1
|
Artemov GN, Bondarenko SM, Naumenko AN, Stegniy VN, Sharakhova MV, Sharakhov IV. Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome. BMC Genomics 2018; 19:278. [PMID: 29688842 PMCID: PMC5914054 DOI: 10.1186/s12864-018-4663-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
Background Malaria mosquitoes have had a remarkable stability in the number of chromosomes in their karyotype (2n = 6) during 100 million years of evolution. Moreover, autosomal arms were assumed to maintain their integrity even if their associations with each other changed via whole-arm translocations. Here we use high-coverage comparative physical genome mapping of three Anopheles species to test the extent of evolutionary conservation of chromosomal arms in malaria mosquitoes. Results In this study, we developed a physical genome map for Anopheles atroparvus, one of the dominant malaria vectors in Europe. Using fluorescence in situ hybridization (FISH) of DNA probes with the ovarian nurse cell polytene chromosomes and synteny comparison, we anchored 56 genomic scaffolds to the An. atroparvus chromosomes. The obtained physical map represents 89.6% of the An. atroparvus genome. This genome has the second highest mapping coverage among Anophelinae assemblies after An. albimanus, which has 98.2% of the genome assigned to its chromosomes. A comparison of the An. atroparvus, An. albimanus, and An. gambiae genomes identified partial-arm translocations between the autosomal arms that break down the integrity of chromosome elements in evolution affecting the structure of the genetic material in the pericentromeric regions. Unlike An. atroparvus and An. albimanus, all chromosome elements of An. gambiae are fully syntenic with chromosome elements of the putative ancestral Anopheles karyotype. We also detected nonrandom distribution of large conserved synteny blocks and confirmed a higher rate of inversion fixation in the X chromosome compared with autosomes. Conclusions Our study demonstrates the power of physical mapping for understanding the genome evolution in malaria mosquitoes. The results indicate that syntenic relationships among chromosome elements of Anopheles species have not been fully preserved because of multiple partial-arm translocations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4663-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Anastasia N Naumenko
- Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
3
|
Librado P, Rozas J. Uncovering the functional constraints underlying the genomic organization of the odorant-binding protein genes. Genome Biol Evol 2014; 5:2096-108. [PMID: 24148943 PMCID: PMC3845639 DOI: 10.1093/gbe/evt158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins (OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane. Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor genes is not dominated by reduced levels of expression noise. Indeed, the stochastic fluctuations in the OBP transcript abundance may have a critical role in the combinatorial nature of the olfactory coding process.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
4
|
Makunin IV, Kolesnikova TD, Andreyenkova NG. Underreplicated regions in Drosophila melanogaster are enriched with fast-evolving genes and highly conserved noncoding sequences. Genome Biol Evol 2014; 6:2050-60. [PMID: 25062918 PMCID: PMC4159006 DOI: 10.1093/gbe/evu156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many late replicating regions are underreplicated in polytene chromosomes of Drosophila melanogaster. These regions contain silenced chromatin and overlap long syntenic blocks of conserved gene order in drosophilids. In this report we show that in D. melanogaster the underreplicated regions are enriched with fast-evolving genes lacking homologs in distant species such as mosquito or human, indicating that the phylogenetic conservation of genes correlates with replication timing and chromatin status. Drosophila genes without human homologs located in the underreplicated regions have higher nonsynonymous substitution rate and tend to encode shorter proteins when compared with those in the adjacent regions. At the same time, the underreplicated regions are enriched with ultraconserved elements and highly conserved noncoding sequences, especially in introns of very long genes indicating the presence of an extensive regulatory network that may be responsible for the conservation of gene order in these regions. The regions have a modest preference for long noncoding RNAs but are depleted for small nucleolar RNAs, microRNAs, and transfer RNAs. Our results demonstrate that the underreplicated regions have a specific genic composition and distinct pattern of evolution.
Collapse
Affiliation(s)
- Igor V Makunin
- Research Computing Centre, The University of Queensland, St Lucia, Queensland, AustraliaInstitute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Russia
| | - Natalya G Andreyenkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Andreyenkova NG, Kolesnikova TD, Makunin IV, Pokholkova GV, Boldyreva LV, Zykova TY, Zhimulev IF, Belyaeva ES. Late replication domains are evolutionary conserved in the Drosophila genome. PLoS One 2013; 8:e83319. [PMID: 24391753 PMCID: PMC3877026 DOI: 10.1371/journal.pone.0083319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022] Open
Abstract
Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.
Collapse
Affiliation(s)
- Natalya G. Andreyenkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Igor V. Makunin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Research Computing Centre, The University of Queensland, Brisbane, St Lucia, QLD, Australia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Díaz-Castillo C. Females and males contribute in opposite ways to the evolution of gene order in Drosophila. PLoS One 2013; 8:e64491. [PMID: 23696898 PMCID: PMC3655977 DOI: 10.1371/journal.pone.0064491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
An intriguing association between the spatial layout of chromosomes within nuclei and the evolution of chromosome gene order was recently uncovered. Chromosome regions with conserved gene order in the Drosophila genus are larger if they interact with the inner side of the nuclear envelope in D. melanogaster somatic cells. This observation opens a new door to understand the evolution of chromosomes in the light of the dynamics of the spatial layout of chromosomes and the way double-strand breaks are repaired in D. melanogaster germ lines. Chromosome regions at the nuclear periphery in somatic cell nuclei relocate to more internal locations of male germ line cell nuclei, which might prefer a gene order-preserving mechanism to repair double-strand breaks. Conversely, chromosome regions at the nuclear periphery in somatic cells keep their location in female germ line cell nuclei, which might be inaccessible for cellular machinery that causes gene order-disrupting chromosome rearrangements. Thus, the gene order stability for genome regions at the periphery of somatic cell nuclei might result from the active repair of double-strand breaks using conservative mechanisms in male germ line cells, and the passive inaccessibility for gene order-disrupting factors at the periphery of nuclei of female germ line cells. In the present article, I find evidence consistent with a DNA break repair-based differential contribution of both D. melanogaster germ lines to the stability/disruption of gene order. The importance of germ line differences for the layout of chromosomes and DNA break repair strategies with regard to other genomic patterns is briefly discussed.
Collapse
|
7
|
Kolesnikova TD, Posukh OV, Andreyeva EN, Bebyakina DS, Ivankin AV, Zhimulev IF. Drosophila SUUR protein associates with PCNA and binds chromatin in a cell cycle-dependent manner. Chromosoma 2012; 122:55-66. [DOI: 10.1007/s00412-012-0390-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/25/2012] [Accepted: 10/22/2012] [Indexed: 01/06/2023]
|
8
|
Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin. Chromosoma 2012; 121:573-83. [PMID: 23015267 DOI: 10.1007/s00412-012-0382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/12/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
In salivary gland polytene chromosomes of Drosophila melanogaster, the regions of intercalary heterochromatin are characterized by late replication, under-replication, and genetic silencing. Using Gal4/UAS system, we induced transcription of sequences adjacent to transgene insertions in the band 11A6-9. This activation resulted in a loss of "silent" and appearance of "active" epigenetic marks, recruitment of RNA polymerase II, and formation of a puff. The activated region is now early replicating and shows increased level of DNA polytenization. Notably, all these changes are restricted to the area around the inserts, whereas the rest of the band remains inactive and late replicating. Although only a short area near the insertion site is transcribed, it results in an "open" chromatin conformation in a much broader region. We conclude that regions of intercalary heterochromatin do not form stand-alone units of late replication and under-replication. Every part of such regions can be activated and polytenized independently of other parts.
Collapse
|
9
|
Díaz-Castillo C, Ranz JM. Recent progress on the identity and characterization of factors that shape gene organization during eukaryotic evolution. Fly (Austin) 2012; 6:158-61. [PMID: 22722673 DOI: 10.4161/fly.20861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Comparative genomics has identified regions of chromosomes susceptible to participate in rearrangements that modify gene order and genome architecture. Additionally, despite the high levels of genome rearrangement, unusually large regions that remain unaffected have also been uncovered. Functional constraints, such as long-range enhancers or local coregulation of neighboring genes, are thought to explain the maintenance of gene order (i.e., collinearity conservation) among distantly related species since the disruption of these protected regions would cause detrimental misregulation of gene expression. Local enrichment of certain genetic elements in regions of conserved collinearity has been used to support the existence of regulatory-based constraints, although the evidence is largely circumstantial. Indeed, a mechanism of chromosome evolution based only on the existence of fragile regions (i.e., those more susceptible to breaks) can also give rise to extended collinearity conservation, making it difficult to determine whether conserved gene organization is actually caused by functional constraints. Chromosome engineering coupled with genome wide expression profiling and phenotypic assays can provide unambiguous evidence for the presence of functional constraints acting on particular genomic regions. We have recently used this integrated approach to evaluate the presence and nature of putative constraints acting on one of the largest chromosomal regions conserved across nine species of Drosophila. We propose that regulatory-based constraints might not suffice to explain the maintenance of gene organization of some chromosome domains over evolutionary time.
Collapse
Affiliation(s)
- Carlos Díaz-Castillo
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA.
| | | |
Collapse
|
10
|
Díaz-Castillo C, Ranz JM. Nuclear chromosome dynamics in the Drosophila male germ line contribute to the nonrandom genomic distribution of retrogenes. Mol Biol Evol 2012; 29:2105-8. [PMID: 22427708 DOI: 10.1093/molbev/mss096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The origin of RNA-based gene duplicates, that is, retrogenes, involves the reverse transcription of an mRNA derived from a parental gene to generate a cDNA copy, its insertion elsewhere in the genome, and the recruitment of regulatory sequences. Drosophila retrogenes are preferentially expressed in testis and a higher than expected number transpose to autosomal locations from the X chromosome. However, the influence of genomic context on the insertion preference of retrogenes remains poorly understood. We find that the distribution of retrogenes in the Drosophila melanogaster genome can be explained by an insertion bias toward chromosome domains containing testis-biased genes that are located at the nuclear periphery in somatic cells, but at inner positions in the male germ line. The lower fraction of these chromosome domains accessible in the male germ line on the X chromosome as compared with the autosomes also contributes to the scarcity of retrogenes on the X chromosome.
Collapse
|
11
|
Díaz-Castillo C, Xia XQ, Ranz JM. Evaluation of the role of functional constraints on the integrity of an ultraconserved region in the genus Drosophila. PLoS Genet 2012; 8:e1002475. [PMID: 22319453 PMCID: PMC3271063 DOI: 10.1371/journal.pgen.1002475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/29/2011] [Indexed: 01/02/2023] Open
Abstract
Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought.
Collapse
Affiliation(s)
- Carlos Díaz-Castillo
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China
| | - José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|