s)
| | | | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
3
|
Whalen S, Inoue F, Ryu H, Fair T, Markenscoff-Papadimitriou E, Keough K, Kircher M, Martin B, Alvarado B, Elor O, Laboy Cintron D, Williams A, Hassan Samee MA, Thomas S, Krencik R, Ullian EM, Kriegstein A, Rubenstein JL, Shendure J, Pollen AA, Ahituv N, Pollard KS. Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron 2023; 111:857-873.e8. [PMID: 36640767 PMCID: PMC10023452 DOI: 10.1016/j.neuron.2022.12.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023]
Abstract
Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Hane Ryu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Kathleen Keough
- Gladstone Institutes, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beatriz Alvarado
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Orry Elor
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Dianne Laboy Cintron
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Sean Thomas
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robert Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John L Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Alex A Pollen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Abstract
Human accelerated regions (HARs) are the fastest-evolving sequences in the human genome. When HARs were discovered in 2006, their function was mysterious due to scant annotation of the noncoding genome. Diverse technologies, from transgenic animals to machine learning, have consistently shown that HARs function as gene regulatory enhancers with significant enrichment in neurodevelopment. It is now possible to quantitatively measure the enhancer activity of thousands of HARs in parallel and model how each nucleotide contributes to gene expression. These strategies have revealed that many human HAR sequences function differently than their chimpanzee orthologs, though individual nucleotide changes in the same HAR may have opposite effects, consistent with compensatory substitutions. To fully evaluate the role of HARs in human evolution, it will be necessary to experimentally and computationally dissect them across more cell types and developmental stages.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA; ,
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA; ,
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
5
|
Liu Q, Mishra M, Saxena AS, Wu H, Qiu Y, Zhang X, You X, Ding S, Miyamoto MM. Balancing selection maintains ancient polymorphisms at conserved enhancers for the olfactory receptor genes of a Chinese marine fish. Mol Ecol 2021; 30:4023-4038. [PMID: 34107131 DOI: 10.1111/mec.16016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The study of balancing selection, as a selective force maintaining adaptive genetic variation in gene pools longer than expected by drift, is currently experiencing renewed interest due to the increased availability of new data, methods of analysis, and case studies. In this investigation, evidence of balancing selection operating on conserved enhancers of the olfactory receptor (OR) genes is presented for the Chinese sleeper (Bostrychus sinensis), a coastal marine fish that is emerging as a model species for evolutionary studies in the Northwest Pacific marginal seas. Coupled with tests for Gene Ontology enrichment and transcription factor binding, population genomic data allow for the identification of an OR cluster in the sleeper with a downstream flanking region containing three enhancers that are conserved with human and other fish species. Phylogenetic and population genetic analyses indicate that the enhancers are under balancing selection as evidenced by their translineage polymorphisms, excess common alleles, and increased within-group diversities. Age comparisons between the translineage polymorphisms and most recent common ancestors of neutral genealogies substantiate that the former are old, and thus, due to ancient balancing selection. The survival and reproduction of vertebrates depend on their sense of smell, and thereby, on their ORs. In addition to locus duplication and allelic variation of structural genes, this study highlights a third mechanism by which receptor diversity can be achieved for detecting and responding to the huge variety of environmental odorants (i.e., by balancing selection acting on OR gene expression through their enhancer variability).
Collapse
Affiliation(s)
- Qiaohong Liu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mrinal Mishra
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Ayush S Saxena
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haohao Wu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Qiu
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Sciences, BGI Marine, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Sciences, BGI Marine, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Sciences, BGI Marine, Shenzhen, China
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | |
Collapse
|
6
|
Cunningham RL, Kramer ET, DeGeorgia SK, Godoy PM, Zarov AP, Seneviratne S, Grigura V, Kaufman CK. Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Commun Biol 2021; 4:695. [PMID: 34099848 PMCID: PMC8184803 DOI: 10.1038/s42003-021-02211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The role of a neural crest developmental transcriptional program, which critically involves Sox10 upregulation, is a key conserved aspect of melanoma initiation in both humans and zebrafish, yet transcriptional regulation of sox10 expression is incompletely understood. Here we used ATAC-Seq analysis of multiple zebrafish melanoma tumors to identify recurrently open chromatin domains as putative melanoma-specific sox10 enhancers. Screening in vivo with EGFP reporter constructs revealed 9 of 11 putative sox10 enhancers with embryonic activity in zebrafish. Focusing on the most active enhancer region in melanoma, we identified a region 23 kilobases upstream of sox10, termed peak5, that drives EGFP reporter expression in a subset of neural crest cells, Kolmer-Agduhr neurons, and early melanoma patches and tumors with high specificity. A ~200 base pair region, conserved in Cyprinidae, within peak5 is required for transgenic reporter activity in neural crest and melanoma. This region contains dimeric SoxE/Sox10 dimeric binding sites essential for peak5 neural crest and melanoma activity. We show that deletion of the endogenous peak5 conserved genomic locus decreases embryonic sox10 expression and disrupts adult stripe patterning in our melanoma model background. Our work demonstrates the power of linking developmental and cancer models to better understand neural crest identity in melanoma.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sophia K DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Paula M Godoy
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Anna P Zarov
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Shayana Seneviratne
- School of Arts and Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Vadim Grigura
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Song Y, Chen W, Huang Z, Tian G, Li M, Zhao Z, Feng Z, Wu F, Qian M, Ma X, Sheng W, Huang G. A Non-coding HES1 Variant Predisposes Children to Congenital Heart Disease in Chinese Population. Front Cell Dev Biol 2021; 9:631942. [PMID: 33585489 PMCID: PMC7876461 DOI: 10.3389/fcell.2021.631942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As a key component in the NOTCH signaling pathway, HES1 plays an important role in vertebrate heart development. Variants in the HES1 coding sequence are known to be associated with congenital heart disease (CHD). However, little is known about HES1 non-coding sequence variants and their association with the risk of developing CHD. Method and Results: We initially analyzed the non-coding sequence of the HES1 gene in 12 unrelated CHD families by direct sequencing and identified a previously unreported promoter region variant (NM_005524.4: c.-1279-1278 insAC, rs148941464) in the HES1 gene in four CHD families. The homozygous variant in patients was inherited from carrier parents with normal phenotypes, indicating a likely recessive genetic model. Given that the HES1 gene is predicted to be likely to exhibit haploinsufficiency (%HI: 11.44), we hypothesized that the HES1 homozygous variant is a genetic risk factor underlying CHD. We then carried out sequencing of this HES1 variant in 629 sporadic non-syndromic CHD cases and 696 healthy controls and performed association analysis. Interestingly, we observed a significant association of the homozygous HES1 promoter variant with CHD (18.92% of cases vs. 9.91% of controls; OR: 2.291, 95% CI: 1.637-3.207, p = 9.72 × 10-7). No significant association with CHD was observed for the HES1 promoter heterozygous variant (p > 0.05). However, association analysis tests of the HES1 homozygous variant with each subtype of CHD revealed that this homozygous variant was strongly associated with transposition of the great arteries (TGA) (OR: 3.726, 95% CI: 1.745-7.956, p = 0.0003). Moreover, the prevalence of HES1 homozygous variants in CHD patients with TGA (27.66%) was significantly higher than that in patients with other CHD subtypes or controls. Similar results were observed in a replication group of TGA (n = 64). Functional studies demonstrated that the homozygous variant in the HES1 promoter can disrupt its ability to bind RXRA, an inhibitory transcription factor, which results in abnormally high expression of the HES1 gene, indicating that this variant harbors gain-of-function effects. Conclusions: Our findings reveal that the non-coding homozygous variant in the HES1 promoter has a gain-of-function effect and is associated with an increased risk of CHD development, especially the severe TGA subtype.
Collapse
Affiliation(s)
- Yangliu Song
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China
| | - Zitong Huang
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guixiang Tian
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Mengru Li
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zhengshan Zhao
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zhiyu Feng
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guoying Huang
- Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
8
|
Hatleberg WL, Hinman VF. Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change. Curr Top Dev Biol 2021; 141:39-73. [DOI: 10.1016/bs.ctdb.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Chen L, Capra JA. Learning and interpreting the gene regulatory grammar in a deep learning framework. PLoS Comput Biol 2020; 16:e1008334. [PMID: 33137083 PMCID: PMC7660921 DOI: 10.1371/journal.pcbi.1008334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 11/12/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Deep neural networks (DNNs) have achieved state-of-the-art performance in identifying gene regulatory sequences, but they have provided limited insight into the biology of regulatory elements due to the difficulty of interpreting the complex features they learn. Several models of how combinatorial binding of transcription factors, i.e. the regulatory grammar, drives enhancer activity have been proposed, ranging from the flexible TF billboard model to the stringent enhanceosome model. However, there is limited knowledge of the prevalence of these (or other) sequence architectures across enhancers. Here we perform several hypothesis-driven analyses to explore the ability of DNNs to learn the regulatory grammar of enhancers. We created synthetic datasets based on existing hypotheses about combinatorial transcription factor binding site (TFBS) patterns, including homotypic clusters, heterotypic clusters, and enhanceosomes, from real TF binding motifs from diverse TF families. We then trained deep residual neural networks (ResNets) to model the sequences under a range of scenarios that reflect real-world multi-label regulatory sequence prediction tasks. We developed a gradient-based unsupervised clustering method to extract the patterns learned by the ResNet models. We demonstrated that simulated regulatory grammars are best learned in the penultimate layer of the ResNets, and the proposed method can accurately retrieve the regulatory grammar even when there is heterogeneity in the enhancer categories and a large fraction of TFBS outside of the regulatory grammar. However, we also identify common scenarios where ResNets fail to learn simulated regulatory grammars. Finally, we applied the proposed method to mouse developmental enhancers and were able to identify the components of a known heterotypic TF cluster. Our results provide a framework for interpreting the regulatory rules learned by ResNets, and they demonstrate that the ability and efficiency of ResNets in learning the regulatory grammar depends on the nature of the prediction task.
Collapse
Affiliation(s)
- Ling Chen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Genetics Institute and Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
10
|
Nash AJ, Lenhard B. A novel measure of non-coding genome conservation identifies genomic regulatory blocks within primates. Bioinformatics 2020; 35:2354-2361. [PMID: 30535005 PMCID: PMC6612856 DOI: 10.1093/bioinformatics/bty1014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
MOTIVATION Clusters of extremely conserved non-coding elements (CNEs) mark genomic regions devoted to cis-regulation of key developmental genes in Metazoa. We have recently shown that their span coincides with that of topologically associating domains (TADs), making them useful for estimating conserved TAD boundaries in the absence of Hi-C data. The standard approach-detecting CNEs in genome alignments and then establishing the boundaries of their clusters-requires tuning of several parameters and breaks down when comparing closely related genomes. RESULTS We present a novel, kurtosis-based measure of pairwise non-coding conservation that requires no pre-set thresholds for conservation level and length of CNEs. We show that it performs robustly across a large span of evolutionary distances, including across the closely related genomes of primates for which standard approaches fail. The method is straightforward to implement and enables detection and comparison of clusters of CNEs and estimation of underlying TADs across a vastly increased range of Metazoan genomes. AVAILABILITY AND IMPLEMENTATION The data generated for this study, and the scripts used to generate the data, can be found at https://github.com/alexander-nash/kurtosis_conservation. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander J Nash
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences.,Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, Hammersmith Campus, London, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences.,Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, Hammersmith Campus, London, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, N Bergen, Norway
| |
Collapse
|
11
|
Barešić A, Nash AJ, Dahoun T, Howes O, Lenhard B. Understanding the genetics of neuropsychiatric disorders: the potential role of genomic regulatory blocks. Mol Psychiatry 2020; 25:6-18. [PMID: 31616042 PMCID: PMC6906185 DOI: 10.1038/s41380-019-0518-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023]
Abstract
Recent genome-wide association studies have identified numerous loci associated with neuropsychiatric disorders. The majority of these are in non-coding regions, and are commonly assigned to the nearest gene along the genome. However, this approach neglects the three-dimensional organisation of the genome, and the fact that the genome contains arrays of extremely conserved non-coding elements termed genomic regulatory blocks (GRBs), which can be utilized to detect genes under long-range developmental regulation. Here we review a GRB-based approach to assign loci in non-coding regions to potential target genes, and apply it to reanalyse the results of one of the largest schizophrenia GWAS (SWG PGC, 2014). We further apply this approach to GWAS data from two related neuropsychiatric disorders-autism spectrum disorder and bipolar disorder-to show that it is applicable to developmental disorders in general. We find that disease-associated SNPs are overrepresented in GRBs and that the GRB model is a powerful tool for linking these SNPs to their correct target genes under long-range regulation. Our analysis identifies novel genes not previously implicated in schizophrenia and corroborates a number of predicted targets from the original study. The results are available as an online resource in which the genomic context and the strength of enhancer-promoter associations can be browsed for each schizophrenia-associated SNP.
Collapse
Affiliation(s)
- Anja Barešić
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Alexander Jolyon Nash
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX37 JX, UK
| | - Oliver Howes
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008, Bergen, Norway.
| |
Collapse
|
12
|
On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio). PLoS One 2019; 14:e0218286. [PMID: 31188878 PMCID: PMC6561585 DOI: 10.1371/journal.pone.0218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.
Collapse
|
13
|
Chen L, Fish AE, Capra JA. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties. PLoS Comput Biol 2018; 14:e1006484. [PMID: 30286077 PMCID: PMC6191148 DOI: 10.1371/journal.pcbi.1006484] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 10/16/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022] Open
Abstract
Genomic regions with gene regulatory enhancer activity turnover rapidly across mammals. In contrast, gene expression patterns and transcription factor binding preferences are largely conserved between mammalian species. Based on this conservation, we hypothesized that enhancers active in different mammals would exhibit conserved sequence patterns in spite of their different genomic locations. To investigate this hypothesis, we evaluated the extent to which sequence patterns that are predictive of enhancers in one species are predictive of enhancers in other mammalian species by training and testing two types of machine learning models. We trained support vector machine (SVM) and convolutional neural network (CNN) classifiers to distinguish enhancers defined by histone marks from the genomic background based on DNA sequence patterns in human, macaque, mouse, dog, cow, and opossum. The classifiers accurately identified many adult liver, developing limb, and developing brain enhancers, and the CNNs outperformed the SVMs. Furthermore, classifiers trained in one species and tested in another performed nearly as well as classifiers trained and tested on the same species. We observed similar cross-species conservation when applying the models to human and mouse enhancers validated in transgenic assays. This indicates that many short sequence patterns predictive of enhancers are largely conserved. The sequence patterns most predictive of enhancers in each species matched the binding motifs for a common set of TFs enriched for expression in relevant tissues, supporting the biological relevance of the learned features. Thus, despite the rapid change of active enhancer locations between mammals, cross-species enhancer prediction is often possible. Our results suggest that short sequence patterns encoding enhancer activity have been maintained across more than 180 million years of mammalian evolution.
Collapse
Affiliation(s)
- Ling Chen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Alexandra E. Fish
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States of America
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States of America
- Departments of Biomedical Informatics and Computer Science, Center for Structural Biology, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
14
|
Fish A, Chen L, Capra JA. Gene Regulatory Enhancers with Evolutionarily Conserved Activity Are More Pleiotropic than Those with Species-Specific Activity. Genome Biol Evol 2018; 9:2615-2625. [PMID: 28985297 PMCID: PMC5737616 DOI: 10.1093/gbe/evx194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2017] [Indexed: 12/31/2022] Open
Abstract
Studies of regulatory activity and gene expression have revealed an intriguing dichotomy: There is substantial turnover in the regulatory activity of orthologous sequences between species; however, the expression level of orthologous genes is largely conserved. Understanding how distal regulatory elements, for example, enhancers, evolve and function is critical, as alterations in gene expression levels can drive the development of both complex disease and functional divergence between species. In this study, we investigated determinants of the conservation of regulatory enhancer activity for orthologous sequences across mammalian evolution. Using liver enhancers identified from genome-wide histone modification profiles in ten diverse mammalian species, we compared orthologous sequences that exhibited regulatory activity in all species (conserved-activity enhancers) to shared sequences active only in a single species (species-specific-activity enhancers). Conserved-activity enhancers have greater regulatory potential than species-specific-activity enhancers, as quantified by both the density and diversity of transcription factor binding motifs. Consistent with their greater regulatory potential, conserved-activity enhancers have greater regulatory activity in humans than species-specific-activity enhancers: They are active across more cellular contexts, and they regulate more genes than species-specific-activity enhancers. Furthermore, the genes regulated by conserved-activity enhancers are expressed in more tissues and are less tolerant of loss-of-function mutations than those targeted by species-specific-activity enhancers. These consistent results across various stages of gene regulation demonstrate that conserved-activity enhancers are more pleiotropic than their species-specific-activity counterparts. This suggests that pleiotropy is associated with the conservation of regulatory across mammalian evolution.
Collapse
Affiliation(s)
- Alexandra Fish
- Vanderbilt Genetics Institute, Vanderbilt University.,Department of Biological Sciences, Vanderbilt Genetics Institute, Vanderbilt University
| | - Ling Chen
- Department of Biological Sciences, Vanderbilt Genetics Institute, Vanderbilt University
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University.,Department of Biological Sciences, Vanderbilt Genetics Institute, Vanderbilt University.,Departments of Biomedical Informatics and Computer Science, Center for Structural Biology, Vanderbilt University
| |
Collapse
|
15
|
Harmston N, Ing-Simmons E, Tan G, Perry M, Merkenschlager M, Lenhard B. Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nat Commun 2017; 8:441. [PMID: 28874668 PMCID: PMC5585340 DOI: 10.1038/s41467-017-00524-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 07/05/2017] [Indexed: 02/08/2023] Open
Abstract
Developmental genes in metazoan genomes are surrounded by dense clusters of conserved noncoding elements (CNEs). CNEs exhibit unexplained extreme levels of sequence conservation, with many acting as developmental long-range enhancers. Clusters of CNEs define the span of regulatory inputs for many important developmental regulators and have been described previously as genomic regulatory blocks (GRBs). Their function and distribution around important regulatory genes raises the question of how they relate to 3D conformation of these loci. Here, we show that clusters of CNEs strongly coincide with topological organisation, predicting the boundaries of hundreds of topologically associating domains (TADs) in human and Drosophila. The set of TADs that are associated with high levels of noncoding conservation exhibit distinct properties compared to TADs devoid of extreme noncoding conservation. The close correspondence between extreme noncoding conservation and TADs suggests that these TADs are ancient, revealing a regulatory architecture conserved over hundreds of millions of years. Metazoan genomes contain many clusters of conserved noncoding elements. Here, the authors provide evidence that these clusters coincide with distinct topologically associating domains in humans and Drosophila, revealing a conserved regulatory genomic architecture.
Collapse
Affiliation(s)
- Nathan Harmston
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, W12 0NN, UK. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Program in Cardiovascular and Metabolic Disease, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Elizabeth Ing-Simmons
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,Lymphocyte Development, MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Ge Tan
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Malcolm Perry
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Matthias Merkenschlager
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,Lymphocyte Development, MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, W12 0NN, UK. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008, Bergen, Norway.
| |
Collapse
|
16
|
KOSTKA DENNIS, FRIEDRICH TARA, HOLLOWAY ALISHAK, POLLARD KATHERINES. motifDiverge: a model for assessing the statistical significance of gene regulatory motif divergence between two DNA sequences. STATISTICS AND ITS INTERFACE 2015; 8:463-476. [PMID: 26709360 PMCID: PMC4689439 DOI: 10.4310/sii.2015.v8.n4.a6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Next-generation sequencing technology enables the identification of thousands of gene regulatory sequences in many cell types and organisms. We consider the problem of testing if two such sequences differ in their number of binding site motifs for a given transcription factor (TF) protein. Binding site motifs impart regulatory function by providing TFs the opportunity to bind to genomic elements and thereby affect the expression of nearby genes. Evolutionary changes to such functional DNA are hypothesized to be major contributors to phenotypic diversity within and between species; but despite the importance of TF motifs for gene expression, no method exists to test for motif loss or gain. Assuming that motif counts are Binomially distributed, and allowing for dependencies between motif instances in evolutionarily related sequences, we derive the probability mass function of the difference in motif counts between two nucleotide sequences. We provide a method to numerically estimate this distribution from genomic data and show through simulations that our estimator is accurate. Finally, we introduce the R package motifDiverge that implements our methodology and illustrate its application to gene regulatory enhancers identified by a mouse developmental time course experiment. While this study was motivated by analysis of regulatory motifs, our results can be applied to any problem involving two correlated Bernoulli trials.
Collapse
Affiliation(s)
- DENNIS KOSTKA
- Department of Developmental Biology, Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, 530 45th Street, Pittsburgh, PA 15201, USA
| | - TARA FRIEDRICH
- Gladstone Institutes, Integrative Program in Quantitative Biology, University of California, 1650 Owens Street, San Francisco, CA 94158, USA
| | - ALISHA K. HOLLOWAY
- Gladstone Institutes, Division of Biostatistics, University of California, 1650 Owens Street, San Francisco, CA 94158, USA
| | - KATHERINE S. POLLARD
- Gladstone Institutes, Institute for Human Genetics, Division of Biostatistics, University of California, 1650 Owens Street, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Handling Permutation in Sequence Comparison: Genome-Wide Enhancer Prediction in Vertebrates by a Novel Non-Linear Alignment Scoring Principle. PLoS One 2015; 10:e0141487. [PMID: 26505748 PMCID: PMC4624239 DOI: 10.1371/journal.pone.0141487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 01/01/2023] Open
Abstract
Enhancers have been described to evolve by permutation without changing function. This has posed the problem of how to predict enhancer elements that are hidden from alignment-based approaches due to the loss of co-linearity. Alignment-free algorithms have been proposed as one possible solution. However, this approach is hampered by several problems inherent to its underlying working principle. Here we present a new approach, which combines the power of alignment and alignment-free techniques into one algorithm. It allows the prediction of enhancers based on the query and target sequence only, no matter whether the regulatory logic is co-linear or reshuffled. To test our novel approach, we employ it for the prediction of enhancers across the evolutionary distance of ~450Myr between human and medaka. We demonstrate its efficacy by subsequent in vivo validation resulting in 82% (9/11) of the predicted medaka regions showing reporter activity. These include five candidates with partially co-linear and four with reshuffled motif patterns. Orthology in flanking genes and conservation of the detected co-linear motifs indicates that those candidates are likely functionally equivalent enhancers. In sum, our results demonstrate that the proposed principle successfully predicts mutated as well as permuted enhancer regions at an encouragingly high rate.
Collapse
|
18
|
Edmunds RC, Su B, Balhoff JP, Eames BF, Dahdul WM, Lapp H, Lundberg JG, Vision TJ, Dunham RA, Mabee PM, Westerfield M. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes. Mol Biol Evol 2015; 33:13-24. [PMID: 26500251 PMCID: PMC4693980 DOI: 10.1093/molbev/msv223] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology.
Collapse
Affiliation(s)
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | | | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wasila M Dahdul
- National Evolutionary Synthesis Center, Durham, NC Department of Biology, University of South Dakota
| | - Hilmar Lapp
- National Evolutionary Synthesis Center, Durham, NC
| | - John G Lundberg
- Department of Ichthyology, The Academy of Natural Sciences, Philadelphia, Philadelphia, PA
| | - Todd J Vision
- National Evolutionary Synthesis Center, Durham, NC Department of Biology, University of North Carolina, Chapel Hill
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | | | | |
Collapse
|
19
|
Kim N, Park C, Jeong Y, Song MR. Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution. PLoS Genet 2015; 11:e1005560. [PMID: 26447474 PMCID: PMC4598079 DOI: 10.1371/journal.pgen.1005560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. During evolution, motor neurons became specialized to control movements of different body parts including head, trunk and limbs. Here we report that two enhancers of Isl1, E1 and E2, are active together with transcription factors in motor neurons. Surprisingly, E1 and its response to transcription factors has been conserved in evolution from the lamprey to man, whereas E2 is only found in animals with limbs. Our study provides an evolutionary example of how functional diversification of motor neurons is achieved by a dynamic interplay between enhancers and transcription factors.
Collapse
Affiliation(s)
- Namhee Kim
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, Republic of Korea
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Martinez-Morales JR. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Brief Funct Genomics 2015; 15:315-21. [PMID: 26293604 DOI: 10.1093/bfgp/elv032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan.
Collapse
|
21
|
Hubisz MJ, Pollard KS. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr Opin Genet Dev 2014; 29:15-21. [PMID: 25156517 DOI: 10.1016/j.gde.2014.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/31/2022]
Abstract
Human accelerated regions (HARs) are DNA sequences that changed very little throughout mammalian evolution, but then experienced a burst of changes in humans since divergence from chimpanzees. This unexpected evolutionary signature is suggestive of deeply conserved function that was lost or changed on the human lineage. Since their discovery, the actual roles of HARs in human evolution have remained somewhat elusive, due to their being almost exclusively non-coding sequences with no annotation. Ongoing research is beginning to crack this problem by leveraging new genome sequences, functional genomics data, computational approaches, and genetic assays to reveal that many HARs are developmental gene regulatory elements and RNA genes, most of which evolved their uniquely human mutations through positive selection before divergence of archaic hominins and diversification of modern humans.
Collapse
Affiliation(s)
- Melissa J Hubisz
- Department of Biological Statistics and Computational Biology, Cornell University, 102D Weill Hall, Ithaca, NY 14853, USA
| | - Katherine S Pollard
- Gladstone Institutes, Division of Biostatistics & Institute for Human Genetics, University of California, 1650 Owens Street, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet 2014; 10:e1004435. [PMID: 24968346 PMCID: PMC4072541 DOI: 10.1371/journal.pgen.1004435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| |
Collapse
|
23
|
Polychronopoulos D, Sellis D, Almirantis Y. Conserved noncoding elements follow power-law-like distributions in several genomes as a result of genome dynamics. PLoS One 2014; 9:e95437. [PMID: 24787386 PMCID: PMC4008492 DOI: 10.1371/journal.pone.0095437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
Conserved, ultraconserved and other classes of constrained elements (collectively referred as CNEs here), identified by comparative genomics in a wide variety of genomes, are non-randomly distributed across chromosomes. These elements are defined using various degrees of conservation between organisms and several thresholds of minimal length. We here investigate the chromosomal distribution of CNEs by studying the statistical properties of distances between consecutive CNEs. We find widespread power-law-like distributions, i.e. linearity in double logarithmic scale, in the inter-CNE distances, a feature which is connected with fractality and self-similarity. Given that CNEs are often found to be spatially associated with genes, especially with those that regulate developmental processes, we verify by appropriate gene masking that a power-law-like pattern emerges irrespectively of whether elements found close or inside genes are excluded or not. An evolutionary model is put forward for the understanding of these findings that includes segmental or whole genome duplication events and eliminations (loss) of most of the duplicated CNEs. Simulations reproduce the main features of the observed size distributions. Power-law-like patterns in the genomic distributions of CNEs are in accordance with current knowledge about their evolutionary history in several genomes.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis Sellis
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yannis Almirantis
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
24
|
Parker HJ, Sauka-Spengler T, Bronner M, Elgar G. A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers. PLoS One 2014; 9:e85492. [PMID: 24416417 PMCID: PMC3887057 DOI: 10.1371/journal.pone.0085492] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022] Open
Abstract
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.
Collapse
Affiliation(s)
- Hugo J. Parker
- Division of Systems Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Tatjana Sauka-Spengler
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Marianne Bronner
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Greg Elgar
- Division of Systems Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Parallel evolution of chordate cis-regulatory code for development. PLoS Genet 2013; 9:e1003904. [PMID: 24282393 PMCID: PMC3836708 DOI: 10.1371/journal.pgen.1003904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations. Vertebrates share many aspects of early development with our closest chordate ancestors, the tunicates. However, whilst the repertoire of genes that orchestrate development is essentially the same in the two lineages, the genomic code that regulates these genes appears to be very different, even though it is highly conserved within vertebrates themselves. Using comparative genomics, we have identified a parallel developmental code in tunicates and confirmed that this code, despite a lack of sequence conservation, associates with a similar repertoire of genes. However, the organisation of the code spatially is very different in the two lineages, strongly suggesting that most of it arose independently in vertebrates and tunicates, and in most cases lacking any direct sequence ancestry. We have assayed elements of the tunicate code, and found that at least some of them can regulate gene expression in zebrafish embryos. Our results suggest that regulatory code has arisen independently in different animal lineages but possesses some common functionality because its evolution has been driven by a similar cohort of developmental transcription factors. Our work helps illuminate how complex, stable gene regulatory networks evolve and become fixed within lineages.
Collapse
|
26
|
Capra JA, Erwin GD, McKinsey G, Rubenstein JLR, Pollard KS. Many human accelerated regions are developmental enhancers. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130025. [PMID: 24218637 PMCID: PMC3826498 DOI: 10.1098/rstb.2013.0025] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology.
Collapse
Affiliation(s)
- John A Capra
- Gladstone Institutes, University of California, , San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
27
|
Domené S, Bumaschny VF, de Souza FSJ, Franchini LF, Nasif S, Low MJ, Rubinstein M. Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130027. [PMID: 24218639 DOI: 10.1098/rstb.2013.0027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in regulatory regions including enhancers are an important source of variation and innovation during evolution. Enhancers can evolve by changes in the sequence, arrangement and repertoire of transcription factor binding sites, but whole enhancers can also be lost or gained in certain lineages in a process of turnover. The proopiomelanocortin gene (Pomc), which encodes a prohormone, is expressed in the pituitary and hypothalamus of all jawed vertebrates. We have previously described that hypothalamic Pomc expression in mammals is controlled by two enhancers-nPE1 and nPE2-that are derived from transposable elements and that presumably replaced the ancestral neuronal Pomc regulatory regions. Here, we show that nPE1 and nPE2, even though they are mammalian novelties with no homologous counterpart in other vertebrates, nevertheless can drive gene expression specifically to POMC neurons in the hypothalamus of larval and adult transgenic zebrafish. This indicates that when neuronal Pomc enhancers originated de novo during early mammalian evolution, the newly created cis- and trans-codes were similar to the ancestral ones. We also identify the neuronal regulatory region of zebrafish pomca and confirm that it is not homologous to the mammalian enhancers. Our work sheds light on the process of gene regulatory evolution by showing how a locus can undergo enhancer turnover and nevertheless maintain the ancestral transcriptional output.
Collapse
Affiliation(s)
- Sabina Domené
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, , C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Maeso I, Irimia M, Tena JJ, Casares F, Gómez-Skarmeta JL. Deep conservation of cis-regulatory elements in metazoans. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130020. [PMID: 24218633 DOI: 10.1098/rstb.2013.0020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the vast morphological variation observed across phyla, animals share multiple basic developmental processes orchestrated by a common ancestral gene toolkit. These genes interact with each other building complex gene regulatory networks (GRNs), which are encoded in the genome by cis-regulatory elements (CREs) that serve as computational units of the network. Although GRN subcircuits involved in ancient developmental processes are expected to be at least partially conserved, identification of CREs that are conserved across phyla has remained elusive. Here, we review recent studies that revealed such deeply conserved CREs do exist, discuss the difficulties associated with their identification and describe new approaches that will facilitate this search.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, , Oxford, UK
| | | | | | | | | |
Collapse
|
29
|
Harmston N, Baresic A, Lenhard B. The mystery of extreme non-coding conservation. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130021. [PMID: 24218634 PMCID: PMC3826495 DOI: 10.1098/rstb.2013.0021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regions of several dozen to several hundred base pairs of extreme conservation have been found in non-coding regions in all metazoan genomes. The distribution of these elements within and across genomes has suggested that many have roles as transcriptional regulatory elements in multi-cellular organization, differentiation and development. Currently, there is no known mechanism or function that would account for this level of conservation at the observed evolutionary distances. Previous studies have found that, while these regions are under strong purifying selection, and not mutational coldspots, deletion of entire regions in mice does not necessarily lead to identifiable changes in phenotype during development. These opposing findings lead to several questions regarding their functional importance and why they are under strong selection in the first place. In this perspective, we discuss the methods and techniques used in identifying and dissecting these regions, their observed patterns of conservation, and review the current hypotheses on their functional significance.
Collapse
Affiliation(s)
- Nathan Harmston
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London and MRC Clinical Sciences Centre, , Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
30
|
Booker BM, Murphy KK, Ahituv N. Functional analysis of limb enhancers in the developing fin. Dev Genes Evol 2013; 223:395-9. [PMID: 24068387 DOI: 10.1007/s00427-013-0453-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/02/2013] [Indexed: 01/29/2023]
Abstract
Despite diverging ∼365 million years ago, tetrapod limbs and pectoral fins express similar genes that could be regulated by shared regulatory elements. In this study, we set out to analyze the ability of enhancers to maintain tissue specificity in these two divergent structures. We tested 22 human sequences that were previously reported as mouse limb enhancers for their enhancer activity in zebrafish (Danio rerio). Using a zebrafish enhancer assay, we found that 10/22 (45 %) were positive for pectoral fin activity. Analysis of the various criteria that correlated with positive fin activity found that both spatial limb activity and evolutionary conservation are not good predictors of fin enhancer activity. These results suggest that zebrafish enhancer assays may be limited in detecting human limb enhancers, and this limitation does not improve by the use of limb spatial expression or evolutionary conservation.
Collapse
Affiliation(s)
- Betty M Booker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
31
|
Smith JD, McManus KF, Fraser HB. A novel test for selection on cis-regulatory elements reveals positive and negative selection acting on mammalian transcriptional enhancers. Mol Biol Evol 2013; 30:2509-18. [PMID: 23904330 DOI: 10.1093/molbev/mst134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Measuring natural selection on genomic elements involved in the cis-regulation of gene expression--such as transcriptional enhancers and promoters--is critical for understanding the evolution of genomes, yet it remains a major challenge. Many studies have attempted to detect positive or negative selection in these noncoding elements by searching for those with the fastest or slowest rates of evolution, but this can be problematic. Here, we introduce a new approach to this issue, and demonstrate its utility on three mammalian transcriptional enhancers. Using results from saturation mutagenesis studies of these enhancers, we classified all possible point mutations as upregulating, downregulating, or silent, and determined which of these mutations have occurred on each branch of a phylogeny. Applying a framework analogous to Ka/Ks in protein-coding genes, we measured the strength of selection on upregulating and downregulating mutations, in specific branches as well as entire phylogenies. We discovered distinct modes of selection acting on different enhancers: although all three have experienced negative selection against downregulating mutations, the selection pressures on upregulating mutations vary. In one case, we detected positive selection for upregulation, whereas the other two had no detectable selection on upregulating mutations. Our methodology is applicable to the growing number of saturation mutagenesis data sets, and provides a detailed picture of the mode and strength of natural selection acting on cis-regulatory elements.
Collapse
|
32
|
Nelson AC, Wardle FC. Conserved non-coding elements and cis regulation: actions speak louder than words. Development 2013; 140:1385-95. [PMID: 23482485 DOI: 10.1242/dev.084459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is a truth (almost) universally acknowledged that conserved non-coding genomic sequences function in the cis regulation of neighbouring genes. But is this a misconception? The literature is strewn with examples of conserved non-coding sequences being able to drive reporter expression, but the extent to which such sequences are actually used endogenously in vivo is only now being rigorously explored using unbiased genome-scale approaches. Here, we review the emerging picture, examining the extent to which conserved non-coding sequences equivalently regulate gene expression in different species, or at different developmental stages, and how genomics approaches are revealing the relationship between sequence conservation and functional use of cis-regulatory elements.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
33
|
Ariza-Cosano A, Visel A, Pennacchio LA, Fraser HB, Gómez-Skarmeta JL, Irimia M, Bessa J. Differences in enhancer activity in mouse and zebrafish reporter assays are often associated with changes in gene expression. BMC Genomics 2012; 13:713. [PMID: 23253453 PMCID: PMC3541358 DOI: 10.1186/1471-2164-13-713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/14/2012] [Indexed: 01/18/2023] Open
Abstract
Background Phenotypic evolution in animals is thought to be driven in large part by differences in gene expression patterns, which can result from sequence changes in cis-regulatory elements (cis-changes) or from changes in the expression pattern or function of transcription factors (trans-changes). While isolated examples of trans-changes have been identified, the scale of their overall contribution to regulatory and phenotypic evolution remains unclear. Results Here, we attempt to examine the prevalence of trans-effects and their potential impact on gene expression patterns in vertebrate evolution by comparing the function of identical human tissue-specific enhancer sequences in two highly divergent vertebrate model systems, mouse and zebrafish. Among 47 human conserved non-coding elements (CNEs) tested in transgenic mouse embryos and in stable zebrafish lines, at least one species-specific expression domain was observed in the majority (83%) of cases, and 36% presented dramatically different expression patterns between the two species. Although some of these discrepancies may be due to the use of different transgenesis systems in mouse and zebrafish, in some instances we found an association between differences in enhancer activity and changes in the endogenous gene expression patterns between mouse and zebrafish, suggesting a potential role for trans-changes in the evolution of gene expression. Conclusions In total, our results: (i) serve as a cautionary tale for studies investigating the role of human enhancers in different model organisms, and (ii) suggest that changes in the trans environment may play a significant role in the evolution of gene expression in vertebrates.
Collapse
Affiliation(s)
- Ana Ariza-Cosano
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Ctra. Utrera Km 1, Seville 41013, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Roessler E, Hu P, Hong SK, Srivastava K, Carrington B, Sood R, Petrykowska H, Elnitski L, Ribeiro LA, Richieri-Costa A, Feldman B, Odenwald WF, Muenke M. Unique alterations of an ultraconserved non-coding element in the 3'UTR of ZIC2 in holoprosencephaly. PLoS One 2012; 7:e39026. [PMID: 22859937 PMCID: PMC3409191 DOI: 10.1371/journal.pone.0039026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/15/2012] [Indexed: 01/23/2023] Open
Abstract
Coding region alterations of ZIC2 are the second most common type of mutation in holoprosencephaly (HPE). Here we use several complementary bioinformatic approaches to identify ultraconserved cis-regulatory sequences potentially driving the expression of human ZIC2. We demonstrate that an 804 bp element in the 3′ untranslated region (3′UTR) is highly conserved across the evolutionary history of vertebrates from fish to humans. Furthermore, we show that while genetic variation of this element is unexpectedly common among holoprosencephaly subjects (6/528 or >1%), it is not present in control individuals. Two of six proband-unique variants are de novo, supporting their pathogenic involvement in HPE outcomes. These findings support a general recommendation that the identification and analysis of key ultraconserved elements should be incorporated into the genetic risk assessment of holoprosencephaly cases.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sung-Kook Hong
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kshitij Srivastava
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Blake Carrington
- Zebrafish Core Facility, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raman Sood
- Zebrafish Core Facility, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hanna Petrykowska
- Genome Technology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Genome Technology Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucilene A. Ribeiro
- Molecular Genetics Laboratory and Clinical Genetics Service, Hospital for Rehabilitation and Craniofacial Anomalies, USP, Bauru, Brazil
| | - Antonio Richieri-Costa
- Molecular Genetics Laboratory and Clinical Genetics Service, Hospital for Rehabilitation and Craniofacial Anomalies, USP, Bauru, Brazil
| | - Benjamin Feldman
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Transcriptional enhancers in protein-coding exons of vertebrate developmental genes. PLoS One 2012; 7:e35202. [PMID: 22567096 PMCID: PMC3342275 DOI: 10.1371/journal.pone.0035202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022] Open
Abstract
Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77%) exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less). GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%), suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147) or tissue-specificity (coding: 14/24 vs. noncoding: 50/105). Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81). Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA.
Collapse
|
36
|
Barnett P, van den Boogaard M, Christoffels V. Localized and temporal gene regulation in heart development. Curr Top Dev Biol 2012; 100:171-201. [PMID: 22449844 DOI: 10.1016/b978-0-12-387786-4.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heart is a structurally complex and functionally heterogeneous organ. The repertoire of genes active in a given cardiac cell defines its shapes and function. This process of localized or heterogeneous gene expression is regulated to a large extent at the level of transcription, dictating the degree particular genes in a cell are active. Therefore, errors in the regulation of localized gene expression are at the basis of misregulation of the delicate process of heart development and function. In this review, we provide an overview of the origin of the different components of the vertebrate heart, and discuss our current understanding of the regulation of localized gene expression in the developing heart. We will also discuss where future research may lead to gain more insight into this process, which should provide much needed insight into the dysregulation of heart development and function, and the etiology of congenital defects.
Collapse
Affiliation(s)
- Phil Barnett
- Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Eichenlaub MP, Ettwiller L. De novo genesis of enhancers in vertebrates. PLoS Biol 2011; 9:e1001188. [PMID: 22069375 PMCID: PMC3206014 DOI: 10.1371/journal.pbio.1001188] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 09/22/2011] [Indexed: 02/02/2023] Open
Abstract
Whole genome duplication in teleost fish reveals that a few changes in non-regulatory genomic sequences are a source for generating new enhancers. Evolutionary innovation relies partially on changes in gene regulation. While a growing body of evidence demonstrates that such innovation is generated by functional changes or translocation of regulatory elements via mobile genetic elements, the de novo generation of enhancers from non-regulatory/non-mobile sequences has, to our knowledge, not previously been demonstrated. Here we show evidence for the de novo genesis of enhancers in vertebrates. For this, we took advantage of the massive gene loss following the last whole genome duplication in teleosts to systematically identify regions that have lost their coding capacity but retain sequence conservation with mammals. We found that these regions show enhancer activity while the orthologous coding regions have no regulatory activity. These results demonstrate that these enhancers have been de novo generated in fish. By revealing that minor changes in non-regulatory sequences are sufficient to generate new enhancers, our study highlights an important playground for creating new regulatory variability and evolutionary innovation. The genome of each living organism contains thousands of genes, and the precise control of the timing and location of expression of these genes is key for normal development and homeostasis of each individual. Despite the oftentimes high genetic similarity between organisms, the source of phenotypic differences, for example between human and mouse, is thought to originate mainly from changes in how and when genes are expressed. This is partially determined by enhancers, that contribute to the control of gene expression. For decades, duplication of existing genomic enhancers, mobile elements, and changes in the sequence of existing enhancers were believed to be the major ways of increasing the number and modifying the activity of enhancers. In this study, we show that enhancers don't have to be derived from pre-existing ones but can also appear de novo in regions of the genome that were previously not regulating gene expression. We analyzed teleost fish genomes and found three regions for which a limited number of changes in the DNA sequence was sufficient to generate new enhancers. We predict that such a process is frequent in vertebrate genomes, making de novo generation of enhancers an important mechanism for creating variation in gene expression.
Collapse
Affiliation(s)
| | - Laurence Ettwiller
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Royo JL, Hidalgo C, Roncero Y, Seda MA, Akalin A, Lenhard B, Casares F, Gómez-Skarmeta JL. Dissecting the transcriptional regulatory properties of human chromosome 16 highly conserved non-coding regions. PLoS One 2011; 6:e24824. [PMID: 21935474 PMCID: PMC3172297 DOI: 10.1371/journal.pone.0024824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/18/2011] [Indexed: 12/28/2022] Open
Abstract
Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-regulatory activity, including enhancer, insulators as well as other not yet discovered functions.
Collapse
Affiliation(s)
- José Luis Royo
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Carmen Hidalgo
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Yolanda Roncero
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - María Angeles Seda
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Altuna Akalin
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Bergen, Norway
| | - Boris Lenhard
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Bergen, Norway
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Fernando Casares
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- * E-mail:
| |
Collapse
|
39
|
Barrière A, Gordon KL, Ruvinsky I. Distinct functional constraints partition sequence conservation in a cis-regulatory element. PLoS Genet 2011; 7:e1002095. [PMID: 21655084 PMCID: PMC3107193 DOI: 10.1371/journal.pgen.1002095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/07/2011] [Indexed: 11/25/2022] Open
Abstract
Different functional constraints contribute to different evolutionary rates across genomes. To understand why some sequences evolve faster than others in a single cis-regulatory locus, we investigated function and evolutionary dynamics of the promoter of the Caenorhabditis elegans unc-47 gene. We found that this promoter consists of two distinct domains. The proximal promoter is conserved and is largely sufficient to direct appropriate spatial expression. The distal promoter displays little if any conservation between several closely related nematodes. Despite this divergence, sequences from all species confer robustness of expression, arguing that this function does not require substantial sequence conservation. We showed that even unrelated sequences have the ability to promote robust expression. A prominent feature shared by all of these robustness-promoting sequences is an AT-enriched nucleotide composition consistent with nucleosome depletion. Because general sequence composition can be maintained despite sequence turnover, our results explain how different functional constraints can lead to vastly disparate rates of sequence divergence within a promoter. Comparison between genome sequences of different species is a powerful tool in modern biology because important features are maintained by natural selection and are therefore conserved. However, some important sequences within genomes evolve considerably faster than others. One possible explanation is that they encode little or no function. Alternatively, they may evolve under different constraints that permit sequence turnover while maintaining function. Here we report that the promoter of the unc-47 gene of C. elegans contains two discrete elements. One has a highly conserved sequence that determines the spatial expression pattern. Another shows no sequence conservation, but it makes expression of the gene robust, that is, consistent between individuals and resilient to environmental challenges. Remarkably, multiple unrelated sequences are capable of promoting robust expression. Nucleotide composition of these sequences suggests that open chromatin may play a role in conferring robustness of gene expression. Because general sequence composition and therefore expression robustness can be maintained despite sequence turnover, our results offer an explanation of how rapidly diverging promoter elements can nevertheless remain functionally conserved.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, Chicago, Illinois, United States of America
| | - Kacy L. Gordon
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Lambert N, Lambot MA, Bilheu A, Albert V, Englert Y, Libert F, Noel JC, Sotiriou C, Holloway AK, Pollard KS, Detours V, Vanderhaeghen P. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS One 2011; 6:e17753. [PMID: 21445258 PMCID: PMC3060818 DOI: 10.1371/journal.pone.0017753] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/08/2011] [Indexed: 12/27/2022] Open
Abstract
The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.
Collapse
Affiliation(s)
- Nelle Lambert
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Hôpital Universitaire des Enfants Reine Fabiola, Child Psychiatry Department, Brussels, Belgium
| | - Marie-Alexandra Lambot
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Angéline Bilheu
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valérie Albert
- Department of Obstetrics and Gynaecology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yvon Englert
- Department of Obstetrics and Gynaecology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-Christophe Noel
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christos Sotiriou
- Bordet Cancer Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alisha K. Holloway
- Gladstone Institutes, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, University of California San Francisco, San Francisco, California, United States of America
- Division of Biostatistics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Vincent Detours
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Vanderhaeghen
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| |
Collapse
|
41
|
Lee AP, Kerk SY, Tan YY, Brenner S, Venkatesh B. Ancient vertebrate conserved noncoding elements have been evolving rapidly in teleost fishes. Mol Biol Evol 2010; 28:1205-15. [PMID: 21081479 DOI: 10.1093/molbev/msq304] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vertebrate genomes contain thousands of conserved noncoding elements (CNEs) that often function as tissue-specific enhancers. In this study, we have identified CNEs in human, dog, chicken, Xenopus, and four teleost fishes (zebrafish, stickleback, medaka, and fugu) using elephant shark, a cartilaginous vertebrate, as the base genome and investigated the evolution of these ancient vertebrate CNEs (aCNEs) in bony vertebrate lineages. Our analysis shows that aCNEs have been evolving at different rates in different bony vertebrate lineages. Although 78-83% of CNEs have diverged beyond recognition ("lost") in different teleost fishes, only 24% and 40% have been lost in the chicken and mammalian lineages, respectively. Relative rate tests of substitution rates in CNEs revealed that the teleost fish CNEs have been evolving at a significantly higher rate than those in other bony vertebrates. In the ray-finned fish lineage, 68% of aCNEs were lost before the divergence of the four teleosts. This implicates the "fish-specific" whole-genome duplication in the accelerated evolution and the loss of a large number of both copies of duplicated CNEs in teleost fishes. The aCNEs are rich in tissue-specific enhancers and thus many of them are likely to be evolutionarily constrained cis-regulatory elements. The rapid evolution of aCNEs might have affected the expression patterns driven by them. Transgenic zebrafish assay of some human CNE enhancers that have been lost in teleosts has indicated instances of conservation or changes in trans-acting factors between mammals and fishes.
Collapse
Affiliation(s)
- Alison P Lee
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | | | | | | | | |
Collapse
|