1
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
2
|
Mayer MP. The Hsp70-Chaperone Machines in Bacteria. Front Mol Biosci 2021; 8:694012. [PMID: 34164436 PMCID: PMC8215388 DOI: 10.3389/fmolb.2021.694012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
The ATP-dependent Hsp70s are evolutionary conserved molecular chaperones that constitute central hubs of the cellular protein quality surveillance network. None of the other main chaperone families (Tig, GroELS, HtpG, IbpA/B, ClpB) have been assigned with a comparable range of functions. Through a multitude of functions Hsp70s are involved in many cellular control circuits for maintaining protein homeostasis and have been recognized as key factors for cell survival. Three mechanistic properties of Hsp70s are the basis for their high versatility. First, Hsp70s bind to short degenerate sequence motifs within their client proteins. Second, Hsp70 chaperones switch in a nucleotide-controlled manner between a state of low affinity for client proteins and a state of high affinity for clients. Third, Hsp70s are targeted to their clients by a large number of cochaperones of the J-domain protein (JDP) family and the lifetime of the Hsp70-client complex is regulated by nucleotide exchange factors (NEF). In this review I will discuss advances in the understanding of the molecular mechanism of the Hsp70 chaperone machinery focusing mostly on the bacterial Hsp70 DnaK and will compare the two other prokaryotic Hsp70s HscA and HscC with DnaK.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
3
|
Hierarchical Model for the Role of J-Domain Proteins in Distinct Cellular Functions. J Mol Biol 2020; 433:166750. [PMID: 33310019 DOI: 10.1016/j.jmb.2020.166750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/28/2023]
Abstract
In Escherichia coli, the major bacterial Hsp70 system consists of DnaK, three J-domain proteins (JDPs: DnaJ, CbpA, and DjlA), and nucleotide exchange factor GrpE. JDPs determine substrate specificity for the Hsp70 system; however, knowledge on their specific role in bacterial cellular functions is limited. In this study, we demonstrated the role of JDPs in bacterial survival during heat stress and the DnaK-regulated formation of curli-extracellular amyloid fibers involved in biofilm formation. Genetic analysis demonstrate that only DnaJ is essential for survival at high temperature. On the other hand, either DnaJ or CbpA, but not DjlA, is sufficient to activate DnaK in curli production. Additionally, several DnaK mutants with reduced activity are able to complement the loss of curli production in E. coli ΔdnaK, whereas they do not recover the growth defect of the mutant strain at high temperature. Biochemical analyses reveal that DnaJ and CbpA are involved in the expression of the master regulator CsgD through the solubilization of MlrA, a DNA-binding transcriptional activator for the csgD promoter. Furthermore, DnaJ and CbpA also keep CsgA in a translocation-competent state by preventing its aggregation in the cytoplasm. Our findings support a hierarchical model wherein the role of JDPs in the Hsp70 system differs according to individual cellular functions.
Collapse
|
4
|
Roma JS, D’Souza S, Somers PJ, Cabo LF, Farsin R, Aksoy S, Runyen-Janecky LJ, Weiss BL. Thermal stress responses of Sodalis glossinidius, an indigenous bacterial symbiont of hematophagous tsetse flies. PLoS Negl Trop Dis 2019; 13:e0007464. [PMID: 31738754 PMCID: PMC6887450 DOI: 10.1371/journal.pntd.0007464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/02/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) house a taxonomically diverse microbiota that includes environmentally acquired bacteria, maternally transmitted symbiotic bacteria, and pathogenic African trypanosomes. Sodalis glossinidius, which is a facultative symbiont that resides intra and extracellularly within multiple tsetse tissues, has been implicated as a mediator of trypanosome infection establishment in the fly’s gut. Tsetse’s gut-associated population of Sodalis are subjected to marked temperature fluctuations each time their ectothermic fly host imbibes vertebrate blood. The molecular mechanisms that Sodalis employs to deal with this heat stress are unknown. In this study, we examined the thermal tolerance and heat shock response of Sodalis. When grown on BHI agar plates, the bacterium exhibited the most prolific growth at 25oC, and did not grow at temperatures above 30oC. Growth on BHI agar plates at 31°C was dependent on either the addition of blood to the agar or reduction in oxygen levels. Sodalis was viable in liquid cultures for 24 hours at 30oC, but began to die upon further exposure. The rate of death increased with increased temperature. Similarly, Sodalis was able to survive for 48 hours within tsetse flies housed at 30oC, while a higher temperature (37oC) was lethal. Sodalis’ genome contains homologues of the heat shock chaperone protein-encoding genes dnaK, dnaJ, and grpE, and their expression was up-regulated in thermally stressed Sodalis, both in vitro and in vivo within tsetse fly midguts. Arrested growth of E. coli dnaK, dnaJ, or grpE mutants under thermal stress was reversed when the cells were transformed with a low copy plasmid that encoded the Sodalis homologues of these genes. The information contained in this study provides insight into how arthropod vector enteric commensals, many of which mediate their host’s ability to transmit pathogens, mitigate heat shock associated with the ingestion of a blood meal. Microorganisms associated with insects must cope with fluctuating temperatures. Because symbiotic bacteria influence the biology of their host, how they respond to temperature changes will have an impact on the host and other microorganisms in the host. The tsetse fly and its symbionts represent an important model system for studying thermal tolerance because the fly feeds exclusively on vertebrate blood and is thus exposed to dramatic temperature shifts. Tsetse flies house a microbial community that can consist of symbiotic and environmentally acquired bacteria, viruses, and parasitic African trypanosomes. This work, which makes use of tsetse’s commensal endosymbiont, Sodalis glossinidius, is significance because it represents the only examination of thermal tolerance mechanisms in a bacterium that resides indigenously within an arthropod disease vector. A better understanding of the biology of thermal tolerance in Sodalis provides insight into thermal stress survival in other insect symbionts and may yield information to help control vector-borne disease.
Collapse
Affiliation(s)
- Jose Santinni Roma
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Shaina D’Souza
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Patrick J. Somers
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Leah F. Cabo
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Ruhan Farsin
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Laura J. Runyen-Janecky
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- * E-mail: (LJR-J); (BLW)
| | - Brian L. Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
- * E-mail: (LJR-J); (BLW)
| |
Collapse
|
5
|
Bakhtiarvand B, Sadeghi Z, Tarahomjoo S, Yaghmaie S. Chaperones Promote Remarkable Solubilization of Salmonella enterica serovar Enteritidis Flagellin Expressed in Escherichia coli. Protein Pept Lett 2019; 27:210-218. [PMID: 31566125 DOI: 10.2174/0929866526666190930103552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flagellin of Salmonella enterica serovar Enteritidis (SEF) stimulates immune responses to both itself and coapplied antigens. It is therefore used in vaccine development and immunotherapy. Removal of pathogenic S. enterica ser. Enteritidis from SEF production process is advantageous due to the process safety improvement. The protein solubility analysis using SDS-PAGE indicated that 53.49% of SEF expressed in Escherichia coli formed inclusion bodies. However, the protein recovery from inclusion bodies requires a complex process with a low yield. OBJECTIVE We thus aim to study possibility of enhancing SEF expression in E. coli in soluble form using chemical and molecular chaperones. METHODS Chemical chaperones including arginine, sorbitol, trehalose, sodium chloride and benzyl alcohol were used as cultivation medium additives during SEF expression. SEF solubilization by coexpression of molecular chaperones DnaK, DnaJ, and GrpE was also investigated. RESULTS All of the chemical chaperones were effective in improving SEF solubility. However, sorbitol showed the most profound effect. SEF solubilization by molecular chaperones was slightly better than that using sorbitol and this approach enhanced noticeably SEF soluble concentration and SEF solubility percentage to almost two folds and 96.37% respectively. Results of limited proteolysis assay and native PAGE indicated similar conformational states and proper folding for SEF obtained without using chaperones and for those obtained using sorbitol and the molecular chaperones. However, the molecular chaperones based system was less costly than the sorbitol based system. CONCLUSION The coexpression of molecular chaperones was then considered as the most appropriate approach for soluble SEF production. Therefore, SEF production for medical purposes is expected to be facilitated.
Collapse
Affiliation(s)
- Bahador Bakhtiarvand
- Department of Chemical Engineering, Sharif University of Technology, Tehran 8639/11365, Iran
| | - Zahra Sadeghi
- Division of Cellular and Molecular Sciences, Department of Novel Sciences and Technologies, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.,Division of Genomics and Genetic Engineering, Department of Biotechnology and Central Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Shirin Tarahomjoo
- Division of Genomics and Genetic Engineering, Department of Biotechnology and Central Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Soheila Yaghmaie
- Department of Chemical Engineering, Sharif University of Technology, Tehran 8639/11365, Iran
| |
Collapse
|
6
|
Ming T, Geng L, Feng Y, Lu C, Zhou J, Li Y, Zhang D, He S, Li Y, Cheong L, Su X. iTRAQ-Based Quantitative Proteomic Profiling of Staphylococcus aureus Under Different Osmotic Stress Conditions. Front Microbiol 2019; 10:1082. [PMID: 31191466 PMCID: PMC6549500 DOI: 10.3389/fmicb.2019.01082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/29/2019] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an extremely halotolerant pathogenic bacterium with high osmotic stress tolerance, and it is frequently encountered in aquatic production and preservation. However, the mechanism underlying the extremely high osmotic stress tolerance of S. aureus remains unclear. In this study, the isobaric tags for relative and absolute quantification (iTRAQ) method was used to identify the differentially expressed proteins (DEPs) under different sodium chloride (NaCl) concentrations. Compared with the control group (0% NaCl), the 10 and 20% NaCl groups had 484 DEPs and 750 DEPs, respectively. Compared with the 10% NaCl group, the 20% NaCl group had 361 DEPs. Among the DEPs, proteins involved in fatty acid synthesis, proline/glycine betaine biosynthesis and transportation, stress tolerance, cell wall biosynthesis and the TCA cycle were upregulated, whereas proteins associated with biofilm formation and pathogenic infections were downregulated. The results obtained in this study indicate that under extremely high osmotic stress, modification of the cell membrane structure, increased biosynthesis and transportation of osmotic protectants, and redistribution of energy metabolism contribute to the osmotic stress tolerance of S. aureus, and the infectious ability of the bacteria may be limited. The aim of this study was to provide new insight into how S. aureus tolerates the high-salt conditions involved in aquatic production and preservation.
Collapse
Affiliation(s)
- Tinghong Ming
- School of Marine Sciences, Ningbo University, Ningbo, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lingxin Geng
- School of Marine Sciences, Ningbo University, Ningbo, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ying Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chenyang Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanyan Li
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dijun Zhang
- Zhejiang Zhengli Antuo Biotechnology Co., Ltd, Ningbo, China
| | - Shan He
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lingzhi Cheong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Uhl L, Dumont A, Dukan S. A passive physical model for DnaK chaperoning. Phys Biol 2018; 15:026003. [PMID: 28980528 DOI: 10.1088/1478-3975/aa9130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Almost all living organisms use protein chaperones with a view to preventing proteins from misfolding or aggregation either spontaneously or during cellular stress. This work uses a reaction-diffusion stochastic model to describe the dynamic localization of the Hsp70 chaperone DnaK in Escherichia coli cells during transient proteotoxic collapse characterized by the accumulation of insoluble proteins. In the model, misfolded ('abnormal') proteins are produced during alcoholic stress and have the propensity to aggregate with a polymerization-like kinetics. When aggregates diffuse more slowly they grow larger. According to Michaelis-Menten-type kinetics, DnaK has the propensity to bind with misfolded proteins or aggregates in order to catalyse refolding. To match experimental fluorescence microscopy data showing clusters of DnaK-GFP localized in multiple foci, the model includes spatial zones with local reduced diffusion rates to generate spontaneous assemblies of DnaK called 'foci'. Numerical simulations of our model succeed in reproducing the kinetics of DnaK localization experimentally observed. DnaK starts from foci, moves to large aggregates during acute stress, resolves those aggregates during recovery and finally returns to its initial punctate localization pattern. Finally, we compare real biological events with hypothetical repartitions of the protein aggregates or DnaK. We then notice that DnaK action is more efficient on protein aggregates than on protein homogeneously distributed.
Collapse
Affiliation(s)
- Lionel Uhl
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS, UMR 7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | | | | |
Collapse
|
8
|
Rowland SE, Robb FT. Structure, Function and Evolution of the Hsp60 Chaperonins. PROKARYOTIC CHAPERONINS 2017. [DOI: 10.1007/978-981-10-4651-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Lin J. Stress responses of Acinetobacter strain Y during phenol degradation. Arch Microbiol 2016; 199:365-375. [DOI: 10.1007/s00203-016-1310-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/10/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
|
10
|
Aguilar-Rodríguez J, Sabater-Muñoz B, Montagud-Martínez R, Berlanga V, Alvarez-Ponce D, Wagner A, Fares MA. The Molecular Chaperone DnaK Is a Source of Mutational Robustness. Genome Biol Evol 2016; 8:2979-2991. [PMID: 27497316 PMCID: PMC5630943 DOI: 10.1093/gbe/evw176] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular chaperones, also known as heat-shock proteins, refold misfolded proteins and help other proteins reach their native conformation. Thanks to these abilities, some chaperones, such as the Hsp90 protein or the chaperonin GroEL, can buffer the deleterious phenotypic effects of mutations that alter protein structure and function. Hsp70 chaperones use a chaperoning mechanism different from that of Hsp90 and GroEL, and it is not known whether they can also buffer mutations. Here, we show that they can. To this end, we performed a mutation accumulation experiment in Escherichia coli, followed by whole-genome resequencing. Overexpression of the Hsp70 chaperone DnaK helps cells cope with mutational load and completely avoid the extinctions we observe in lineages evolving without chaperone overproduction. Additionally, our sequence data show that DnaK overexpression increases mutational robustness, the tolerance of its clients to nonsynonymous nucleotide substitutions. We also show that this elevated mutational buffering translates into differences in evolutionary rates on intermediate and long evolutionary time scales. Specifically, we studied the evolutionary rates of DnaK clients using the genomes of E. coli, Salmonella enterica, and 83 other gamma-proteobacteria. We find that clients that interact strongly with DnaK evolve faster than weakly interacting clients. Our results imply that all three major chaperone classes can buffer mutations and affect protein evolution. They illustrate how an individual protein like a chaperone can have a disproportionate effect on the evolution of a proteome.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Beatriz Sabater-Muñoz
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain Department of Genetics, Smurfit Institute of Genetics, University of Dublin Trinity College Dublin, Dublin, Ireland
| | - Roser Montagud-Martínez
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Víctor Berlanga
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | | | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain Department of Genetics, Smurfit Institute of Genetics, University of Dublin Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2015; 2:29. [PMID: 26097841 PMCID: PMC4456865 DOI: 10.3389/fmolb.2015.00029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3% of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold, and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
12
|
Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis. J Microbiol 2015; 53:330-6. [PMID: 25935304 DOI: 10.1007/s12275-015-4589-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
To identify novel virulence genes, a mutant library of Xanthomonas citri subsp. citri 29-1 was produced using EZ-Tn5 transposon and the mutants were inoculated into susceptible grapefruit. Forty mutants with altered virulence phenotypes were identified. Nine of the mutants showed a complete loss of citrus canker induction, and the other 31 mutants resulted in attenuated canker symptoms. Southern blot analysis revealed that each of the mutants carried a single copy of Tn5. The flanking sequence was identified by plasmid rescue and 18 different ORFs were identified in the genome sequence. Of these 18 ORFs, seven had not been previously associated with the virulence of X. citri subsp. citri and were therefore confirmed by complementation analysis. Real-time PCR analysis showed that the seven genes were upregulated when the bacteria were grown in citrus plants, suggesting that the expression of these genes was essential for canker development.
Collapse
|
13
|
Agostini F, Cirillo D, Livi CM, Delli Ponti R, Tartaglia GG. ccSOL omics: a webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics 2014; 30:2975-7. [PMID: 24990610 PMCID: PMC4184263 DOI: 10.1093/bioinformatics/btu420] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Summary: Here we introduce ccSOL omics, a webserver for large-scale calculations of protein solubility. Our method allows (i) proteome-wide predictions; (ii) identification of soluble fragments within each sequences; (iii) exhaustive single-point mutation analysis. Results: Using coil/disorder, hydrophobicity, hydrophilicity, β-sheet and α-helix propensities, we built a predictor of protein solubility. Our approach shows an accuracy of 79% on the training set (36 990 Target Track entries). Validation on three independent sets indicates that ccSOL omics discriminates soluble and insoluble proteins with an accuracy of 74% on 31 760 proteins sharing <30% sequence similarity. Availability and implementation:ccSOL omics can be freely accessed on the web at http://s.tartaglialab.com/page/ccsol_group. Documentation and tutorial are available at http://s.tartaglialab.com/static_files/shared/tutorial_ccsol_omics.html. Contact:gian.tartaglia@crg.es Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Federico Agostini
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Carmen Maria Livi
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Riccardo Delli Ponti
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain Gene Function and Evolution, Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|