1
|
Vallés-Saiz L, Ávila J, Hernández F. Lamivudine (3TC), a Nucleoside Reverse Transcriptase Inhibitor, Prevents the Neuropathological Alterations Present in Mutant Tau Transgenic Mice. Int J Mol Sci 2023; 24:11144. [PMID: 37446327 DOI: 10.3390/ijms241311144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The dysregulation of transposable elements contributes to neurodegenerative disorders. Previous studies have reported an increase in retrotransposon transcription in Drosophila models as well as in human tauopathies. In this context, we tested the possible protective effects of a reverse transcriptase inhibitor, namely lamivudine (also known as 3TC), in P301S mice, an animal model of Alzheimer's disease based on FTDP-17-tau overexpression. Transgenic P301S mice administered lamivudine through drinking water showed a decrease in the following histopathological marks typical of tauopathies: tau phosphorylation; inflammation; neuronal death; and hippocampal atrophy. Lamivudine treatment attenuated motor deficits (Rotarod test) and improved short-term memory (Y-maze test). To evaluate the role of tau in retrotransposition, we cotransfected HeLa cells with a plasmid containing a complete LINE-1 sequence and a neomycin reporter cassette designed for retrotransposition assays, and a plasmid with the tau sequence. LINE-1 insertion increased considerably in the cotransfection compared to the transfection without tau. In addition, lamivudine inhibited the insertion of LINE-1. Our data suggest that the progression of the tauopathy can be attenuated by the administration of lamivudine upon the first symptoms of neuropathology.
Collapse
Affiliation(s)
- Laura Vallés-Saiz
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
3
|
Campitelli LF, Yellan I, Albu M, Barazandeh M, Patel ZM, Blanchette M, Hughes TR. Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics 2022; 221:6584822. [PMID: 35552404 PMCID: PMC9252281 DOI: 10.1093/genetics/iyac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, with 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily. Here, we have coupled 2 levels of sequence reconstruction (at the level of whole genomes and L1 subfamilies) to reconstruct progenitor sequences for all human L1 subfamilies that are more functionally and phylogenetically plausible than existing models. Most of the reconstructed sequences are at or near the canonical length of L1s and encode uninterrupted ORFs with expected protein domains. We also show that the presence or absence of binding sites for KRAB-C2H2 Zinc Finger Proteins, even in ancient-reconstructed progenitor L1s, mirrors binding observed in human ChIP-exo experiments, thus extending the arms race and domestication model. RepeatMasker searches of the modern human genome suggest that the new models may be able to assign subfamily resolution identities to previously ambiguous L1 instances. The reconstructed L1 sequences will be useful for genome annotation and functional study of both L1 evolution and L1 contributions to host regulatory networks.
Collapse
Affiliation(s)
- Laura F Campitelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isaac Yellan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marjan Barazandeh
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zain M Patel
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mathieu Blanchette
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
4
|
Riba A, Fumagalli MR, Caselle M, Osella M. A Model-Driven Quantitative Analysis of Retrotransposon Distributions in the Human Genome. Genome Biol Evol 2021; 12:2045-2059. [PMID: 32986810 PMCID: PMC7750997 DOI: 10.1093/gbe/evaa201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons, DNA sequences capable of creating copies of themselves, compose about half of the human genome and played a central role in the evolution of mammals. Their current position in the host genome is the result of the retrotranscription process and of the following host genome evolution. We apply a model from statistical physics to show that the genomic distribution of the two most populated classes of retrotransposons in human deviates from random placement, and that this deviation increases with time. The time dependence suggests a major role of the host genome dynamics in shaping the current retrotransposon distributions. Focusing on a neutral scenario, we show that a simple model based on random placement followed by genome expansion and sequence duplications can reproduce the empirical retrotransposon distributions, even though more complex and possibly selective mechanisms can have contributed. Besides the inherent interest in understanding the origin of current retrotransposon distributions, this work sets a general analytical framework to analyze quantitatively the effects of genome evolutionary dynamics on the distribution of genomic elements.
Collapse
Affiliation(s)
| | - Maria Rita Fumagalli
- Institute of Biophysics - CNR, National Research Council, Genova, Italy.,Department of Environmental Science and Policy, Center for Complexity and Biosystems, University of Milan, Milano, Italy
| | - Michele Caselle
- Department of Physics and INFN, University of Torino, Torino, Italy
| | - Matteo Osella
- Department of Physics and INFN, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
6
|
Damert A. LINE-1 ORF1p does not determine substrate preference for human/orangutan SVA and gibbon LAVA. Mob DNA 2020; 11:27. [PMID: 32676128 PMCID: PMC7353768 DOI: 10.1186/s13100-020-00222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Non-autonomous VNTR (Variable Number of Tandem Repeats) composite retrotransposons – SVA (SINE-R-VNTR-Alu) and LAVA (L1-Alu-VNTR-Alu) – are specific to hominoid primates. SVA expanded in great apes, LAVA in gibbon. Both SVA and LAVA have been shown to be mobilized by the autonomous LINE-1 (L1)-encoded protein machinery in a cell-based assay in trans. The efficiency of human SVA retrotransposition in vitro has, however, been considerably lower than would be expected based on recent pedigree-based in vivo estimates. The VNTR composite elements across hominoids – gibbon LAVA, orangutan SVA_A descendants and hominine SVA_D descendants – display characteristic structures of the 5′ Alu-like domain and the VNTR. Different partner L1 subfamilies are currently active in each of the lineages. The possibility that the lineage-specific types of VNTR composites evolved in response to evolutionary changes in their autonomous partners, particularly in the nucleic acid binding L1 ORF1-encoded protein, has not been addressed. Results Here I report the identification and functional characterization of a highly active human SVA element using an improved mneo retrotransposition reporter cassette. The modified cassette (mneoM) minimizes splicing between the VNTR of human SVAs and the neomycin phosphotransferase stop codon. SVA deletion analysis provides evidence that key elements determining its mobilization efficiency reside in the VNTR and 5′ hexameric repeats. Simultaneous removal of the 5′ hexameric repeats and part of the VNTR has an additive negative effect on mobilization rates. Taking advantage of the modified reporter cassette that facilitates robust cross-species comparison of SVA/LAVA retrotransposition, I show that the ORF1-encoded proteins of the L1 subfamilies currently active in gibbon, orangutan and human do not display substrate preference for gibbon LAVA versus orangutan SVA versus human SVA. Finally, I demonstrate that an orangutan-derived ORF1p supports only limited retrotransposition of SVA/LAVA in trans, despite being fully functional in L1 mobilization in cis. Conclusions Overall, the analysis confirms SVA as a highly active human retrotransposon and preferred substrate of the L1-encoded protein machinery. Based on the results obtained in human cells coevolution of L1 ORF1p and VNTR composites does not appear very likely. The changes in orangutan L1 ORF1p that markedly reduce its mobilization capacity in trans might explain the different SVA insertion rates in the orangutan and hominine lineages, respectively.
Collapse
Affiliation(s)
- Annette Damert
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
7
|
Wagstaff BJ, Wang L, Lai S, Derbes RS, Roy-Engel AM. Reviving a 60 million year old LINE-1 element. GENE REPORTS 2018; 11:74-78. [PMID: 30221208 DOI: 10.1016/j.genrep.2018.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mobile elements have significantly impacted genome structure of most organisms. The continued activity of the mobile element, LINE-1 (L1), through time has contributed to the accumulation of over half a million L1 copies in the human genome. Most copies in the human genome belong to evolutionary older extinct L1s. Here we apply our previous published approach to "revive" the extinct L1 PA13A; an L1 family that was active about 60 million year ago (mya). The reconstructed L1PA13A is retrocompentent in culture, but shows a significantly lower level of activity in HeLa cells when compared to the modern L1 element (L1PA1) and a 40 million year old L1PA8. L1 elements code for two proteins (ORF1p and ORF2p) that are necessary for retrotransposition. Using PA13A-PA1 and PA13A-PA8 L1 chimeric elements, we determined that both the ORF1p and ORF2p contribute to the observed decrease in retrotransposition efficiency of L1PA13A. The lower retrotransposition rate of L1PA13A is consistent in both human and rodent cell lines. However, in rodent cells, the chimeric element L1PA:1-13 containing the modern L1PA1 ORF1p shows a recovery in the retrotransposition rate, suggestive that the L1PA13A ORF2p efficiently drives retrotransposition in these cells. The functionality of the L1PA13A ORF2p was further confirmed by demonstrating its ability to drive Alu retrotransposition in rodent cells. The variation in L1PA13A retrotransposition rates observed between rodent and human cells are suggestive that cellular environment significantly affects retrotransposition efficiency, which may be mediated through an interaction with ORF1p. Based on these observations, we speculate that the observed differences between cell lines may reflect an evolutionary adaptation of the L1 element to its host cell.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Linda Wang
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Susan Lai
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Rebecca S Derbes
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| |
Collapse
|
8
|
Sokolowski M, Chynces M, deHaro D, Christian CM, Belancio VP. Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans. Nucleic Acids Res 2017; 45:5294-5308. [PMID: 28431148 PMCID: PMC5605252 DOI: 10.1093/nar/gkx211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2017] [Indexed: 01/15/2023] Open
Abstract
Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events.
Collapse
Affiliation(s)
- Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - May Chynces
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Dawn deHaro
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Kines KJ, Sokolowski M, deHaro DL, Christian CM, Baddoo M, Smither ME, Belancio VP. The endonuclease domain of the LINE-1 ORF2 protein can tolerate multiple mutations. Mob DNA 2016; 7:8. [PMID: 27099633 PMCID: PMC4837594 DOI: 10.1186/s13100-016-0064-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/07/2016] [Indexed: 11/26/2022] Open
Abstract
Background Approximately 17 % of the human genome is comprised of the Long INterspersed Element-1 (LINE-1 or L1) retrotransposon, the only currently active autonomous family of retroelements. Though L1 elements have helped to shape mammalian genome evolution over millions of years, L1 activity can also be mutagenic and result in human disease. L1 expression has the potential to contribute to genomic instability via retrotransposition and DNA double-strand breaks (DSBs). Additionally, L1 is responsible for structural genomic variations induced by other transposable elements such as Alu and SVA, which rely on the L1 ORF2 protein for their propagation. Most of the genomic damage associated with L1 activity originates with the endonuclease domain of the ORF2 protein, which nicks the DNA in preparation for target-primed reverse transcription. Results Bioinformatic analysis of full-length L1 loci residing in the human genome identified numerous mutations in the amino acid sequence of the ORF2 endonuclease domain. Some of these mutations were found in residues which were predicted to be phosphorylation sites for cellular kinases. We mutated several of these putative phosphorylation sites in the ORF2 endonuclease domain and investigated the effect of these mutations on the function of the full-length ORF2 protein and the endonuclease domain (ENp) alone. Most of the single and multiple point mutations that were tested did not significantly impact expression of the full-length ORF2p, or alter its ability to drive Alu retrotransposition. Similarly, most of those same mutations did not significantly alter expression of ENp, or impair its ability to induce DNA damage and cause toxicity. Conclusions Overall, our data demonstrate that the full-length ORF2p or the ENp alone can tolerate several specific single and multiple point mutations in the endonuclease domain without significant impairment of their ability to support Alu mobilization or induce DNA damage, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0064-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Madison E Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
10
|
Christian CM, deHaro D, Kines KJ, Sokolowski M, Belancio VP. Identification of L1 ORF2p sequence important to retrotransposition using Bipartile Alu retrotransposition (BAR). Nucleic Acids Res 2016; 44:4818-34. [PMID: 27095191 PMCID: PMC4889948 DOI: 10.1093/nar/gkw277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/06/2016] [Indexed: 01/14/2023] Open
Abstract
Long Interspersed Element 1 (LINE-1 or L1) is capable of causing genomic instability through the activity of the L1 ORF2 protein (ORF2p). This protein contains endonuclease (EN) and reverse transcriptase (RT) domains that are necessary for the retrotransposition of L1 and the Short Interspersed Element (SINE) Alu. The functional importance of approximately 50% of the ORF2p molecule remains unknown, but some of these sequences could play a role in retrotransposition, or be necessary for the enzymatic activities of the EN and/or RT domains. Conventional approaches using the full-length, contiguous ORF2p make it difficult to study the involvement of these unannotated sequences in the function of L1 ORF2p. Our lab has developed a Bipartile Alu Retrotransposition (BAR) assay that relies on separate truncated ORF2p fragments: an EN-containing and an RT-containing fragment. We validated the utility of this method for studying the ORF2p function in retrotransposition by assessing the effect of expression levels and previously characterized mutations on BAR. Using BAR, we identified two pairs of amino acids important for retrotransposition, an FF and a WD. The WD appears to play a role in cDNA synthesis by the ORF2p molecule, despite being outside the canonical RT domain.
Collapse
Affiliation(s)
- Claiborne M Christian
- Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70130, USA
| | - Dawn deHaro
- Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70130, USA
| | - Kristine J Kines
- Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70130, USA
| | - Mark Sokolowski
- Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70130, USA
| | - Victoria P Belancio
- Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70130, USA
| |
Collapse
|
11
|
Servant G, Deininger PL. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front Genet 2016; 6:358. [PMID: 26779254 PMCID: PMC4700185 DOI: 10.3389/fgene.2015.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres.
Collapse
Affiliation(s)
| | - Prescott L. Deininger
- Tulane Cancer Center, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LAUSA
| |
Collapse
|
12
|
Damert A. Composite non-LTR retrotransposons in hominoid primates. Mob Genet Elements 2015; 5:67-71. [PMID: 26904376 DOI: 10.1080/2159256x.2015.1068906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022] Open
Abstract
Composite retrotransposons are widely distributed in the plant and animal kingdoms. Some of the most complex of these are found in hominoid primates. SVA, LAVA, PVA and FVA combine simple repeats, Alu fragments, a VNTR (Variable Number of Tandem Repeats) and variable 3' domains, which are, except for PVA, derived from other retrotransposons. Although a likely precursor of SVA-a "tailed VNTR" named SVA2-had been identified in the Rhesus genome, the exact sequence and mechanism of the assembly of this type of composite retrotransposon had been elusive. The discovery of LAVA, PVA and FVA in gibbons provided the opportunity to delineate the order of assembly of the components of VNTR-containing retrotransposons. Our recent analysis suggests that an extinct "Alu-SVA2" acquired variant 3' ends by splicing. In this commentary I will discuss the mode of assembly of VNTR composites in the context of their capacity to engage in alternative splicing to co-mobilize host RNA sequences and to become exonized. The second part will focus on structural determinants of VNTR composite retrotransposon mobilization in the context of lineage-specific expansion of particular families/subfamilies of these elements.
Collapse
Affiliation(s)
- Annette Damert
- Institute for Interdisciplinary Research in Bio-Nano-Sciences; Molecular Biology Center; Babes-Bolyai-University ; Cluj-Napoca, Romania
| |
Collapse
|
13
|
Lin X, Stenvang J, Rasmussen MH, Zhu S, Jensen NF, Tarpgaard LS, Yang G, Belling K, Andersen CL, Li J, Bolund L, Brünner N. The potential role of Alu Y in the development of resistance to SN38 (Irinotecan) or oxaliplatin in colorectal cancer. BMC Genomics 2015; 16:404. [PMID: 25997618 PMCID: PMC4440512 DOI: 10.1186/s12864-015-1552-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 04/17/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown. RESULTS We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of 'DNA methylation entropy' to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples. CONCLUSION Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.
Collapse
Affiliation(s)
- Xue Lin
- Department of Biomedicine, University of Aarhus, the Bartholin Building, DK-8000, Aarhus C, Denmark.
| | - Jan Stenvang
- Department of Veterinary Disease Biology, Section of Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, Strandboulevarden 49, Copenhagen, Denmark.
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgårdsvej 100, DK-8200, Aarhus N, Denmark.
| | - Shida Zhu
- BGI (Beijing Genomics Institute), Shenzhen, 518083, China.
| | - Niels Frank Jensen
- Department of Veterinary Disease Biology, Section of Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, Strandboulevarden 49, Copenhagen, Denmark.
| | - Line S Tarpgaard
- Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark.
| | - Guangxia Yang
- BGI (Beijing Genomics Institute), Shenzhen, 518083, China.
| | - Kirstine Belling
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgårdsvej 100, DK-8200, Aarhus N, Denmark.
| | - Jian Li
- Department of Biomedicine, University of Aarhus, the Bartholin Building, DK-8000, Aarhus C, Denmark.
- BGI (Beijing Genomics Institute), Shenzhen, 518083, China.
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Lars Bolund
- Department of Biomedicine, University of Aarhus, the Bartholin Building, DK-8000, Aarhus C, Denmark.
- BGI (Beijing Genomics Institute), Shenzhen, 518083, China.
| | - Nils Brünner
- Department of Veterinary Disease Biology, Section of Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, Strandboulevarden 49, Copenhagen, Denmark.
| |
Collapse
|
14
|
Hayano T, Yamada S, Hosomichi K, Nakaoka H, Yoshihara K, Adachi S, Kashima K, Tanaka K, Enomoto T, Inoue I. Identification of novel exonic mobile element insertions in epithelial ovarian cancers. Hum Genome Var 2015; 2:15030. [PMID: 27081539 PMCID: PMC4785551 DOI: 10.1038/hgv.2015.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 11/09/2022] Open
Abstract
Mobile elements comprise about half of the human genome. Three active mobile element families (L1, Alu, and SVA) possibly cause diseases such as cancer. We conducted mobile element insertion (MEI) profiling of 44 epithelial ovarian cancers using exome-sequencing data. We identified a total of 106 MEIs using the Mobster program, 8 of which were novel exonic MEIs.
Collapse
Affiliation(s)
- Takahide Hayano
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| | - Shiro Yamada
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| | | | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Kenichi Tanaka
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Niigata Medical Center Hospital, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics , Mishima, Japan
| |
Collapse
|
15
|
Lee J, Kim YJ, Mun S, Kim HS, Han K. Identification of human-specific AluS elements through comparative genomics. Gene 2014; 555:208-16. [PMID: 25447892 DOI: 10.1016/j.gene.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023]
Abstract
Mobile elements are responsible for ~45% of the human genome. Among them is the Alu element, accounting for 10% of the human genome (>1.1million copies). Several studies of Alu elements have reported that they are frequently involved in human genetic diseases and genomic rearrangements. In this study, we investigated the AluS subfamily, which is a relatively old Alu subfamily and has the highest copy number in primate genomes. Previously, a set of 263 human-specific AluS insertions was identified in the human genome. To validate these, we compared each of the human-specific AluS loci with its pre-insertion site in other primate genomes, including chimpanzee, gorilla, and orangutan. We obtained 24 putative human-specific AluS candidates via the in silico analysis and manual inspection, and then tried to verify them using PCR amplification and DNA sequencing. Through the PCR product sequencing, we were able to detect two instances of near-parallel Alu insertions in nearby sites that led to computational false negatives. Finally, we computationally and experimentally verified 23 human-specific AluS elements. We reported three alternative Alu insertion events, which are accompanied by filler DNA and/or Alu retrotransposition mediated-deletion. Bisulfite sequencing was carried out to examine DNA methylation levels of human-specific AluS elements. The results showed that fixed AluS elements are hypermethylated compared with polymorphic elements, indicating a possible relation between DNA methylation and Alu fixation in the human genome.
Collapse
Affiliation(s)
- Jae Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Yun-Ji Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan 330-714, Republic of Korea.
| |
Collapse
|
16
|
Kines KJ, Sokolowski M, deHaro DL, Christian CM, Belancio VP. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci. Nucleic Acids Res 2014; 42:10488-502. [PMID: 25143528 PMCID: PMC4176336 DOI: 10.1093/nar/gku687] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of the L1 retrotransposon can damage the genome through insertional mutagenesis and the generation of DNA double-strand breaks (DSBs). The majority of L1 loci in the human genome are 5'-truncated and therefore incapable of retrotransposition. While thousands of full-length L1 loci remain, most are retrotranspositionally-incompetent due to inactivating mutations. However, mutations leading to premature stop codons within the L1 ORF2 sequence may yield truncated proteins that retain a functional endonuclease domain. We demonstrate that some truncated ORF2 proteins cause varying levels of toxicity and DNA damage when chronically overexpressed in mammalian cells. Furthermore, transfection of some ORF2 constructs containing premature stop codons supported low levels of Alu retrotransposition, demonstrating the potential for select retrotranspositionally-incompetent L1 loci to generate genomic instability. This result suggests yet another plausible explanation for the relative success of Alu elements in populating the human genome. Our data suggest that a subset of retrotranspositionally-incompetent L1s, previously considered to be harmless to genomic integrity, may have the potential to cause chronic DNA damage by introducing DSBs and mobilizing Alu. These results imply that the number of known L1 loci in the human genome that potentially threaten its stability may not be limited to the retrotranspositionally active loci.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Yang L, Brunsfeld J, Scott L, Wichman H. Reviving the dead: history and reactivation of an extinct l1. PLoS Genet 2014; 10:e1004395. [PMID: 24968166 PMCID: PMC4072516 DOI: 10.1371/journal.pgen.1004395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Although L1 sequences are present in the genomes of all placental mammals and marsupials examined to date, their activity was lost in the megabat family, Pteropodidae, ∼24 million years ago. To examine the characteristics of L1s prior to their extinction, we analyzed the evolutionary history of L1s in the genome of a megabat, Pteropus vampyrus, and found a pattern of periodic L1 expansion and quiescence. In contrast to the well-characterized L1s in human and mouse, megabat genomes have accommodated two or more simultaneously active L1 families throughout their evolutionary history, and major peaks of L1 deposition into the genome always involved multiple families. We compared the consensus sequences of the two major megabat L1 families at the time of their extinction to consensus L1s of a variety of mammalian species. Megabat L1s are comparable to the other mammalian L1s in terms of adenosine content and conserved amino acids in the open reading frames (ORFs). However, the intergenic region (IGR) of the reconstructed element from the more active family is dramatically longer than the IGR of well-characterized human and mouse L1s. We synthesized the reconstructed element from this L1 family and tested the ability of its components to support retrotransposition in a tissue culture assay. Both ORFs are capable of supporting retrotransposition, while the IGR is inhibitory to retrotransposition, especially when combined with either of the reconstructed ORFs. We dissected the inhibitory effect of the IGR by testing truncated and shuffled versions and found that length is a key factor, but not the only one affecting inhibition of retrotransposition. Although the IGR is inhibitory to retrotransposition, this inhibition does not account for the extinction of L1s in megabats. Overall, the evolution of the L1 sequence or the quiescence of L1 is unlikely the reason of L1 extinction.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - John Brunsfeld
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Holly Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
18
|
RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:424726. [PMID: 23984183 PMCID: PMC3747384 DOI: 10.1155/2013/424726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
Abstract
A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution.
Collapse
|
19
|
Abstract
We analyzed 83 fully sequenced great ape genomes for mobile element insertions, predicting a total of 49,452 fixed and polymorphic Alu and long interspersed element 1 (L1) insertions not present in the human reference assembly and assigning each retrotransposition event to a different time point during great ape evolution. We used these homoplasy-free markers to construct a mobile element insertions-based phylogeny of humans and great apes and demonstrate their differential power to discern ape subspecies and populations. Within this context, we find a good correlation between L1 diversity and single-nucleotide polymorphism heterozygosity (r(2) = 0.65) in contrast to Alu repeats, which show little correlation (r(2) = 0.07). We estimate that the "rate" of Alu retrotransposition has differed by a factor of 15-fold in these lineages. Humans, chimpanzees, and bonobos show the highest rates of Alu accumulation--the latter two since divergence 1.5 Mya. The L1 insertion rate, in contrast, has remained relatively constant, with rates differing by less than a factor of three. We conclude that Alu retrotransposition has been the most variable form of genetic variation during recent human-great ape evolution, with increases and decreases occurring over very short periods of evolutionary time.
Collapse
|