1
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy SA, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The Sensory Shark: High-quality Morphological, Genomic and Transcriptomic Data for the Small-spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates. Mol Biol Evol 2024; 41:msae246. [PMID: 39657112 PMCID: PMC11979771 DOI: 10.1093/molbev/msae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Cartilaginous fishes (chondrichthyans: chimeras and elasmobranchs -sharks, skates, and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic, and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterize general aspects of the catshark genome, confirming the high conservation of genome organization across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electrosensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
Affiliation(s)
- Hélène Mayeur
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - John Mulley
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Léo Michel
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Kanika Sharma
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Cologne 50674, Germany
| | - Ronan Lagadec
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Jean-Marc Aury
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Peter Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Julie Poulain
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Sophie Mangenot
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Daniel Mead
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Michelle Smith
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Craig Corton
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jason Skelton
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Emma Betteridge
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Erez L Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shane A McCarthy
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Ying Sims
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - James Torrance
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Alan Tracey
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Kerstin Howe
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- European Synchrotron Radiation Facility, Grenoble, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Kyle Martin
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Cologne 50674, Germany
| | - Sylvie Mazan
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy S, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark Scyliorhinus canicula reveal the molecular bases of sensory organ evolution in jawed vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595469. [PMID: 39005470 PMCID: PMC11244906 DOI: 10.1101/2024.05.23.595469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electro-sensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the Transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
|
3
|
Germon I, Delachanal C, Mougel F, Martinand-Mari C, Debiais-Thibaud M, Borday-Birraux V. Interference with the retinoic acid signalling pathway inhibits the initiation of teeth and caudal primary scales in the small-spotted catshark Scyliorhinus canicula. PeerJ 2023; 11:e15896. [PMID: 37692112 PMCID: PMC10492535 DOI: 10.7717/peerj.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
The retinoic acid (RA) pathway was shown to be important for tooth development in mammals, and suspected to play a key role in tooth evolution in teleosts. The general modalities of development of tooth and "tooth-like" structures (collectively named odontodes) seem to be conserved among all jawed vertebrates, both with regard to histogenesis and genetic regulation. We investigated the putative function of RA signalling in tooth and scale initiation in a cartilaginous fish, the small-spotted catshark Scyliorhinus canicula. To address this issue, we identified the expression pattern of genes from the RA pathway during both tooth and scale development and performed functional experiments by exposing small-spotted catshark embryos to exogenous RA or an inhibitor of RA synthesis. Our results showed that inhibiting RA synthesis affects tooth but not caudal primary scale development while exposure to exogenous RA inhibited both. We also showed that the reduced number of teeth observed with RA exposure is probably due to a specific inhibition of tooth bud initiation while the observed effects of the RA synthesis inhibitor is related to a general delay in embryonic development that interacts with tooth development. This study provides data complementary to previous studies of bony vertebrates and support an involvement of the RA signalling pathway toolkit in odontode initiation in all jawed vertebrates. However, the modalities of RA signalling may vary depending on the target location along the body, and depending on the species lineage.
Collapse
Affiliation(s)
- Isabelle Germon
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Coralie Delachanal
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florence Mougel
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | - Véronique Borday-Birraux
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Ozernyuk N, Schepetov D. HOX-Gene Cluster Organization and Genome Duplications in Fishes and Mammals: Transcript Variant Distribution along the Anterior–Posterior Axis. Int J Mol Sci 2022; 23:ijms23179990. [PMID: 36077385 PMCID: PMC9456325 DOI: 10.3390/ijms23179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hox genes play a crucial role in morphogenesis, especially in anterior–posterior body axis patterning. The organization of Hox clusters in vertebrates is a result of several genome duplications: two rounds of duplication in the ancestors of all vertebrates and a third round that was specific for teleost fishes. Teleostei cluster structure has been significantly modified in the evolutionary processes by Hox gene losses and co-options, while mammals show no such tendency. In mammals, the Hox gene number in a single cluster is stable and generally large, and the numbers are similar to those in the Chondrichthyes. Hox gene alternative splicing activity slightly differs between fishes and mammals. Fishes and mammals have differences in their known alternative splicing activity for Hox gene distribution along the anterior–posterior body axis. The analyzed fish groups—the Coelacanthiformes, Chondrichthyes, and Teleostei—all have higher known alternative mRNA numbers from the anterior and posterior regions, whereas mammals have a more uniform Hox transcript distribution along this axis. In fishes, most Hox transcripts produce functioning proteins, whereas mammals have significantly more known transcripts that do not produce functioning proteins.
Collapse
Affiliation(s)
- Nikolay Ozernyuk
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Correspondence:
| | - Dimitry Schepetov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
5
|
Schmidt P, Leman E, Lagadec R, Schubert M, Mazan S, Reshef R. Evolutionary Transition in the Regulation of Vertebrate Pronephros Development: A New Role for Retinoic Acid. Cells 2022; 11:1304. [PMID: 35455988 PMCID: PMC9026449 DOI: 10.3390/cells11081304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek's nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty.
Collapse
Affiliation(s)
- Pascal Schmidt
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Eva Leman
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (R.L.); (S.M.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (R.L.); (S.M.)
| | - Ram Reshef
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
| |
Collapse
|
6
|
Shark and ray genomics for disentangling their morphological diversity and vertebrate evolution. Dev Biol 2021; 477:262-272. [PMID: 34102168 DOI: 10.1016/j.ydbio.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Developmental studies of sharks and rays (elasmobranchs) have provided much insight into the process of morphological evolution of vertebrates. Although those studies are supposedly fueled by large-scale molecular sequencing information, whole-genome sequences of sharks and rays were made available only recently. One compelling difficulty of elasmobranch developmental biology is the low accessibility to embryonic study materials and their slow development. Another limiting factor is the relatively large size of their genomes. Moreover, their large body sizes restrict sustainable captive breeding, while their high body fluid osmolarity prevents reproducible cell culturing for in vitro experimentation, which has also limited our knowledge of their chromosomal organization for validation of genome sequencing products. This article focuses on egg-laying elasmobranch species used in developmental biology and provides an overview of the characteristics of the shark and ray genomes revealed to date. Developmental studies performed on a gene-by-gene basis are also reviewed from a whole-genome perspective. Among the popular regulatory genes studied in developmental biology, I scrutinize shark homologs of Wnt genes that highlight vanishing repertoires in many other vertebrate lineages, as well as Hox genes that underwent an unexpected modification unique to the elasmobranch lineage. These topics are discussed together with insights into the reconstruction of developmental programs in the common ancestor of vertebrates and its subsequent evolutionary trajectories that mark the features that are unique to, and those characterizing the diversity among, cartilaginous fishes.
Collapse
|
7
|
Wang Y, Sun B, Wen X, Hao D, Du D, He G, Jiang X. The Roles of lncRNA in Cutaneous Squamous Cell Carcinoma. Front Oncol 2020; 10:158. [PMID: 32185124 PMCID: PMC7059100 DOI: 10.3389/fonc.2020.00158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma derives from keratinocytes and is the second most common cause of non-melanoma skin cancer. Cutaneous squamous cell carcinoma (cSCC) develops rapidly and is also the leading cause of death in non-melanoma cancers. Lymph node metastasis occurs in 5% of cSCC patients, and some patients may even metastasize to the viscera. Patients with regional lymphatic metastasis or distant metastases have a <20% 10-year survival rate, indicating the substantial challenge in treating advanced and metastatic cSCC. Some lncRNAs have been found to be abnormally overexpressed in many tumor tissues, so that they can be considered as potential new biomarkers or targets that can be used in the diagnosis and treatment of cSCC in the future. In this review, we summarize the role of lncRNA in cutaneous squamous cell carcinoma to make a better understanding of mutations in cSCC and lay the foundation for effective target therapy of cSCC.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Bensen Sun
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Debiais-Thibaud M, Simion P, Ventéo S, Muñoz D, Marcellini S, Mazan S, Haitina T. Skeletal Mineralization in Association with Type X Collagen Expression Is an Ancestral Feature for Jawed Vertebrates. Mol Biol Evol 2020; 36:2265-2276. [PMID: 31270539 PMCID: PMC6759074 DOI: 10.1093/molbev/msz145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In order to characterize the molecular bases of mineralizing cell evolution, we targeted type X collagen, a nonfibrillar network forming collagen encoded by the Col10a1 gene. It is involved in the process of endochondral ossification in ray-finned fishes and tetrapods (Osteichthyes), but until now unknown in cartilaginous fishes (Chondrichthyes). We show that holocephalans and elasmobranchs have respectively five and six tandemly duplicated Col10a1 gene copies that display conserved genomic synteny with osteichthyan Col10a1 genes. All Col10a1 genes in the catshark Scyliorhinus canicula are expressed in ameloblasts and/or odontoblasts of teeth and scales, during the stages of extracellular matrix protein secretion and mineralization. Only one duplicate is expressed in the endoskeletal (vertebral) mineralizing tissues. We also show that the expression of type X collagen is present in teeth of two osteichthyans, the zebrafish Danio rerio and the western clawed frog Xenopus tropicalis, indicating an ancestral jawed vertebrate involvement of type X collagen in odontode formation. Our findings push the origin of Col10a1 gene prior to the divergence of osteichthyans and chondrichthyans, and demonstrate its ancestral association with mineralization of both the odontode skeleton and the endoskeleton.
Collapse
Affiliation(s)
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Stéphanie Ventéo
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, Saint Eloi Hospital, Montpellier, France
| | - David Muñoz
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Asymmetric paralog evolution between the "cryptic" gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Sci Rep 2019; 9:3136. [PMID: 30816280 PMCID: PMC6395752 DOI: 10.1038/s41598-019-40055-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/05/2022] Open
Abstract
The vertebrate gene repertoire is characterized by “cryptic” genes whose identification has been hampered by their absence from the genomes of well-studied species. One example is the Bmp16 gene, a paralog of the developmental key genes Bmp2 and -4. We focus on the Bmp2/4/16 group of genes to study the evolutionary dynamics following gen(om)e duplications with special emphasis on the poorly studied Bmp16 gene. We reveal the presence of Bmp16 in chondrichthyans in addition to previously reported teleost fishes and reptiles. Using comprehensive, vertebrate-wide gene sampling, our phylogenetic analysis complemented with synteny analyses suggests that Bmp2, -4 and -16 are remnants of a gene quartet that originated during the two rounds of whole-genome duplication (2R-WGD) early in vertebrate evolution. We confirm that Bmp16 genes were lost independently in at least three lineages (mammals, archelosaurs and amphibians) and report that they have elevated rates of sequence evolution. This finding agrees with their more “flexible” deployment during development; while Bmp16 has limited embryonic expression domains in the cloudy catshark, it is broadly expressed in the green anole lizard. Our study illustrates the dynamics of gene family evolution by integrating insights from sequence diversification, gene repertoire changes, and shuffling of expression domains.
Collapse
|
10
|
Johanson Z, Martin K, Fraser G, James K. The Synarcual of the Little Skate, Leucoraja erinacea: Novel Development Among the Vertebrates. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|
12
|
Barry SN, Crow KD. The role of HoxA11 and HoxA13 in the evolution of novel fin morphologies in a representative batoid ( Leucoraja erinacea). EvoDevo 2017; 8:24. [PMID: 29214009 PMCID: PMC5709974 DOI: 10.1186/s13227-017-0088-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
Background Batoids exhibit unique body plans with derived fin morphologies, such as the anteriorly expanded pectoral fins that fuse to the head, or distally extended anterior pelvic fin lobes used for a modified swimming technique utilized by skates (Rajidae). The little skate (Leucoraja erinacea), exhibits both of these unique fin morphologies. These fin modifications are not present in a typical shark body plan, and little is known regarding the mechanisms underlying their development. A recent study identified a novel apical ectodermal ridge (AER) associated with the development of the anterior pectoral fin in the little skate, but the role of the posterior HoxA genes was not featured during skate fin development. Results We present the first evidence for HoxA expression (HoxA11 and HoxA13) in novel AER domains associated with the development of three novel fin morphologies in a representative batoid, L. erinacea. We found HoxA13 expression associated with the recently described novel AER in the anterior pectoral fin, and HoxA11 expression in a novel AER domain in the anterior pelvic fin that we describe here. We find that both HoxA11 and HoxA13 are expressed in claspers, and while HoxA11 is expressed in pelvic fins and claspers, HoxA13 is expressed exclusively in developing claspers of males. Finally, HoxA11 expression is associated with the developing fin rays in paired fins. Conclusion Overall, these results indicate that the posterior HoxA genes play an important role in the morphological evolution of paired fins in a representative batoid. These data suggest that the batoids utilize a unique Hox code, where the posterior HoxA genes exhibit distinct expression patterns that are likely associated with specification of novel fin morphologies. Electronic supplementary material The online version of this article (10.1186/s13227-017-0088-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shannon N Barry
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94127 USA
| | - Karen D Crow
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94127 USA
| |
Collapse
|
13
|
Marra NJ, Richards VP, Early A, Bogdanowicz SM, Pavinski Bitar PD, Stanhope MJ, Shivji MS. Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy. BMC Genomics 2017; 18:87. [PMID: 28132643 PMCID: PMC5278576 DOI: 10.1186/s12864-016-3411-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. RESULTS Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. CONCLUSIONS This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.
Collapse
Affiliation(s)
- Nicholas J Marra
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.,Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Angela Early
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steve M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Mahmood S Shivji
- Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA.
| |
Collapse
|
14
|
Davis A, Reubens MC, Stellwag EJ. Functional and Comparative Genomics of Hoxa2 Gene cis-Regulatory Elements: Evidence for Evolutionary Modification of Ancestral Core Element Activity. J Dev Biol 2016; 4:jdb4020015. [PMID: 29615583 PMCID: PMC5831782 DOI: 10.3390/jdb4020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Hoxa2 is an evolutionarily conserved developmental regulatory gene that functions to specify rhombomere (r) and pharyngeal arch (PA) identities throughout the Osteichthyes. Japanese medaka (Oryzias latipes) hoxa2a, like orthologous Hoxa2 genes from other osteichthyans, is expressed during embryogenesis in r2–7 and PA2-7, whereas the paralogous medaka pseudogene, ψhoxa2b, is expressed in noncanonical Hoxa2 domains, including the pectoral fin buds. To understand the evolution of cis-regulatory element (CRE) control of gene expression, we conducted eGFP reporter gene expression studies with extensive functional mapping of several conserved CREs upstream of medaka hoxa2a and ψhoxa2b in transient and stable-line transgenic medaka embryos. The CREs tested were previously shown to contribute to directing mouse Hoxa2 gene expression in r3, r5, and PA2-4. Our results reveal the presence of sequence elements embedded in the medaka hoxa2a and ψhoxa2b upstream enhancer regions (UERs) that mediate expression in r4 and the PAs (hoxa2a r4/CNCC element) or in r3–7 and the PAs ψhoxa2b r3–7/CNCC element), respectively. Further, these elements were shown to be highly conserved among osteichthyans, which suggests that the r4 specifying element embedded in the UER of Hoxa2 is a deeply rooted rhombomere specifying element and the activity of this element has been modified by the evolution of flanking sequences that redirect its activity to alternative developmental compartments.
Collapse
Affiliation(s)
- Adam Davis
- Department of Biology and Physical Sciences, Gordon State College, Barnesville, GA 30204, USA.
| | - Michael C Reubens
- The Scripps Research Institute, 10550 N, Torrey Pines Road, MB3, La Jolla, CA 92037, USA.
| | - Edmund J Stellwag
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
15
|
Debiais-Thibaud M, Chiori R, Enault S, Oulion S, Germon I, Martinand-Mari C, Casane D, Borday-Birraux V. Tooth and scale morphogenesis in shark: an alternative process to the mammalian enamel knot system. BMC Evol Biol 2015; 15:292. [PMID: 26704180 PMCID: PMC4690397 DOI: 10.1186/s12862-015-0557-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/06/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The gene regulatory network involved in tooth morphogenesis has been extremely well described in mammals and its modeling has allowed predictions of variations in regulatory pathway that may have led to evolution of tooth shapes. However, very little is known outside of mammals to understand how this regulatory framework may also account for tooth shape evolution at the level of gnathostomes. In this work, we describe expression patterns and proliferation/apoptosis assays to uncover homologous regulatory pathways in the catshark Scyliorhinus canicula. RESULTS Because of their similar structural and developmental features, gene expression patterns were described over the four developmental stages of both tooth and scale buds in the catshark. These gene expression patterns differ from mouse tooth development, and discrepancies are also observed between tooth and scale development within the catshark. However, a similar nested expression of Shh and Fgf suggests similar signaling involved in morphogenesis of all structures, although apoptosis assays do not support a strictly equivalent enamel knot system in sharks. Similarities in the topology of gene expression pattern, including Bmp signaling pathway, suggest that mouse molar development is more similar to scale bud development in the catshark. CONCLUSIONS These results support the fact that no enamel knot, as described in mammalian teeth, can be described in the morphogenesis of shark teeth or scales. However, homologous signaling pathways are involved in growth and morphogenesis with variations in their respective expression patterns. We speculate that variations in this topology of expression are also a substrate for tooth shape evolution, notably in regulating the growth axis and symmetry of the developing structure.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Roxane Chiori
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Sébastien Enault
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Silvan Oulion
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Isabelle Germon
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Didier Casane
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Véronique Borday-Birraux
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
16
|
Enault S, Muñoz DN, Silva WTAF, Borday-Birraux V, Bonade M, Oulion S, Ventéo S, Marcellini S, Debiais-Thibaud M. Molecular footprinting of skeletal tissues in the catshark Scyliorhinus canicula and the clawed frog Xenopus tropicalis identifies conserved and derived features of vertebrate calcification. Front Genet 2015; 6:283. [PMID: 26442101 PMCID: PMC4584932 DOI: 10.3389/fgene.2015.00283] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022] Open
Abstract
Understanding the evolutionary emergence and subsequent diversification of the vertebrate skeleton requires a comprehensive view of the diverse skeletal cell types found in distinct developmental contexts, tissues, and species. To date, our knowledge of the molecular nature of the shark calcified extracellular matrix, and its relationships with osteichthyan skeletal tissues, remain scarce. Here, based on specific combinations of expression patterns of the Col1a1, Col1a2, and Col2a1 fibrillar collagen genes, we compare the molecular footprint of endoskeletal elements from the chondrichthyan Scyliorhinus canicula and the tetrapod Xenopus tropicalis. We find that, depending on the anatomical location, Scyliorhinus skeletal calcification is associated to cell types expressing different subsets of fibrillar collagen genes, such as high levels of Col1a1 and Col1a2 in the neural arches, high levels of Col2a1 in the tesserae, or associated to a drastic Col2a1 downregulation in the centrum. We detect low Col2a1 levels in Xenopus osteoblasts, thereby revealing that the osteoblastic expression of this gene was significantly reduced in the tetrapod lineage. Finally, we uncover a striking parallel, from a molecular and histological perspective, between the vertebral cartilage calcification of both species and discuss the evolutionary origin of endochondral ossification.
Collapse
Affiliation(s)
- Sébastien Enault
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, Centre National de la Recherche Scientifique, IRD, EPHE Montpellier, France
| | - David N Muñoz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Willian T A F Silva
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, Centre National de la Recherche Scientifique, IRD, EPHE Montpellier, France
| | - Véronique Borday-Birraux
- Laboratoire EGCE UMR Centre National de la Recherche Scientifique 9191, IRD247, Université Paris Sud Gif-sur-Yvette, France ; Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Morgane Bonade
- Laboratoire EGCE UMR Centre National de la Recherche Scientifique 9191, IRD247, Université Paris Sud Gif-sur-Yvette, France
| | - Silvan Oulion
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, Centre National de la Recherche Scientifique, IRD, EPHE Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut National de la Santé et de la Recherche Médicale U1051 Montpellier, France
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université Montpellier, Centre National de la Recherche Scientifique, IRD, EPHE Montpellier, France
| |
Collapse
|
17
|
Casane D, Fumey J, Laurenti P. [ENCODE apophenia or a panglossian analysis of the human genome]. Med Sci (Paris) 2015; 31:680-6. [PMID: 26152174 DOI: 10.1051/medsci/20153106023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world.
Collapse
Affiliation(s)
- Didier Casane
- Laboratoire Évolution, génomes, comportement, écologie, CNRS université Paris-Sud UMR 9191, IRD UMR 247, Avenue de la Terrasse, bâtiment 13, boîte postale 1, 91198 Gif-sur-Yvette, France - Université Paris-Diderot, Sorbonne Paris-Cité, Paris, France
| | - Julien Fumey
- Laboratoire Évolution, génomes, comportement, écologie, CNRS université Paris-Sud UMR 9191, IRD UMR 247, Avenue de la Terrasse, bâtiment 13, boîte postale 1, 91198 Gif-sur-Yvette, France
| | - Patrick Laurenti
- Laboratoire Évolution, génomes, comportement, écologie, CNRS université Paris-Sud UMR 9191, IRD UMR 247, Avenue de la Terrasse, bâtiment 13, boîte postale 1, 91198 Gif-sur-Yvette, France - Université Paris-Diderot, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
18
|
Di Z, Yu Y, Wu Y, Hao P, He Y, Zhao H, Li Y, Zhao G, Li X, Li W, Cao Z. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:25-33. [PMID: 25910680 DOI: 10.1016/j.ibmb.2015.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.
Collapse
Affiliation(s)
- Zhiyong Di
- College of Life Sciences, Wuhan University, Wuhan, China; College of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yao Yu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Pei Hao
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yawen He
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yixue Li
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Wenxin Li
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Naville M, Chalopin D, Casane D, Laurenti P, Volff JN. The coelacanth: Can a "living fossil" have active transposable elements in its genome? Mob Genet Elements 2015; 5:55-59. [PMID: 26442185 DOI: 10.1080/2159256x.2015.1052184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/24/2023] Open
Abstract
The coelacanth has long been regarded as a "living fossil," with extant specimens looking very similar to fossils dating back to the Cretaceous period. The hypothesis of a slowly or even not evolving genome has been proposed to account for this apparent morphological stasis. While this assumption seems to be sustained by different evolutionary analyses on protein-coding genes, recent studies on transposable elements have provided more conflicting results. Indeed, the coelacanth genome contains many transposable elements and has been shaped by several major bursts of transposition during evolution. In addition, comparison of orthologous genomic regions from the genomes of the 2 extant coelacanth species L. chalumnae and L. menadoensis revealed multiple species-specific insertions, indicating transposable element recent activity and contribution to post-speciation genome divergence. These observations, which do not support the genome stasis hypothesis, challenge either the impact of transposable elements on organismal evolution or the status of the coelacanth as a "living fossil." Closer inspection of fossil and molecular data indicate that, even if coelacanths might evolve more slowly than some other lineages due to demographic and/or ecological factors, this variation is still in the range of a "non-fossil" vertebrate species.
Collapse
Affiliation(s)
- Magali Naville
- Equipe "Génomique des Poissons"; Institut de Génomique Fonctionnelle de Lyon (UMR5242); Ecole Normale Supérieure de Lyon ; Lyon, France
| | - Domitille Chalopin
- Equipe "Génomique des Poissons"; Institut de Génomique Fonctionnelle de Lyon (UMR5242); Ecole Normale Supérieure de Lyon ; Lyon, France
| | - Didier Casane
- Equipe "Réseaux de gènes, développement, évolution" Laboratoire Evolution, Génomes, Comportement, Ecologie (UMR9191); Université Paris-Diderot; UFR des Sciences du vivant ; Paris, France
| | - Patrick Laurenti
- Equipe "Réseaux de gènes, développement, évolution" Laboratoire Evolution, Génomes, Comportement, Ecologie (UMR9191); Université Paris-Diderot; UFR des Sciences du vivant ; Paris, France
| | - Jean-Nicolas Volff
- Equipe "Génomique des Poissons"; Institut de Génomique Fonctionnelle de Lyon (UMR5242); Ecole Normale Supérieure de Lyon ; Lyon, France
| |
Collapse
|
20
|
Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny. Brain Struct Funct 2015; 221:1691-717. [DOI: 10.1007/s00429-015-0998-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
21
|
Martin KJ, Holland PWH. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol Biol Evol 2014; 31:2592-611. [PMID: 24974377 PMCID: PMC4166920 DOI: 10.1093/molbev/msu202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approximately 350 Ma in a common ancestor of over 26,000 species of teleost fishes. Through a combination of whole genome and bacterial artificial chromosome clone sequencing we characterized all Hox gene clusters of Pantodon buchholzi, a member of the early branching teleost subdivision Osteoglossomorpha. We find 45 Hox genes organized in only five clusters indicating that Pantodon has suffered more Hox cluster loss than other known species. Despite strong evidence for homology of the five Pantodon clusters to the four canonical pre-TGD vertebrate clusters (one HoxA, two HoxB, one HoxC, and one HoxD), we were unable to confidently resolve 1:1 orthology relationships between four of the Pantodon clusters and the eight post-TGD clusters of other teleosts. Phylogenetic analysis revealed that many Pantodon genes segregate outside the conventional "a" and "b" post-TGD orthology groups, that extensive topological incongruence exists between genes physically linked on a single cluster, and that signal divergence causes ambivalence in assigning 1:1 orthology in concatenated Hox cluster analyses. Out of several possible explanations for this phenomenon we favor a model which keeps with the prevailing view of a single TGD prior to teleost radiation, but which also considers the timing of diploidization after duplication, relative to speciation events. We suggest that although the duplicated hoxa clusters diploidized prior to divergence of osteoglossomorphs, the duplicated hoxb, hoxc, and hoxd clusters concluded diploidization independently in osteoglossomorphs and other teleosts. We use the term "tetralogy" to describe the homology relationship which exists between duplicated sequences which originate through a shared WGD, but which diploidize into distinct paralogs from a common allelic pool independently in two lineages following speciation.
Collapse
Affiliation(s)
- Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
22
|
Wyffels J, King BL, Vincent J, Chen C, Wu CH, Polson SW. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes. F1000Res 2014; 3:191. [PMID: 25309735 PMCID: PMC4184313 DOI: 10.12688/f1000research.4996.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 12/02/2022] Open
Abstract
Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes. In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish,
Leucoraja erinacea, the little skate. SkateBase (
http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources.
Collapse
Affiliation(s)
- Jennifer Wyffels
- Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - James Vincent
- Vermont Genetics Network, University of Vermont, Burlington, VT, 05405, USA
| | - Chuming Chen
- Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Cathy H Wu
- Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Shawn W Polson
- Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| |
Collapse
|
23
|
Freitas R, Gómez-Skarmeta JL, Rodrigues PN. New frontiers in the evolution of fin development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:540-52. [DOI: 10.1002/jez.b.22563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Renata Freitas
- IBMC-Instituto de Biologia Celular e Molecular; Porto Portugal
| | | | - Pedro Nuno Rodrigues
- IBMC-Instituto de Biologia Celular e Molecular; Porto Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; Porto Portugal
| |
Collapse
|
24
|
Casane D, Laurenti P. Une toute nouvelle tête pour l’ancêtre des vertébrés à mâchoires. Med Sci (Paris) 2014; 30:38-40. [DOI: 10.1051/medsci/20143001012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Pascual-Anaya J, D'Aniello S, Kuratani S, Garcia-Fernàndez J. Evolution of Hox gene clusters in deuterostomes. BMC DEVELOPMENTAL BIOLOGY 2013; 13:26. [PMID: 23819519 PMCID: PMC3707753 DOI: 10.1186/1471-213x-13-26] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022]
Abstract
Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of “genome Hox bar-code” for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages.
Collapse
|
26
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
27
|
Adachi N, Kuratani S. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol Dev 2013; 14:234-56. [PMID: 23017073 DOI: 10.1111/j.1525-142x.2012.00542.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vertebrate head segmentation has attracted the attention of comparative and evolutionary morphologists for centuries, given its importance for understanding the developmental body plan of vertebrates and its evolutionary origin. In particular, the segmentation of the mesoderm is central to the problem. The shark embryo has provided a canonical morphological scheme of the head, with its epithelialized coelomic cavities (head cavities), which have often been regarded as head somites. To understand the evolutionary significance of the head cavities, the embryonic development of the mesoderm was investigated at the morphological and histological levels in the shark, Scyliorhinus torazame. Unlike somites and some enterocoelic mesodermal components in other vertebrates, the head cavities in S. torazame appeared as irregular cyst(s) in the originally unsegmented mesenchymal head mesoderm, and not via segmentation of an undivided coelom. The mandibular cavity appeared first in the paraxial part of the mandibular mesoderm, followed by the hyoid cavity, and the premandibular cavity was the last to form. The prechordal plate was recognized as a rhomboid roof of the preoral gut, continuous with the rostral notochord, and was divided anteroposteriorly into two parts by the growth of the hypothalamic primordium. Of those, the posterior part was likely to differentiate into the premandibular cavity, and the anterior part disappeared later. The head cavities and somites in the trunk exhibited significant differences, in terms of histological appearance and timing of differentiation. The mandibular cavity developed a rostral process secondarily; its homology to the anterior cavity reported in some elasmobranch embryos is discussed.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | |
Collapse
|
28
|
|
29
|
Casane D, Laurenti P. [Tree thinking: the evolution of vertebrate as a case study]. Med Sci (Paris) 2013; 28:1121-7. [PMID: 23290414 DOI: 10.1051/medsci/20122812024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the last decades, the reconstruction of phylogenetic relationships and their representation in the form of a phylogenetic tree have become a powerful tool for biology. These methods involve the use of sophisticated computer programs that are unfamiliar to most of biologists. However, our experience as teacher and researcher in evolutionary biology prompted us to realize that the main and most common source of confusion in depicting the evolution of various traits comes from the misunderstanding of the basis of tree reading. We have identified, not only in the work of our students, but also in scientific literature, some common mistakes that reveal the persistency of the concept of the scale of beings that unfortunately maintained as frame of reference to analyse phylogenies.
Collapse
Affiliation(s)
- Didier Casane
- Laboratoire évolution, génomes et spéciation, UPR 9034 CNRS, avenue de la Terrasse, Bâtiment 13, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Takechi M, Adachi N, Hirai T, Kuratani S, Kuraku S. The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Semin Cell Dev Biol 2013; 24:110-8. [PMID: 23291259 DOI: 10.1016/j.semcdb.2012.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/25/2012] [Indexed: 11/25/2022]
Abstract
The group of Dlx genes belongs to the homeobox-containing superfamily, and its members are involved in various morphogenetic processes. In vertebrate genomes, Dlx genes exist as multiple paralogues generated by tandem duplication followed by whole genome duplications. In this review, we provide an overview of the Dlx gene phylogeny with an emphasis on the chordate lineage. Referring to the Dlx gene repertoire, we discuss the establishment and conservation of the nested expression patterns of the Dlx genes in craniofacial development. Despite the accumulating genomic sequence resources in diverse vertebrates, embryological analyses of Dlx gene expression and function remain limited in terms of species diversity. By supplementing our original analysis of shark embryos with previous data from other osteichthyans, such as mice and zebrafish, we support the previous speculation that the nested Dlx expression in the pharyngeal arch is likely a shared feature among all the extant jawed vertebrates. Here, we highlight several hitherto unaddressed issues regarding the evolution and function of Dlx genes, with special reference to the craniofacial development of vertebrates.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
31
|
Sequencing and analysis of full-length cDNAs, 5'-ESTs and 3'-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii). PLoS One 2012; 7:e47174. [PMID: 23056606 PMCID: PMC3466250 DOI: 10.1371/journal.pone.0047174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/10/2012] [Indexed: 01/05/2023] Open
Abstract
Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initiated to obtain its whole genome sequence. In this study, we have generated and sequenced full-length enriched cDNA libraries of the elephant shark using the 'oligo-capping' method and Sanger sequencing. A total of 6,778 full-length protein-coding cDNA and 10,701 full-length noncoding cDNA were sequenced from six tissues (gills, intestine, kidney, liver, spleen, and testis) of the elephant shark. Analysis of their polyadenylation signals showed that polyadenylation usage in elephant shark is similar to that in mammals. Furthermore, both coding and noncoding transcripts of the elephant shark use the same proportion of canonical polyadenylation sites. Besides BLASTX searches, protein-coding transcripts were annotated by Gene Ontology, InterPro domain, and KEGG pathway analyses. By comparing elephant shark genes to bony vertebrate genes, we identified several ancient genes present in elephant shark but differentially lost in tetrapods or teleosts. Only ∼6% of elephant shark noncoding cDNA showed similarity to known noncoding RNAs (ncRNAs). The rest are either highly divergent ncRNAs or novel ncRNAs. In addition to full-length transcripts, 30,375 5'-ESTs and 41,317 3'-ESTs were sequenced and annotated. The clones and transcripts generated in this study are valuable resources for annotating transcription start sites, exon-intron boundaries, and UTRs of genes in the elephant shark genome, and for the functional characterization of protein sequences. These resources will also be useful for annotating genes in other cartilaginous fishes whose genomes have been targeted for whole genome sequencing.
Collapse
|
32
|
Oulion S, Laurenti P, Casane D. [Hox genes organization: studying non-model vertebrates leads to a paradigm shift]. Med Sci (Paris) 2012; 28:350-3. [PMID: 22549855 DOI: 10.1051/medsci/2012284005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Transcriptional enhancers in protein-coding exons of vertebrate developmental genes. PLoS One 2012; 7:e35202. [PMID: 22567096 PMCID: PMC3342275 DOI: 10.1371/journal.pone.0035202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022] Open
Abstract
Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77%) exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less). GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%), suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147) or tissue-specificity (coding: 14/24 vs. noncoding: 50/105). Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81). Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA.
Collapse
|
34
|
Kuraku S. Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution? GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:97-103. [PMID: 21802046 PMCID: PMC5054437 DOI: 10.1016/s1672-0229(11)60012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/21/2011] [Indexed: 10/27/2022]
Abstract
Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called two-round whole genome duplications (2R-WGDs), are observed. Overall, the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans. A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast, existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization. For this group of species, whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates, therefore the number of Hox clusters may not serve as a good indicator of their ploidy level.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany.
| |
Collapse
|
35
|
King BL, Gillis JA, Carlisle HR, Dahn RD. A natural deletion of the HoxC cluster in elasmobranch fishes. Science 2012; 334:1517. [PMID: 22174244 DOI: 10.1126/science.1210912] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox proteins are a metazoan-specific family of transcription factors that are required for developmental patterning. The genomic arrangement of Hox genes into four paralogous clusters is a primitive feature of jawed vertebrates. By using high-throughput sequencing, we demonstrate the absence of all HoxC transcripts from embryos of the shark Scyliorhinus canicula and the skate Leucoraja erinacea and the absence of all HoxC genes and two HoxC-associated microRNAs from the genome of L. erinacea. These data suggest a loss of the entire HoxC cluster in elasmobranch fishes and represent evidence for the natural deletion of an entire Hox cluster in vertebrates.
Collapse
Affiliation(s)
- Benjamin L King
- Kathryn W. Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| | | | | | | |
Collapse
|
36
|
Griffiths AM, Jacoby DMP, Casane D, McHugh M, Croft DP, Genner MJ, Sims DW. First analysis of multiple paternity in an oviparous shark, the small-spotted catshark (Scyliorhinus canicula L.). ACTA ACUST UNITED AC 2011; 103:166-73. [PMID: 22058410 DOI: 10.1093/jhered/esr112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple paternity (MP) has been demonstrated in a variety of sharks, although its prevalence and the number of sires per litter vary considerably among species. To date, such analyses have focused on viviparous species that possess only part of the wide spectrum of reproductive strategies developed in elasmobranchs. We analyzed MP in an oviparous species, the small-spotted catshark (Scyliorhinus canicula). In total, 150 neonates originating from 13 different mothers were genotyped using 12 microsatellite loci. MP was commonplace, with progeny from 92% of females sired by multiple males. This result is consistent with the reproductive biology of the species, particularly its protracted breeding season and potential for long-term sperm storage. The significance of these findings is discussed in light of small-spotted catshark behavior, which suggests that the cost of avoiding mating attempts initiated by males may be high and is therefore supportive of convenience polyandry as an explanation for MP. Eggs were followed from the time they were laid to when they hatched, offering a rare opportunity to investigate juvenile development in more detail.
Collapse
Affiliation(s)
- Andrew M Griffiths
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Feiner N, Ericsson R, Meyer A, Kuraku S. Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:515-25. [PMID: 21815265 DOI: 10.1002/jez.b.21426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 01/08/2023]
Abstract
Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA-D). Traditionally, the uninterrupted Hox cluster (Hox1-14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1-13 that are globally regulated by the "Hox code" and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR-based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real-time RT-PCR suggested its hindgut-associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9-13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1-to-1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
38
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:451-64. [PMID: 21688387 DOI: 10.1002/jez.b.21420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/27/2011] [Accepted: 04/24/2011] [Indexed: 12/12/2022]
Abstract
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.
Collapse
Affiliation(s)
- Jeremy D Raincrow
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Griffiths AM, Casane D, McHugh M, Wearmouth VJ, Sims DW, Genner MJ. Characterisation of polymorphic microsatellite loci in the small-spotted catshark (Scyliorhinus canicula L.). CONSERV GENET RESOUR 2011. [DOI: 10.1007/s12686-011-9438-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S. Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 2011; 5:16. [PMID: 21519383 PMCID: PMC3077972 DOI: 10.3389/fnana.2011.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/18/2011] [Indexed: 11/21/2022] Open
Abstract
Cartilaginous fishes (chondrichthyans) represent an ancient radiation of vertebrates currently considered the sister group of the group of gnathostomes with a bony skeleton that gave rise to land vertebrates. This out-group position makes chondrichthyans essential in assessing the ancestral organization of the brain of jawed vertebrates. To gain knowledge about hindbrain evolution we have studied its development in a shark, the lesser spotted dogfish Scyliorhinus canicula by analyzing the expression of some developmental genes and the origin and distribution of specific neuronal populations, which may help to identify hindbrain subdivisions and boundaries and the topology of specific cell groups. We have characterized three developmental periods that will serve as a framework to compare the development of different neuronal systems and may represent a suitable tool for comparing the absolute chronology of development among vertebrates. The expression patterns of Pax6, Wnt8, and HoxA2 genes in early embryos of S. canicula showed close correspondence to what has been described in other vertebrates and helped to identify the anterior rhombomeres. Also in these early embryos, the combination of Pax6 with protein markers of migrating neuroblasts (DCX) and early differentiating neurons (general: HuC/D; neuron type specific: GAD, the GABA synthesizing enzyme) revealed the organization of S. canicula hindbrain in both transverse segmental units corresponding to visible rhombomeres and longitudinal columns. Later in development, when the interrhombomeric boundaries fade away, accurate information about S. canicula hindbrain subdivisions was achieved by comparing the expression patterns of Pax6 and GAD, serotonin (serotoninergic neurons), tyrosine hydroxylase (catecholaminergic neurons), choline acetyltransferase (cholinergic neurons), and calretinin (a calcium-binding protein). The patterns observed revealed many topological correspondences with other vertebrates and led to reconsideration of the current view of the elasmobranch hindbrain segmentation as peculiar among vertebrates.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology, University of Santiago de Compostela Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Liang D, Wu R, Geng J, Wang C, Zhang P. A general scenario of Hox gene inventory variation among major sarcopterygian lineages. BMC Evol Biol 2011; 11:25. [PMID: 21266090 PMCID: PMC3038165 DOI: 10.1186/1471-2148-11-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. RESULTS We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. CONCLUSIONS Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with less derived body morphology, suggesting changes to their body morphology are likely due to other modifications rather than changes to Hox gene numbers. Furthermore, our results provide basis for future sequencing of the entire Hox clusters of these animals.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Riga Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Geng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chaolin Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, Anhui, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|