1
|
Shirak A, Curzon AY, Seroussi E, Gershoni M. Negative Selection in Oreochromis niloticus × O. aureus Hybrids Indicates Incompatible Oxidative Phosphorylation (OXPHOS) Proteins. Int J Mol Sci 2025; 26:2089. [PMID: 40076713 PMCID: PMC11900210 DOI: 10.3390/ijms26052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Crossing Oreochromis niloticus (On) females with O. aureus (Oa) males results in all-male progeny that are essential for effective tilapia aquaculture. However, a reproductive barrier between these species prevents commercial-scale yield. To achieve all-male progeny, the currently used practice is crossing admixed stocks and feeding fry with synthetic androgens. Hybrid tilapias escaping to the wild might impact natural populations. Hybrids competing with wild populations undergo selection for different stressors, e.g., oxygen levels, salinity, and low-temperature tolerance. Forming mitochondrial oxidative phosphorylation (OXPHOS) complexes, mitochondrial (mtDNA) and nuclear DNA (nDNA)-encoded proteins control energy production. Crossbred tilapia have been recorded over 60 years, providing an excellent model for assessing incompatibility between OXPHOS proteins, which are critical for the adaptation of these hybrids. Here, by comparing nonconserved amino acid substitutions, across 116 OXPHOS proteins, between On and Oa, we developed a panel of 13 species-specific probes. Screening 162 SRA experiments, we noted that 39.5% had a hybrid origin with mtDNA-nDNA allele mismatches. Observing that the frequency of interspecific mtDNA-nDNA allele combinations was significantly (p < 10-4) lower than expected for three factors, UQCRC2, ATP5C1, and COX4B, we concluded that these findings likely indicated negative selection, cytonuclear incompatibility, and a reproductive barrier.
Collapse
Affiliation(s)
- Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
| | - Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
| | - Moran Gershoni
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
| |
Collapse
|
2
|
Pang S, Zhang Q, Liang L, Qin Y, Li S, Bian X. Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae). INSECTS 2024; 15:413. [PMID: 38921128 PMCID: PMC11204050 DOI: 10.3390/insects15060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 bp, indicating double-stranded circular structures. The length of the control region was the main cause of the difference in mitochondrial genome length among the nine species. All the mitogenomes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (CR). The majority strand encoded 23 genes, and the minority strand encoded 14 genes. A phylogenetic analysis reaffirmed the monophyletic status of each subfamily, but the monophysitism of Xizicus, Xiphidiopsis and Phlugiolopsis was not supported.
Collapse
Affiliation(s)
- Siyu Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Qianwen Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Lili Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Yanting Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Shan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Xun Bian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
3
|
Weaver RJ, Rabinowitz S, Thueson K, Havird JC. Genomic Signatures of Mitonuclear Coevolution in Mammals. Mol Biol Evol 2022; 39:6775223. [PMID: 36288802 PMCID: PMC9641969 DOI: 10.1093/molbev/msac233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA.,Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA
| | | | - Kiley Thueson
- Department of Integrative Biology, University of Texas, Austin, TX
| | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX
| |
Collapse
|
4
|
Mikhailova AG, Mikhailova AA, Ushakova K, Tretiakov EO, Iliushchenko D, Shamansky V, Lobanova V, Kozenkov I, Efimenko B, Yurchenko AA, Kozenkova E, Zdobnov EM, Makeev V, Yurov V, Tanaka M, Gostimskaya I, Fleischmann Z, Annis S, Franco M, Wasko K, Denisov S, Kunz WS, Knorre D, Mazunin I, Nikolaev S, Fellay J, Reymond A, Khrapko K, Gunbin K, Popadin K. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucleic Acids Res 2022; 50:10264-10277. [PMID: 36130228 PMCID: PMC9561281 DOI: 10.1093/nar/gkac779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The mutational spectrum of the mitochondrial DNA (mtDNA) does not resemble any of the known mutational signatures of the nuclear genome and variation in mtDNA mutational spectra between different organisms is still incomprehensible. Since mitochondria are responsible for aerobic respiration, it is expected that mtDNA mutational spectrum is affected by oxidative damage. Assuming that oxidative damage increases with age, we analyse mtDNA mutagenesis of different species in regards to their generation length. Analysing, (i) dozens of thousands of somatic mtDNA mutations in samples of different ages (ii) 70053 polymorphic synonymous mtDNA substitutions reconstructed in 424 mammalian species with different generation lengths and (iii) synonymous nucleotide content of 650 complete mitochondrial genomes of mammalian species we observed that the frequency of AH > GH substitutions (H: heavy strand notation) is twice bigger in species with high versus low generation length making their mtDNA more AH poor and GH rich. Considering that AH > GH substitutions are also sensitive to the time spent single-stranded (TSSS) during asynchronous mtDNA replication we demonstrated that AH > GH substitution rate is a function of both species-specific generation length and position-specific TSSS. We propose that AH > GH is a mitochondria-specific signature of oxidative damage associated with both aging and TSSS.
Collapse
Affiliation(s)
- Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Alina A Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Kristina Ushakova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Evgeny O Tretiakov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamansky
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Valeria Lobanova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Ivan Kozenkov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Andrey A Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Elena Kozenkova
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vsevolod Makeev
- Vavilov Institute of General Genetics RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Valerian Yurov
- Institute of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Masashi Tanaka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Irina Gostimskaya
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Zoe Fleischmann
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Sofia Annis
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Melissa Franco
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Kevin Wasko
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Stepan Denisov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn, Bonn, Germany
| | - Dmitry Knorre
- The A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russian Federation
- Fomin Clinic, Moscow, Russian Federation
- Medical Genomics LLC, Moscow, Russian Federation
| | - Sergey Nikolaev
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Jacques Fellay
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Ma Y, Miao Y. Mitogenomic Comparison of the Mole Crickets Gryllotalpidae with the Phylogenetic Implications (Orthoptera: Ensifera). INSECTS 2022; 13:919. [PMID: 36292867 PMCID: PMC9604337 DOI: 10.3390/insects13100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Owing to limited molecular data, the phylogenetic position of the family Gryllotalpidae is still controversial in the infraorder Gryllidea. Mitochondrial genome (mitogenome) plays a crucial role in reconstructing phylogenetic relationships and revealing the molecular evolution of insects. However, only four mitogenomes have been reported in Gryllotalpidae to date. Herein, we obtained the first mitogenomes of Gryllotalpa henana Cai & Niu, 1998 and the Chinese G. orientalis Burmeister, 1838, made a detailed comparison of all mitogenomes available in Gryllotalpidae and reconstructed the phylogeny of Gryllidea based on mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. The results show that the complete mitogenome sequences of G. henana (15,504 bp) and G. orientalis (15,497 bp) are conserved, both exhibiting the double-stranded circular structure, typical gene content and the ancestral insect gene arrangement. The complete mitogenome of G.henana exhibits the lowest average AT content ever detected in Gryllotalpidae, and even Gryllidea. The gene nad2 of both species has atypical initiation codon GTG. All tRNAs exhibit typical clover-leaf structure, except for trnS1 lacking the dihydrouridine (DHU) arm. A potential stem-loop structure, containing a (T)n(TC)2(T)n sequence, is detected in the control region of all gryllotalpids investigated and is likely related to the replication initiation of the minority strand. The phylogenetic analyses recover the six families of Gryllidea as Gryllotalpidae + (Myrmecophilidae + (Mogoplistidae + (Trigonidiidae + (Phalangopsidae + Gryllidae)))), similar to the trees based on transcriptomic and mitogenomic data. However, the trees are slightly different from the multilocus phylogenies, which show the sister-group relationship of Gryllotalpidae and Myrmecophilidae. The contradictions between mitogenomic and multilocus trees are briefly discussed.
Collapse
|
6
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Liu N, Fang L, Zhang Y. The Complete Mitochondrial Genomes of Four Species in the Subfamily Limenitidinae (Lepidoptera, Nymphalidae) and a Phylogenetic Analysis. INSECTS 2021; 13:insects13010016. [PMID: 35055858 PMCID: PMC8781921 DOI: 10.3390/insects13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary As it is currently delineated, the subfamily Limenitidinae (Lepidoptera: Nymphalidae) is comprised of 50 genera with approximately 1100 species. The classification of this subfamily has always been unstable. There are tribes and genera whose status is doubtful. Their phylogenetic relationships are far from being clarified and the monophyly of some of them is under question. To provide further insight into the relationships among included tribes, four newly-completed mitochondrial genomes of Limenitidinae (Neptis thisbe, Athyma zeroca, and Aldania raddei) have been sequenced and analyzed. Results indicate that the gene orientation and arrangement are similar to typical mitogenomes in Lepidoptera. The inferred phylogenetic analysis shows that tribe levels are well-supported monophyletic groups. Taken together, this work will provide a well-resolved framework for future study of this subfamily. Abstract The complete mitogenomes of four species, Neptis thisbe, Neptis obscurior, Athyma zeroca, and Aldania raddei, were sequenced with sizes ranging from 15,172 bp (N. obscurior) to 16,348 bp (Al. raddei). All four mitogenomes display similar nucleotide content and codon usage of protein-coding genes (PCGs). Typical cloverleaf secondary structures are identified in 21 tRNA genes, while trnS1 (AGN) lacks the dihydrouridine (DHC) arm. The gene orientation and arrangement of the four mitogenomes are similar to that of other typical mitogenomes of Lepidoptera. The Ka/Ks ratio of 13 PCGs among 58 Limenitidinae species reveals that cox1 had the slowest evolutionary rate, while atp8 and nad6 exhibited a higher evolutionary rate. The phylogenetic analysis reveals that tribe-levels are well-supported monophyletic groups. Additionally, Maximum Likelihood analysis recovered the relationship (Parthenini + ((Chalingini + (Cymothoini + Neptini)) + (Adoliadini + Limenitidini))). However, a Bayesian analysis based on the same dataset recovered the relationship (Parthenini + (Adoliadini + ((Cymothoini + Neptini) + (Chalingini + Limenitidini)))). These results will offer valuable data for the future study of the phylogenetic relationships for Limenitidinae.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Lijun Fang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China;
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
- Correspondence: ; Tel.: +86-029-87092190
| |
Collapse
|
8
|
Piccinini G, Iannello M, Puccio G, Plazzi F, Havird JC, Ghiselli F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol Biol Evol 2021; 38:2597-2614. [PMID: 33616640 PMCID: PMC8136519 DOI: 10.1093/molbev/msab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Collapse
Affiliation(s)
- Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Nguyen TT, Planchard N, Dahan J, Arnal N, Balzergue S, Benamar A, Bertin P, Brunaud V, Dargel-Graffin C, Macherel D, Martin-Magniette ML, Quadrado M, Namy O, Mireau H. A Case of Gene Fragmentation in Plant Mitochondria Fixed by the Selection of a Compensatory Restorer of Fertility-Like PPR Gene. Mol Biol Evol 2021; 38:3445-3458. [PMID: 33878189 PMCID: PMC8321540 DOI: 10.1093/molbev/msab115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.
Collapse
Affiliation(s)
- Tan-Trung Nguyen
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Paris-Sud University, Université Paris-Saclay, Orsay, France
| | - Jennifer Dahan
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Nadège Arnal
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sandrine Balzergue
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Université d’Angers, Angers, France
| | - Abdelilah Benamar
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Université d’Angers, Angers, France
| | - Pierre Bertin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Macherel
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Université d’Angers, Angers, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
10
|
Munds RA, Titus CL, Moreira LAA, Eggert LS, Blomquist GE. Examining the molecular basis of coat color in a nocturnal primate family (Lorisidae). Ecol Evol 2021; 11:4442-4459. [PMID: 33976821 PMCID: PMC8093732 DOI: 10.1002/ece3.7338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
Organisms use color for camouflage, sexual signaling, or as a warning sign of danger. Primates are one of the most vibrantly colored Orders of mammals. However, the genetics underlying their coat color are poorly known, limiting our ability to study molecular aspects of its evolution. The role of the melanocortin 1 receptor (MC1R) in color evolution has been implicated in studies on rocket pocket mice (Chaetodipus intermediusi), toucans (Ramphastidae), and many domesticated animals. From these studies, we know that changes in MC1R result in a yellow/red or a brown/black morphology. Here, we investigate the evolution of MC1R in Lorisidae, a monophyletic nocturnal primate family, with some genera displaying high contrast variation in color patterns and other genera being monochromatic. Even more unique, the Lorisidae family has the only venomous primate: the slow loris (Nycticebus). Research has suggested that the contrasting coat patterns of slow lorises are aposematic signals for their venom. If so, we predict the MC1R in slow lorises will be under positive selection. In our study, we found that Lorisidae MC1R is under purifying selection (ω = 0.0912). In Lorisidae MC1R, there were a total of 75 variable nucleotides, 18 of which were nonsynonymous. Six of these nonsynonymous substitutions were found on the Perodicticus branch, which our reconstructions found to be the only member of Lorisidae that has predominantly lighter coat color; no substitutions were associated with Nycticebus. Our findings generate new insight into the genetics of pelage color and evolution among a unique group of nocturnal mammals and suggest putative underpinnings of monochromatic color evolution in the Perodicticus lineage.
Collapse
Affiliation(s)
- Rachel A. Munds
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryABCanada
- Nocturnal Primate Research GroupOxford Brookes UniversityOxfordUK
| | - Chelsea L. Titus
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Lais A. A. Moreira
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryABCanada
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
11
|
The role of selection in the evolution of marine turtles mitogenomes. Sci Rep 2020; 10:16953. [PMID: 33046778 PMCID: PMC7550602 DOI: 10.1038/s41598-020-73874-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022] Open
Abstract
Sea turtles are the only extant chelonian representatives that inhabit the marine environment. One key to successful colonization of this habitat is the adaptation to different energetic demands. Such energetic requirement is intrinsically related to the mitochondrial ability to generate energy through oxidative phosphorylation (OXPHOS) process. Here, we estimated Testudines phylogenetic relationships from 90 complete chelonian mitochondrial genomes and tested the adaptive evolution of 13 mitochondrial protein-coding genes of sea turtles to determine how natural selection shaped mitochondrial genes of the Chelonioidea clade. Complete mitogenomes showed strong support and resolution, differing at the position of the Chelonioidea clade in comparison to the turtle phylogeny based on nuclear genomic data. Codon models retrieved a relatively increased dN/dS (ω) on three OXPHOS genes for sea turtle lineages. Also, we found evidence of positive selection on at least three codon positions, encoded by NADH dehydrogenase genes (ND4 and ND5). The accelerated evolutionary rates found for sea turtles on COX2, ND1 and CYTB and the molecular footprints of positive selection found on ND4 and ND5 genes may be related to mitochondrial molecular adaptation to stress likely resulted from a more active lifestyle in sea turtles. Our study provides insight into the adaptive evolution of the mtDNA genome in sea turtles and its implications for the molecular mechanism of oxidative phosphorylation.
Collapse
|
12
|
Hill GE. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecol Evol 2020; 10:9048-9059. [PMID: 32953045 PMCID: PMC7487244 DOI: 10.1002/ece3.6640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding based on mitochondrial (mt) nucleotide sequences is an enigma. Neutral models of mt evolution predict DNA barcoding cannot work for recently diverged taxa, and yet, mt DNA barcoding accurately delimits species for many bilaterian animals. Meanwhile, mt DNA barcoding often fails for plants and fungi. I propose that because mt gene products must cofunction with nuclear gene products, the evolution of mt genomes is best understood with full consideration of the two environments that impose selective pressure on mt genes: the external environment and the internal genomic environment. Moreover, it is critical to fully consider the potential for adaptive evolution of not just protein products of mt genes but also of mt transfer RNAs and mt ribosomal RNAs. The tight linkage of genes on mt genomes that do not engage in recombination could facilitate selective sweeps whenever there is positive selection on any element in the mt genome, leading to the purging of mt genetic diversity within a population and to the rapid fixation of novel mt DNA sequences. Accordingly, the most important factor determining whether or not mt DNA sequences diagnose species boundaries may be the extent to which the mt chromosomes engage in recombination.
Collapse
|
13
|
Hill GE. Mitonuclear Compensatory Coevolution. Trends Genet 2020; 36:403-414. [PMID: 32396834 DOI: 10.1016/j.tig.2020.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Science, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA.
| |
Collapse
|
14
|
Vaught RC, Voigt S, Dobler R, Clancy DJ, Reinhardt K, Dowling DK. Interactions between cytoplasmic and nuclear genomes confer sex-specific effects on lifespan in Drosophila melanogaster. J Evol Biol 2020; 33:694-713. [PMID: 32053259 DOI: 10.1111/jeb.13605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Genetic variation outside of the cell nucleus can affect the phenotype. The cytoplasm is home to the mitochondria, and in arthropods often hosts intracellular bacteria such as Wolbachia. Although numerous studies have implicated epistatic interactions between cytoplasmic and nuclear genetic variation as mediators of phenotypic expression, two questions remain. Firstly, it remains unclear whether outcomes of cyto-nuclear interactions will manifest differently across the sexes, as might be predicted given that cytoplasmic genomes are screened by natural selection only through females as a consequence of their maternal inheritance. Secondly, the relative contribution of mitochondrial genetic variation to other cytoplasmic sources of variation, such as Wolbachia infection, in shaping phenotypic outcomes of cyto-nuclear interactions remains unknown. Here, we address these questions, creating a fully crossed set of replicated cyto-nuclear populations derived from three geographically distinct populations of Drosophila melanogaster, measuring the lifespan of males and females from each population. We observed that cyto-nuclear interactions shape lifespan and that the outcomes of these interactions differ across the sexes. Yet, we found no evidence that placing the cytoplasms from one population alongside the nuclear background of others (generating putative cyto-nuclear mismatches) leads to decreased lifespan in either sex. Although it was difficult to partition mitochondrial from Wolbachia effects, our results suggest at least some of the cytoplasmic genotypic contribution to lifespan was directly mediated by an effect of sequence variation in the mtDNA. Future work should explore the degree to which cyto-nuclear interactions result in sex differences in the expression of other components of organismal life history.
Collapse
Affiliation(s)
- Rebecca C Vaught
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Susanne Voigt
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - Ralph Dobler
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - David J Clancy
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | - Klaus Reinhardt
- Faculty of Biology, Applied Zoology, TU Dresden, Dresden, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Chang H, Qiu Z, Yuan H, Wang X, Li X, Sun H, Guo X, Lu Y, Feng X, Majid M, Huang Y. Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol Phylogenet Evol 2020; 145:106734. [PMID: 31972240 DOI: 10.1016/j.ympev.2020.106734] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022]
Abstract
Orthoptera is the most diverse order of polyneopterans, and the forewing and hindwing of its members exhibit extremely variability from full length to complete loss in many groups; thus, this order provides a good model for studying the effects of insect flight ability on the evolutionary constraints on and evolutionary rate of the mitochondrial genome. Based on a data set of mitochondrial genomes from 171 species, including 43 newly determined, we reconstructed Orthoptera phylogenetic relationships and estimated the divergence times of this group. The results supported Caelifera and Ensifera as two monophyletic groups, and revealed that Orthoptera originated in the Carboniferous (298.997 Mya). The date of divergence between the suborders Caelifera and Ensifera was 255.705 Mya, in the late Permian. The major lineages of Acrididae seemed to have radiated in the Cenozoic, and the six patterns of rearrangement of 171 Orthoptera mitogenomes mostly occurred in the Cretaceous and Cenozoic. Based on phylogenetic relationships and ancestral state reconstruction, we analysed the evolutionary selection pressure on and evolutionary rate of mitochondrial protein-coding genes (mPCGs). The results indicated that during approximately 300 Mya of evolution, these genes experienced purifying selection to maintain their function. Flightless orthopteran insects accumulated more non-synonymous mutations than flying species and experienced more relaxed evolutionary constraints. The different wing types had different evolutionary rates, and the mean evolutionary rate of Orthoptera mitochondrial mPCGs was 13.554 × 10-9 subs/s/y. The differences in selection pressures and evolutionary rates observed between the mitochondrial genomes suggested that functional constraints due to locomotion play an important role in the evolution of mitochondrial DNA in orthopteran insects with different wing types.
Collapse
Affiliation(s)
- Huihui Chang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhongying Qiu
- School of Basic Medical Sciences & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an 710021, China
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaoyang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Huimin Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaoqiang Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yingchun Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaolei Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
16
|
Johri P, Marinov GK, Doak TG, Lynch M. Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection. Genome Biol Evol 2019; 11:1398-1416. [PMID: 30980669 PMCID: PMC6505448 DOI: 10.1093/gbe/evz081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
The evolution of mitochondrial genomes and their population-genetic environment among unicellular eukaryotes are understudied. Ciliate mitochondrial genomes exhibit a unique combination of characteristics, including a linear organization and the presence of multiple genes with no known function or detectable homologs in other eukaryotes. Here we study the variation of ciliate mitochondrial genomes both within and across 13 highly diverged Paramecium species, including multiple species from the P. aurelia species complex, with four outgroup species: P. caudatum, P. multimicronucleatum, and two strains that may represent novel related species. We observe extraordinary conservation of gene order and protein-coding content in Paramecium mitochondria across species. In contrast, significant differences are observed in tRNA content and copy number, which is highly conserved in species belonging to the P. aurelia complex but variable among and even within the other Paramecium species. There is an increase in GC content from ∼20% to ∼40% on the branch leading to the P. aurelia complex. Patterns of polymorphism in population-genomic data and mutation-accumulation experiments suggest that the increase in GC content is primarily due to changes in the mutation spectra in the P. aurelia species. Finally, we find no evidence of recombination in Paramecium mitochondria and find that the mitochondrial genome appears to experience either similar or stronger efficacy of purifying selection than the nucleus.
Collapse
Affiliation(s)
- Parul Johri
- Department of Biology, Indiana University, Bloomington
| | - Georgi K Marinov
- Department of Biology, Indiana University, Bloomington.,Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington.,Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
17
|
Yan Z, Ye G, Werren JH. Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Mol Biol Evol 2019; 36:1022-1036. [PMID: 30785203 DOI: 10.1093/molbev/msz036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is a pivotal organelle for energy production, and includes components encoded by both the mitochondrial and nuclear genomes. Functional and evolutionary interactions are expected between the nuclear- and mitochondrial-encoded components. The topic is of broad interest in biology, with implications to genetics, evolution, and medicine. Here, we compare the evolutionary rates of mitochondrial proteins and ribosomal RNAs to rates of mitochondria-associated nuclear-encoded proteins, across the major orders of holometabolous insects. There are significant evolutionary rate correlations (ERCs) between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins, which are likely driven by different rates of mitochondrial sequence evolution and correlated changes in the interacting nuclear-encoded proteins. The pattern holds after correction for phylogenetic relationships and considering protein conservation levels. Correlations are stronger for both nuclear-encoded OXPHOS proteins that are in contact with mitochondrial OXPHOS proteins and for nuclear-encoded mitochondrial ribosomal amino acids directly contacting the mitochondrial rRNAs. We find that ERC between mitochondrial- and nuclear-encoded proteins is a strong predictor of nuclear-encoded proteins known to interact with mitochondria, and ERC shows promise for identifying new candidate proteins with mitochondrial function. Twenty-three additional candidate nuclear-encoded proteins warrant further study for mitochondrial function based on this approach, including proteins in the minichromosome maintenance helicase complex.
Collapse
Affiliation(s)
- Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Department of Biology, University of Rochester, Rochester, NY
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
18
|
Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev Camb Philos Soc 2019; 94:1089-1104. [PMID: 30588726 PMCID: PMC6613652 DOI: 10.1111/brv.12493] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, United States of America
| | - Justin C. Havird
- Department of Biology, Colorado State University, United States of America
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, United States of America
| | - Ronald S. Burton
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Hill GE. Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression. Integr Comp Biol 2019; 59:912-924. [DOI: 10.1093/icb/icz019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
The mitonuclear compatibility species concept defines a species as a population that is genetically isolated from other populations by uniquely coadapted mitochondrial (mt) and nuclear genes. A key prediction of this hypothesis is that the mt genotype of each species will be functionally distinct and that introgression of mt genomes will be prevented by mitonuclear incompatibilities that arise when heterospecific mt and nuclear genes attempt to cofunction to enable aerobic respiration. It has been proposed, therefore, that the observation of rampant introgression of mt genotypes from one species to another constitutes a strong refutation of the mitonuclear speciation. The displacement of a mt genotype from a nuclear background with which it co-evolved to a foreign nuclear background will necessarily lead to fitness loss due to mitonuclear incompatibilities. Here I consider two potential benefits of mt introgression between species that may, in some cases, overcome fitness losses arising from mitonuclear incompatibilities. First, the introgressed mt genotype may be better adapted to the local environment than the native mt genotype such that higher fitness is achieved through improved adaptation via introgression. Second, if the mitochondria of the recipient taxa carry a high mutational load, then introgression of a foreign, less corrupt mt genome may enable the recipient taxa to escape its mutational load and gain a fitness advantage. Under both scenarios, fitness gains from novel mt genotypes could theoretically compensate for the fitness that is lost via mitonuclear incompatibility. I also consider the role of endosymbionts in non-adaptive rampant introgression of mt genomes. I conclude that rampant introgression is not necessarily evidence against the idea of tight mitonuclear coadaptation or the mitonuclear compatibility species concept. Rampant mt introgression will typically lead to erasure of species but in some cases could lead to hybrid speciation.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA
| |
Collapse
|
20
|
Bernardo PH, Sánchez-Ramírez S, Sánchez-Pacheco SJ, Álvarez-Castañeda ST, Aguilera-Miller EF, Mendez-de la Cruz FR, Murphy RW. Extreme mito-nuclear discordance in a peninsular lizard: the role of drift, selection, and climate. Heredity (Edinb) 2019; 123:359-370. [PMID: 30833746 PMCID: PMC6781153 DOI: 10.1038/s41437-019-0204-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Nuclear and mitochondrial genomes coexist within cells but are subject to different tempos and modes of evolution. Evolutionary forces such as drift, mutation, selection, and migration are expected to play fundamental roles in the origin and maintenance of diverged populations; however, divergence may lag between genomes subject to different modes of inheritance and functional specialization. Herein, we explore whole mitochondrial genome data and thousands of nuclear single nucleotide polymorphisms to evidence extreme mito-nuclear discordance in the small black-tailed brush lizard, Urosaurus nigricaudus, of the Peninsula of Baja California, Mexico and southern California, USA, and discuss potential drivers. Results show three deeply divergent mitochondrial lineages dating back to the later Miocene (ca. 5.5 Ma) and Pliocene (ca. 2.8 Ma) that likely followed geographic isolation due to trans-peninsular seaways. This contrasts with very low levels of genetic differentiation in nuclear loci (FST < 0.028) between mtDNA lineages. Analyses of protein-coding genes reveal substantial fixed variation between mitochondrial lineages, of which a significant portion comes from non-synonymous mutations. A mixture of drift and selection is likely responsible for the rise of these mtDNA groups, albeit with little evidence of marked differences in climatic niche space between them. Finally, future investigations can look further into the role that mito-nuclear incompatibilities and mating systems play in explaining contrasting nuclear gene flow.
Collapse
Affiliation(s)
- Pedro Henrique Bernardo
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada. .,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada.
| | - Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Santiago J Sánchez-Pacheco
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | | | | | | | - Robert W Murphy
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| |
Collapse
|
21
|
Iannello M, Puccio G, Piccinini G, Passamonti M, Ghiselli F. The dynamics of mito-nuclear coevolution: A perspective from bivalve species with two different mechanisms of mitochondrial inheritance. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
22
|
Wang Q, Lu W, Yang J, Jiang L, Zhang Q, Kan X, Yang X. Comparative transcriptomics in three Passerida species provides insights into the evolution of avian mitochondrial complex I. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:27-36. [DOI: 10.1016/j.cbd.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
23
|
Koch RE, Phillips JM, Camus MF, Dowling DK. Maternal age effects on fecundity and offspring egg-to-adult viability are not affected by mitochondrial haplotype. Ecol Evol 2018; 8:10722-10732. [PMID: 30519401 PMCID: PMC6262919 DOI: 10.1002/ece3.4516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023] Open
Abstract
While numerous studies have demonstrated that mitochondrial genetic variation can shape organismal phenotype, the level of contribution the mitochondrial genotype makes to life-history phenotype across the life course remains unknown. Furthermore, a clear technical bias has emerged in studies of mitochondrial effects on reproduction, with many studies conducted on males, but few on females. Here, we apply a classic prediction of the evolutionary theory of aging to the mitochondrial genome, predicting the declining force of natural selection with age will have facilitated the accumulation of mtDNA mutations that confer late-life effects on female reproductive performance. This should lead to increased levels of mitochondrial genetic variation on reproduction at later-life stages. We tested this hypothesis using thirteen strains of Drosophila melanogaster that each possessed a different mitochondrial haplotype in an otherwise standard nuclear genetic background. We measured fecundity and egg-to-adult viability of females over five different age classes ranging from early to late life and quantified the survival of females throughout this time period. We found no significant variation across mitochondrial haplotypes for the reproductive traits, and no mitochondrial effect on the slope of decline in these traits with increasing age. However, we observed that flies that died earlier in the experiment experienced steeper declines in the reproductive traits prior to death, and we also identified maternal and grandparental age effects on the measured traits. These results suggest the mitochondrial variation does not make a key contribution to shaping the reproductive performance of females.
Collapse
Affiliation(s)
- Rebecca E. Koch
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - James M. Phillips
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - M. Florencia Camus
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Department of Genetics, Evolution and EnvironmentUniversity CollegeLondonUK
| | - Damian K. Dowling
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
24
|
Plazzi F, Passamonti M. Footprints of unconventional mitochondrial inheritance in bivalve phylogeny: Signatures of positive selection on clades with doubly uniparental inheritance. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
25
|
Botero-Castro F, Tilak MK, Justy F, Catzeflis F, Delsuc F, Douzery EJP. In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biol Evol 2018; 10:2218-2239. [PMID: 29931241 PMCID: PMC6127110 DOI: 10.1093/gbe/evy120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.
Collapse
Affiliation(s)
- Fidel Botero-Castro
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - François Catzeflis
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
26
|
Chen J, Ni P, Tran Thi TN, Kamaldinov EV, Petukhov VL, Han J, Liu X, Šprem N, Zhao S. Selective constraints in cold-region wild boars may defuse the effects of small effective population size on molecular evolution of mitogenomes. Ecol Evol 2018; 8:8102-8114. [PMID: 30250687 PMCID: PMC6144961 DOI: 10.1002/ece3.4221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Spatial range expansion during population colonization is characterized by demographic events that may have significant effects on the efficiency of natural selection. Population genetics suggests that genetic drift brought by small effective population size (Ne) may undermine the efficiency of selection, leading to a faster accumulation of nonsynonymous mutations. However, it is still unknown whether this effect might be balanced or even reversed by strong selective constraints. Here, we used wild boars and local domestic pigs from tropical (Vietnam) and subarctic region (Siberia) as animal model to evaluate the effects of functional constraints and genetic drift on shaping molecular evolution. The likelihood-ratio test revealed that Siberian clade evolved significantly different from Vietnamese clades. Different datasets consistently showed that Siberian wild boars had lower Ka/Ks ratios than Vietnamese samples. The potential role of positive selection for branches with higher Ka/Ks was evaluated using branch-site model comparison. No signal of positive selection was found for the higher Ka/Ks in Vietnamese clades, suggesting the interclade difference was mainly due to the reduction in Ka/Ks for Siberian samples. This conclusion was further confirmed by the result from a larger sample size, among which wild boars from northern Asia (subarctic and nearby region) had lower Ka/Ks than those from southern Asia (temperate and tropical region). The lower Ka/Ks might be due to either stronger functional constraints, which prevent nonsynonymous mutations from accumulating in subarctic wild boars, or larger Ne in Siberian wild boars, which can boost the efficacy of purifying selection to remove functional mutations. The latter possibility was further ruled out by the Bayesian skyline plot analysis, which revealed that historical Ne of Siberian wild boars was smaller than that of Vietnamese wild boars. Altogether, these results suggest stronger functional constraints acting on mitogenomes of subarctic wild boars, which may provide new insights into their local adaptation of cold resistance.
Collapse
Affiliation(s)
- Jianhai Chen
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| | - Pan Ni
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| | - Thuy Nhien Tran Thi
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
- National Institute of Animal SciencesHanoiVietnam
| | - Evgeniy Varisovich Kamaldinov
- Federal State Budgetary Educational Institution of Higher EducationNovosibirsk State Agrarian UniversityNovosibirskRussia
| | - Valeriy Lavrentyevich Petukhov
- Federal State Budgetary Educational Institution of Higher EducationNovosibirsk State Agrarian UniversityNovosibirskRussia
| | - Jianlin Han
- International Livestock Research Institute (ILRI)NairobiKenya
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiangdong Liu
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| | - Nikica Šprem
- Department of Fisheries, Beekeeping, Game Management and Special ZoologyFaculty of AgricultureUniversity of ZagrebZagrebCroatia
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics and BreedingMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
27
|
Tilquin A, Christie JR, Kokko H. Mitochondrial complementation: a possible neglected factor behind early eukaryotic sex. J Evol Biol 2018; 31:1152-1164. [DOI: 10.1111/jeb.13293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/17/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Anaïs Tilquin
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
- Finnish Centre of Excellence in Biological Interactions; Jyväskylä Finland
| | - Joshua R. Christie
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
- Finnish Centre of Excellence in Biological Interactions; Jyväskylä Finland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
- Finnish Centre of Excellence in Biological Interactions; Jyväskylä Finland
| |
Collapse
|
28
|
Havird JC, Trapp P, Miller CM, Bazos I, Sloan DB. Causes and Consequences of Rapidly Evolving mtDNA in a Plant Lineage. Genome Biol Evol 2018; 9:323-336. [PMID: 28164243 PMCID: PMC5381668 DOI: 10.1093/gbe/evx010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding mechanisms of coevolution between nuclear and mitochondrial (mt) genomes is a defining challenge in eukaryotic genetics. The angiosperm genus Silene is a natural system to investigate the causes and consequences of mt mutation rate variation because closely related species have highly divergent rates. In Silene species with fast-evolving mtDNA, nuclear genes that encode mitochondrially targeted proteins (N-mt genes) are also fast-evolving. This correlation could indicate positive selection to compensate for mt mutations, but might also result from a recent relaxation of selection. To differentiate between these interpretations, we used phylogenetic and population-genetic methods to test for positive and relaxed selection in three classes of N-mt genes (oxidative phosphorylation genes, ribosomal genes, and “RRR” genes involved in mtDNA recombination, replication, and repair). In all three classes, we found that species with fast-evolving mtDNA had: 1) elevated dN/dS, 2) an excess of nonsynonymous divergence relative to levels of intraspecific polymorphism, which is a signature of positive selection, and 3) no clear signals of relaxed selection. “Control” genes exhibited comparatively few signs of positive selection. These results suggest that high mt mutation rates can create selection on N-mt genes and that relaxed selection is an unlikely cause of recent accelerations in the evolution of N-mt genes. Because mt-RRR genes were found to be under positive selection, it is unlikely that elevated mt mutation rates in Silene were caused by inactivation of these mt-RRR genes. Therefore, the causes of extreme increases in angiosperm mt mutation rates remain uncertain.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Paul Trapp
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Ioannis Bazos
- Department of Ecology and Systematics, National and Kapodistrian University of Athens, Panepistimiopolis, Greece
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
29
|
Mitigating Mitochondrial Genome Erosion Without Recombination. Genetics 2017; 207:1079-1088. [PMID: 28893855 DOI: 10.1534/genetics.117.300273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed.
Collapse
|
30
|
Christie JR, Beekman M. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes. Mol Biol Evol 2017; 34:677-691. [PMID: 28025277 PMCID: PMC5896580 DOI: 10.1093/molbev/msw266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution.
Collapse
Affiliation(s)
- Joshua R Christie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Tavares WC, Seuánez HN. Disease-associated mitochondrial mutations and the evolution of primate mitogenomes. PLoS One 2017; 12:e0177403. [PMID: 28510580 PMCID: PMC5433710 DOI: 10.1371/journal.pone.0177403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Several human diseases have been associated with mutations in mitochondrial genes comprising a set of confirmed and reported mutations according to the MITOMAP database. An analysis of complete mitogenomes across 139 primate species showed that most confirmed disease-associated mutations occurred in aligned codon positions and gene regions under strong purifying selection resulting in a strong evolutionary conservation. Only two confirmed variants (7.1%), coding for the same amino acids accounting for severe human diseases, were identified without apparent pathogenicity in non-human primates, like the closely related Bornean orangutan. Conversely, reported disease-associated mutations were not especially concentrated in conserved codon positions, and a large fraction of them occurred in highly variable ones. Additionally, 88 (45.8%) of reported mutations showed similar variants in several non-human primates and some of them have been present in extinct species of the genus Homo. Considering that recurrent mutations leading to persistent variants throughout the evolutionary diversification of primates are less likely to be severely damaging to fitness, we suggest that these 88 mutations are less likely to be pathogenic. Conversely, 69 (35.9%) of reported disease-associated mutations occurred in extremely conserved aligned codon positions which makes them more likely to damage the primate mitochondrial physiology.
Collapse
Affiliation(s)
- William Corrêa Tavares
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héctor N. Seuánez
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
33
|
Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals. PLoS One 2016; 11:e0165072. [PMID: 27755612 PMCID: PMC5068742 DOI: 10.1371/journal.pone.0165072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.
Collapse
|
34
|
Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci U S A 2016; 113:E5416-24. [PMID: 27573819 DOI: 10.1073/pnas.1603910113] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the β-proteobacterium Tremblaya princeps These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.
Collapse
|
35
|
Havird JC, Sloan DB. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes. Mol Biol Evol 2016; 33:3042-3053. [PMID: 27563053 DOI: 10.1093/molbev/msw185] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotes rely on proteins encoded by the nuclear and mitochondrial (mt) genomes, which interact within multisubunit complexes such as oxidative-phosphorylation enzymes. Although selection is thought to be less efficient on the asexual mt genome, in bilaterian animals the ratio of nonsynonymous to synonymous substitutions (ω) is lower in mt- compared with nuclear-encoded OXPHOS subunits, suggesting stronger effects of purifying selection in the mt genome. Because high levels of gene expression constrain protein sequence evolution, one proposed resolution to this paradox is that mt genes are expressed more highly than nuclear genes. To test this hypothesis, we investigated expression and sequence evolution of mt and nuclear genes from 84 diverse eukaryotes that vary in mt gene content and mutation rate. We found that the relationship between mt and nuclear ω values varied dramatically across eukaryotes. In contrast, transcript abundance is consistently higher for mt genes than nuclear genes, regardless of which genes happen to be in the mt genome. Consequently, expression levels cannot be responsible for the differences in ω Rather, 84% of the variance in the ratio of ω values between mt and nuclear genes could be explained by differences in mutation rate between the two genomes. We relate these findings to the hypothesis that high rates of mt mutation select for compensatory changes in the nuclear genome. We also propose an explanation for why mt transcripts consistently outnumber their nuclear counterparts, with implications for mitonuclear protein imbalance and aging.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
36
|
Longo GC, O'Connell B, Green RE, Bernardi G. The complete mitochondrial genome of the black surfperch, Embiotoca jacksoni: Selection and substitution rates among surfperches (Embiotocidae). Mar Genomics 2016; 28:107-112. [DOI: 10.1016/j.margen.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
|
37
|
Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J. Recent demography drives changes in linked selection across the maize genome. NATURE PLANTS 2016; 2:16084. [PMID: 27294617 DOI: 10.1038/nplants.2016.84] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/12/2016] [Indexed: 05/14/2023]
Abstract
Genetic diversity is shaped by the interaction of drift and selection, but the details of this interaction are not well understood. The impact of genetic drift in a population is largely determined by its demographic history, typically summarized by its long-term effective population size (Ne). Rapidly changing population demographics complicate this relationship, however. To better understand how changing demography impacts selection, we used whole-genome sequencing data to investigate patterns of linked selection in domesticated and wild maize (teosinte). We produce the first whole-genome estimate of the demography of maize domestication, showing that maize was reduced to approximately 5% the population size of teosinte before it experienced rapid expansion post-domestication to population sizes much larger than its ancestor. Evaluation of patterns of nucleotide diversity in and near genes shows little evidence of selection on beneficial amino acid substitutions, and that the domestication bottleneck led to a decline in the efficiency of purifying selection in maize. Young alleles, however, show evidence of much stronger purifying selection in maize, reflecting the much larger effective size of present day populations. Our results demonstrate that recent demographic change-a hall-mark of many species including both humans and crops-can have immediate and wide-ranging impacts on diversity that conflict with expectations based on long-term Ne alone.
Collapse
Affiliation(s)
- Timothy M Beissinger
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Li Wang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Kate Crosby
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Arun Durvasula
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Genome Center and Center for Population Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
38
|
Price N, Graur D. Are Synonymous Sites in Primates and Rodents Functionally Constrained? J Mol Evol 2015; 82:51-64. [PMID: 26563252 DOI: 10.1007/s00239-015-9719-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
Abstract
It has been claimed that synonymous sites in mammals are under selective constraint. Furthermore, in many studies the selective constraint at such sites in primates was claimed to be more stringent than that in rodents. Given the larger effective population sizes in rodents than in primates, the theoretical expectation is that selection in rodents would be more effective than that in primates. To resolve this contradiction between expectations and observations, we used processed pseudogenes as a model for strict neutral evolution, and estimated selective constraint on synonymous sites using the rate of substitution at pseudosynonymous and pseudononsynonymous sites in pseudogenes as the neutral expectation. After controlling for the effects of GC content, our results were similar to those from previous studies, i.e., synonymous sites in primates exhibited evidence for higher selective constraint that those in rodents. Specifically, our results indicated that in primates up to 24% of synonymous sites could be under purifying selection, while in rodents synonymous sites evolved neutrally. To further control for shifts in GC content, we estimated selective constraint at fourfold degenerate sites using a maximum parsimony approach. This allowed us to estimate selective constraint using mutational patterns that cause a shift in GC content (GT ↔ TG, CT ↔ TC, GA ↔ AG, and CA ↔ AC) and ones that do not (AT ↔ TA and CG ↔ GC). Using this approach, we found that synonymous sites evolve neutrally in both primates and rodents. Apparent deviations from neutrality were caused by a higher rate of C → A and C → T mutations in pseudogenes. Such differences are most likely caused by the shift in GC content experienced by pseudogenes. We conclude that previous estimates according to which 20-40% of synonymous sites in primates were under selective constraint were most likely artifacts of the biased pattern of mutation.
Collapse
Affiliation(s)
- Nicholas Price
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Dan Graur
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| |
Collapse
|
39
|
Adrion JR, White PS, Montooth KL. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution. Mol Biol Evol 2015; 33:152-61. [PMID: 26416980 PMCID: PMC4693975 DOI: 10.1093/molbev/msv206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial protein translation requires interactions between transfer RNAs encoded by the mitochondrial genome (mt-tRNAs) and mitochondrial aminoacyl tRNA synthetase proteins (mt-aaRS) encoded by the nuclear genome. It has been argued that animal mt-tRNAs have higher deleterious substitution rates relative to their nuclear-encoded counterparts, the cytoplasmic tRNAs (cyt-tRNAs). This dynamic predicts elevated rates of compensatory evolution of mt-aaRS that interact with mt-tRNAs, relative to aaRS that interact with cyt-tRNAs (cyt-aaRS). We find that mt-aaRS do evolve at significantly higher rates (exemplified by higher dN and dN/dS) relative to cyt-aaRS, across mammals, birds, and Drosophila. While this pattern supports a model of compensatory evolution, the level at which a gene is expressed is a more general predictor of protein evolutionary rate. We find that gene expression level explains 10–56% of the variance in aaRS dN/dS, and that cyt-aaRS are more highly expressed in addition to having lower dN/dS values relative to mt-aaRS, consistent with more highly expressed genes being more evolutionarily constrained. Furthermore, we find no evidence of positive selection acting on either class of aaRS protein, as would be expected under a model of compensatory evolution. Nevertheless, the signature of faster mt-aaRS evolution persists in mammalian, but not bird or Drosophila, lineages after controlling for gene expression, suggesting some additional effect of compensatory evolution for mammalian mt-aaRS. We conclude that gene expression is the strongest factor governing differential amino acid substitution rates in proteins interacting with mitochondrial versus cytoplasmic factors, with important differences in mt-aaRS molecular evolution among taxonomic groups.
Collapse
Affiliation(s)
| | - P Signe White
- Department of Biology, Indiana University, Bloomington
| | | |
Collapse
|
40
|
Similar Efficacies of Selection Shape Mitochondrial and Nuclear Genes in Both Drosophila melanogaster and Homo sapiens. G3-GENES GENOMES GENETICS 2015; 5:2165-76. [PMID: 26297726 PMCID: PMC4592998 DOI: 10.1534/g3.114.016493] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deleterious mutations contribute to polymorphism even when selection effectively prevents their fixation. The efficacy of selection in removing deleterious mitochondrial mutations from populations depends on the effective population size (Ne) of the mitochondrial DNA and the degree to which a lack of recombination magnifies the effects of linked selection. Using complete mitochondrial genomes from Drosophila melanogaster and nuclear data available from the same samples, we reexamine the hypothesis that nonrecombining animal mitochondrial DNA harbor an excess of deleterious polymorphisms relative to the nuclear genome. We find no evidence of recombination in the mitochondrial genome, and the much-reduced level of mitochondrial synonymous polymorphism relative to nuclear genes is consistent with a reduction in Ne. Nevertheless, we find that the neutrality index, a measure of the excess of nonsynonymous polymorphism relative to the neutral expectation, is only weakly significantly different between mitochondrial and nuclear loci. This difference is likely the result of the larger proportion of beneficial mutations in X-linked relative to autosomal loci, and we find little to no difference between mitochondrial and autosomal neutrality indices. Reanalysis of published data from Homo sapiens reveals a similar lack of a difference between the two genomes, although previous studies have suggested a strong difference in both species. Thus, despite a smaller Ne, mitochondrial loci of both flies and humans appear to experience similar efficacies of purifying selection as do loci in the recombining nuclear genome.
Collapse
|
41
|
Weber CC, Nabholz B, Romiguier J, Ellegren H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol 2015; 15:542. [PMID: 25607475 PMCID: PMC4264323 DOI: 10.1186/s13059-014-0542-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
Background The ratio of the rates of non-synonymous and synonymous substitution (dN/dS) is commonly used to estimate selection in coding sequences. It is often suggested that, all else being equal, dN/dS should be lower in populations with large effective size (Ne) due to increased efficacy of purifying selection. As Ne is difficult to measure directly, life history traits such as body mass, which is typically negatively associated with population size, have commonly been used as proxies in empirical tests of this hypothesis. However, evidence of whether the expected positive correlation between body mass and dN/dS is consistently observed is conflicting. Results Employing whole genome sequence data from 48 avian species, we assess the relationship between rates of molecular evolution and life history in birds. We find a negative correlation between dN/dS and body mass, contrary to nearly neutral expectation. This raises the question whether the correlation might be a method artefact. We therefore in turn consider non-stationary base composition, divergence time and saturation as possible explanations, but find no clear patterns. However, in striking contrast to dN/dS, the ratio of radical to conservative amino acid substitutions (Kr/Kc) correlates positively with body mass. Conclusions Our results in principle accord with the notion that non-synonymous substitutions causing radical amino acid changes are more efficiently removed by selection in large populations, consistent with nearly neutral theory. These findings have implications for the use of dN/dS and suggest that caution is warranted when drawing conclusions about lineage-specific modes of protein evolution using this metric. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0542-8) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Polishchuk LV, Popadin KY, Baranova MA, Kondrashov AS. A genetic component of extinction risk in mammals. OIKOS 2015. [DOI: 10.1111/oik.01734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Leonard V. Polishchuk
- Dept of General Ecology; Biological Faculty, M.V. Lomonosov Moscow State Univ.; RU-119992 Moscow Russia
| | - Konstantin Y. Popadin
- Dept of Genetic Medicine and Development; Univ. of Geneva Medical School; 1 rue Michel-Servet CH-1211 Geneva Switzerland
- Inst. of Genetics and Genomics in Geneva (iGE3); CH-1211 Geneva Switzerland
- Inst. for Information Transmission Problems (Kharkevich Inst.), Russian Academy of Sciences; RU-127994 Moscow Russia
| | - Maria A. Baranova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State Univ.; RU-119992 Moscow Russia
| | - Aleksey S. Kondrashov
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State Univ.; RU-119992 Moscow Russia
- Life Sciences Inst. and Dept of Ecology and Evolutionary Biology; Univ. of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
43
|
Strohm JHT, Gwiazdowski RA, Hanner R. Fast fish face fewer mitochondrial mutations: Patterns of dN/dS across fish mitogenomes. Gene 2015; 572:27-34. [PMID: 26149654 DOI: 10.1016/j.gene.2015.06.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 01/26/2023]
Abstract
Mitochondrial DNA is routinely used to answer a variety of biological questions; and there is growing evidence suggesting that its accumulation of mutations is influenced by life history, effective population size and cellular energy requirements. This study examines the influence of phylogenetic patterns of metabolic activity on the evolution of mitochondrial DNA in fishes, given energy requirements associated with high performance versus sedentary life histories. It was determined that all 13 protein coding genes of the mitogenome experience a relaxation of purifying selection in sedentary fishes. This phenomenon was not detected in nuclear housekeeping genes, suggesting that it can be explained by the energy requirements of these groups, and possibly their effective population sizes. This study also examined the subunit binding sites of two subunits of cytochrome c oxidase (COXI and COXIII), and did not detect any differences in selection between these groups of fishes. These cytochrome c oxidase subunits interact with subunits that are encoded by the nuclear genome and it has been suggested that a unique form of coevolution occurs between these genomes in order to maintain function, and may have implications for speciation. Although this was not a main focus of this study, our preliminary results suggest that substitutions in subunit binding site regions are rare. The results from this study add to the growing literature on the complex relationship between mitochondrial DNA and the evolution of life histories across the tree of life.
Collapse
Affiliation(s)
- Jeff H T Strohm
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | - Rodger A Gwiazdowski
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert Hanner
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Ontario, Canada
| |
Collapse
|
44
|
Christie JR, Schaerf TM, Beekman M. Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria. PLoS Genet 2015; 11:e1005112. [PMID: 25880558 PMCID: PMC4400020 DOI: 10.1371/journal.pgen.1005112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/28/2015] [Indexed: 12/03/2022] Open
Abstract
Why are mitochondria almost always inherited from one parent during sexual reproduction? Current explanations for this evolutionary mystery include conflict avoidance between the nuclear and mitochondrial genomes, clearing of deleterious mutations, and optimization of mitochondrial-nuclear coadaptation. Mathematical models, however, fail to show that uniparental inheritance can replace biparental inheritance under any existing hypothesis. Recent empirical evidence indicates that mixing two different but normal mitochondrial haplotypes within a cell (heteroplasmy) can cause cell and organism dysfunction. Using a mathematical model, we test if selection against heteroplasmy can lead to the evolution of uniparental inheritance. When we assume selection against heteroplasmy and mutations are neither advantageous nor deleterious (neutral mutations), uniparental inheritance replaces biparental inheritance for all tested parameter values. When heteroplasmy involves mutations that are advantageous or deleterious (non-neutral mutations), uniparental inheritance can still replace biparental inheritance. We show that uniparental inheritance can evolve with or without pre-existing mating types. Finally, we show that selection against heteroplasmy can explain why some organisms deviate from strict uniparental inheritance. Thus, we suggest that selection against heteroplasmy explains the evolution of uniparental inheritance. Mitochondria contain genes that encode the machinery needed to power cells. Unlike the nuclear genome, the mitochondrial genome is typically inherited from one parent only (uniparental inheritance). The most common explanation for uniparental inheritance is the genomic conflict theory, which states that uniparental inheritance evolved to prevent the spread of ‘selfish’ mitochondria that replicate quickly but produce energy inefficiently. Current explanations have a major problem: when using realistic parameters, mathematical models cannot show that uniparental inheritance can replace biparental inheritance. Clearly, we need a new explanation that fits with standard population-genetic theory. Recent evidence suggests cells may incur a cost when they carry multiple types of mitochondria. Here we show mathematically that uniparental inheritance could have evolved to avoid the costs of maintaining multiple mitochondrial lineages within a cell. Our results explain the long-standing evolutionary mystery of uniparental inheritance and provide insight into the evolution of mating types and binary sexes. Selection against heteroplasmy also has implications for the evolution of the mitochondrial genome because new mitochondrial haplotypes always lead to heteroplasmy before becoming fixed in the population. Thus, selection against heteroplasmy may explain why mtDNA coding-genes have slower substitution rates than analogous genes within the nucleus.
Collapse
Affiliation(s)
- Joshua R. Christie
- School of Biological Sciences, The University of Sydney, Sydney, Australia
- Centre for Mathematical Biology, The University of Sydney, Sydney, Australia
- * E-mail:
| | - Timothy M. Schaerf
- School of Biological Sciences, The University of Sydney, Sydney, Australia
- Centre for Mathematical Biology, The University of Sydney, Sydney, Australia
| | - Madeleine Beekman
- School of Biological Sciences, The University of Sydney, Sydney, Australia
- Centre for Mathematical Biology, The University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Merker S, Thomas S, Völker E, Perwitasari-Farajallah D, Feldmeyer B, Streit B, Pfenninger M. Control region length dynamics potentially drives amino acid evolution in tarsier mitochondrial genomes. J Mol Evol 2014; 79:40-51. [PMID: 25008552 DOI: 10.1007/s00239-014-9631-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/19/2014] [Indexed: 11/25/2022]
Abstract
Patterns and processes of molecular evolution critically influence inferences in phylogeny and phylogeography. Within primates, a shift in evolutionary rates has been identified as the rationale for contrasting findings from mitochondrial and nuclear DNA studies as to the position of Tarsius. While the latter now seems settled, we sequenced complete mitochondrial genomes of three Sulawesi tarsiers (Tarsius dentatus, T. lariang, and T. wallacei) and analyzed substitution rates among tarsiers and other primates to infer driving processes of molecular evolution. We found substantial length polymorphism of the D-loop within tarsier individuals, but little variation of predominant lengths among them, regardless of species. Length variation was due to repetitive elements in the CSB domain-minisatellite motifs of 35 bp length and microsatellite motifs of 6 bp length. Amino acid evolutionary rates were second highest among major primate taxa relative to nucleotide substitution rates. We observed many radical possibly function-altering amino acid changes that were rarely driven by positive selection and thus potentially slightly deleterious or neutral. We hypothesize that the observed pattern of an increased amino acid evolutionary rate in tarsier mitochondrial genomes may be caused by hitchhiking of slightly deleterious mutations with favored D-loop length variants selected for maximizing replication success within the cell or the mitochondrion.
Collapse
Affiliation(s)
- Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany,
| | | | | | | | | | | | | |
Collapse
|
46
|
Positive selection along the evolution of primate mitogenomes. Mitochondrion 2013; 13:846-51. [PMID: 23756226 DOI: 10.1016/j.mito.2013.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 06/03/2013] [Indexed: 02/03/2023]
Abstract
The mitochondrial genomes of four neotropical primates, Aotus infulatus, Chiropotes israelita, Callimico goeldii and Callicebus lugens were sequenced and annotated. Phylogenetic reconstructions with mitochondrial genes of other 66 primates showed a similar arrangement to a topology based on nuclear genes. Screening for positive selection identified 15 codons in 7 genes along 9 independent lineages, three with two or more genes and five in internal nodes, ruling out false positive estimates. Mitochondrial genes of the electron transport chain (ETC.) complexes evolved with high substitution rates. A study of nuclear ETC. genes might elucidate whether they co-evolved with their mitochondrial counterparts.
Collapse
|