1
|
Voss G, Rosenthal JJC. High-level RNA editing diversifies the coleoid cephalopod brain proteome. Brief Funct Genomics 2023; 22:525-532. [PMID: 37981860 DOI: 10.1093/bfgp/elad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.
Collapse
Affiliation(s)
- Gjendine Voss
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| |
Collapse
|
2
|
Zolotarov G, Fromm B, Legnini I, Ayoub S, Polese G, Maselli V, Chabot PJ, Vinther J, Styfhals R, Seuntjens E, Di Cosmo A, Peterson KJ, Rajewsky N. MicroRNAs are deeply linked to the emergence of the complex octopus brain. SCIENCE ADVANCES 2022; 8:eadd9938. [PMID: 36427315 PMCID: PMC9699675 DOI: 10.1126/sciadv.add9938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
Soft-bodied cephalopods such as octopuses are exceptionally intelligent invertebrates with a highly complex nervous system that evolved independently from vertebrates. Because of elevated RNA editing in their nervous tissues, we hypothesized that RNA regulation may play a major role in the cognitive success of this group. We thus profiled messenger RNAs and small RNAs in three cephalopod species including 18 tissues of the Octopus vulgaris. We show that the major RNA innovation of soft-bodied cephalopods is an expansion of the microRNA (miRNA) gene repertoire. These evolutionarily novel miRNAs were primarily expressed in adult neuronal tissues and during the development and had conserved and thus likely functional target sites. The only comparable miRNA expansions happened, notably, in vertebrates. Thus, we propose that miRNAs are intimately linked to the evolution of complex animal brains.
Collapse
Affiliation(s)
- Grygoriy Zolotarov
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bastian Fromm
- UiT The Arctic University of Norway, Tromsø, Norway
- SciLifeLab, Stockholm University, Stockholm, Sweden
| | - Ivano Legnini
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Salah Ayoub
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Nikolaus Rajewsky
- Laboratory of Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| |
Collapse
|
3
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
4
|
Nachtigall PG, Bovolenta LA, Patton JG, Fromm B, Lemke N, Pinhal D. A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks. BMC Genomics 2021; 22:153. [PMID: 33663371 PMCID: PMC7931589 DOI: 10.1186/s12864-021-07441-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During vertebrate evolution, the heart has undergone remarkable changes that lead to morphophysiological differences in the fully formed heart of these species, such as chamber septation, heart rate frequency, blood pressure, and cardiac output volume. Despite these differences, the heart developmental process is guided by a core gene set conserved across vertebrates. Nonetheless, the regulatory mechanisms controlling the expression of genes involved in heart development and maintenance are largely uncharted. MicroRNAs (miRNAs) have been described as important regulatory elements in several biological processes, including heart biology. These small RNA molecules are broadly conserved in sequence and genomic context in metazoans. Mutations may occur in miRNAs and/or genes that contribute to the establishment of distinct repertoires of miRNA-target interactions, thereby favoring the differential control of gene expression and, consequently, the origin of novel phenotypes. In fact, several studies showed that miRNAs are integrated into genetic regulatory networks (GRNs) governing specific developmental programs and diseases. However, studies integrating miRNAs in vertebrate heart GRNs under an evolutionary perspective are still scarce. RESULTS We comprehensively examined and compared the heart miRNome of 20 species representatives of the five major vertebrate groups. We found 54 miRNA families with conserved expression and a variable number of miRNA families with group-specific expression in fishes, amphibians, reptiles, birds, and mammals. We also detected that conserved miRNAs present higher expression levels and a higher number of targets, whereas the group-specific miRNAs present lower expression levels and few targets. CONCLUSIONS Both the conserved and group-specific miRNAs can be considered modulators orchestrating the core and peripheral genes of heart GRNs of vertebrates, which can be related to the morphophysiological differences and similarities existing in the heart of distinct vertebrate groups. We propose a hypothesis to explain evolutionary differences in the putative functional roles of miRNAs in the heart GRNs analyzed. Furthermore, we present new insights into the molecular mechanisms that could be helping modulate the diversity of morphophysiology in the heart organ of vertebrate species.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório Especial de Toxinologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, Brazil. .,Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ney Lemke
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Huang X, Li S, Liu X, Huang S, Li S, Zhuo M. Analysis of conserved miRNAs in cynomolgus macaque genome using small RNA sequencing and homology searching. PeerJ 2020; 8:e9347. [PMID: 32728489 PMCID: PMC7357559 DOI: 10.7717/peerj.9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators that fine-tune diverse cellular activities. Cynomolgus macaques (Macaca fascicularis) are used extensively in biomedical and pharmaceutical research; however, substantially fewer miRNAs have been identified in this species than in humans. Consequently, we investigated conserved miRNA profiles in cynomolgus macaques by homology searching and small RNA sequencing. In total, 1,455 high-confidence miRNA gene loci were identified, 408 of which were also confirmed by RNA sequencing, including 73 new miRNA loci reported in cynomolgus macaques for the first time. Comparing miRNA expression with age, we found a positive correlation between sequence conservation and expression levels during miRNA evolution. Additionally, we found that the miRNA gene locations in cynomolgus macaque genome were very flexible. Most were embedded in intergenic spaces or introns and clustered together. Several miRNAs were found in certain gene locations, including 64 exon-resident miRNAs, six splice-site-overlapping miRNAs (SO-miRNAs), and two pairs of distinct mirror miRNAs. We also identified 78 miRNA clusters, 68 of which were conserved in the human genome, including 10 large miRNA clusters predicted to regulate diverse developmental and cellular processes in cynomolgus macaque. Thus, this study not only expands the number of identified miRNAs in cynomolgus macaques but also provides clues for future research on the differences in miRNA repertoire between macaques and humans.
Collapse
Affiliation(s)
- Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Liu
- Guangzhou Tulip Information Technologies Ltd., Guangzhou, Guangdong, China
| | - Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Warnock ND, Cox D, McCoy C, Morris R, Dalzell JJ. Transcriptional variation and divergence of host-finding behaviour in Steinernema carpocapsae infective juveniles. BMC Genomics 2019; 20:884. [PMID: 31752671 PMCID: PMC6868747 DOI: 10.1186/s12864-019-6179-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/10/2019] [Indexed: 11/15/2022] Open
Abstract
Background Steinernema carpocapsae is an entomopathogenic nematode that employs nictation and jumping behaviours to find potential insect hosts. Here we aimed to investigate the transcriptional basis of variant host-finding behaviours in the infective juvenile (IJ) stage of three S. carpocapsae strains (ALL, Breton and UK1), with a focus on neuronal genes known to influence behaviour in other nematode species. Identifying gene expression changes that correlate with variant host-finding behaviours will further our understanding of nematode biology. Results RNA-seq analysis revealed that whilst up to 28% of the S. carpocapsae transcriptome was differentially expressed (P < 0.0001) between strains, remarkably few of the most highly differentially expressed genes (> 2 log2 fold change, P < 0.0001) were from neuronal gene families. S. carpocapsae Breton displays increased chemotaxis toward the laboratory host Galleria mellonella, relative to the other strains. This correlates with the up-regulation of four srsx chemosensory GPCR genes, and a sodium transporter gene, asic-2, relative to both ALL and UK1 strains. The UK1 strain exhibits a decreased nictation phenotype relative to ALL and Breton strains, which correlates with co-ordinate up-regulation of neuropeptide like protein 36 (nlp-36), and down-regulation of an srt family GPCR gene, and a distinct asic-2-like sodium channel paralogue. To further investigate the link between transcriptional regulation and behavioural variation, we sequenced microRNAs across IJs of each strain. We have identified 283 high confidence microRNA genes, yielding 321 predicted mature microRNAs in S. carpocapsae, and find that up to 36% of microRNAs are differentially expressed (P < 0.0001) between strains. Many of the most highly differentially expressed microRNAs (> 2 log2 fold, P < 0.0001) are predicted to regulate a variety of neuronal genes that may contribute to variant host-finding behaviours. We have also found evidence for differential gene isoform usage between strains, which alters predicted microRNA interactions, and could contribute to the diversification of behaviour. Conclusions These data provide insight to the transcriptional basis of behavioural variation in S. carpocapsae, supporting efforts to understand the molecular basis of complex behaviours in nematodes.
Collapse
Affiliation(s)
- Neil D Warnock
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Deborah Cox
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Ciaran McCoy
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Robert Morris
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Johnathan J Dalzell
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
7
|
Kagawa T, Shirai Y, Oda S, Yokoi T. Identification of Specific MicroRNA Biomarkers in Early Stages of Hepatocellular Injury, Cholestasis, and Steatosis in Rats. Toxicol Sci 2019; 166:228-239. [PMID: 30125006 DOI: 10.1093/toxsci/kfy200] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently, studies on circulating microRNAs (miRNAs) as potential biomarkers of drug-induced liver injury (DILI) have received increasing attention. It has been demonstrated that miR-122 and miR-192, which are liver enriched, could be potential biomarkers of DILI; however, these miRNAs cannot discern types of injuries. In the present study, we comprehensively analyzed time-dependent plasma miRNA profiles in rats with drug- or chemical-induced hepatocellular injury, cholestasis, and steatosis with high-throughput miRNA sequencing. To enable the comparison of miRNA expression levels between DILI models with different severity and peak time of injuries, the stages of injury were defined as early, middle, and late, according to cluster patterns of miRNA expression profiles. Through differential analysis, we characterized miRNAs that were specifically up- or down-regulated in each DILI model. Several miRNAs were dramatically changed earlier than traditional biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). For example, in an acetaminophen (APAP)-induced hepatocellular injury model, plasma let-7b-5p was up-regulated as early as 3 h after dosing, whereas a significant change in ALT level was observed at 12 h. We then focused on the DILI type-specific miRNAs in plasma that were up-regulated at the early stage of injury. RT-qPCR analysis validated that let-7b-5p and miR-1-3p for hepatocellular injury, miR-143-3p and miR-218a-5p for cholestasis, and miR-320-3p for steatosis models showed significant increases in the early stage of the injuries. The present study suggests the utility of miRNAs as specific biomarkers for the early detection of DILI.
Collapse
Affiliation(s)
- Takumi Kagawa
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuji Shirai
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
8
|
miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol 2018; 77:87-100. [PMID: 30193893 PMCID: PMC6456721 DOI: 10.1016/j.matbio.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023]
Abstract
The Hedgehog (Hh) signalling pathway plays important roles during embryonic development and in adult tissue homeostasis, for example cartilage, where its deregulation can lead to osteoarthritis (OA). microRNAs (miRNAs) are important regulators of gene expression, and have been implicated in the regulation of signalling pathways, including Hh, thereby impacting upon development and disease. Our aim was to identify the function of miRNAs whose expression is altered in OA cartilage. Here we identified an increase in miR-324-5p expression in OA cartilage and hypothesised that, as in glioma, miR-324-5p would regulate Hh signalling. We determined that miR-324-5p regulates osteogenesis in human mesenchymal stem cells (MSCs) and in mouse C3H10T1/2 cells. Luciferase reporter assays demonstrated that miR-324-5p directly regulated established targets GLI1 and SMO in human but not in mouse, suggesting species-dependent mechanism of Hh pathway regulation. Stable Isotope Labelling with Amino acids in Cell culture (SILAC), mass spectrometry and whole genome transcriptome analysis identified Glypican 1 (Gpc1) as a novel miR-324-5p target in mouse, which was confirmed by real-time RT-PCR, immunoblotting and 3′UTR-luciferase reporters. Knockdown of Gpc1 reduced Hh pathway activity, and phenocopied the effect of miR-324-5p on osteogenesis, indicating that miR-324-5p regulates Hh signalling in mouse via direct targeting of Gpc1. Finally, we showed that human GPC1 is not a direct target of miR-324-5p. Importantly, as well as identifying novel regulation of Indian Hedgehog (Ihh) signalling, this study demonstrates how a miRNA can show conserved pathway regulation in two species but by distinct mechanisms and highlights important differences between human diseases and mouse models.
Collapse
|
9
|
Tarver JE, Taylor RS, Puttick MN, Lloyd GT, Pett W, Fromm B, Schirrmeister BE, Pisani D, Peterson KJ, Donoghue PCJ. Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss. Genome Biol Evol 2018; 10:1457-1470. [PMID: 29788279 PMCID: PMC6007596 DOI: 10.1093/gbe/evy096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
microRNAs are conserved noncoding regulatory factors implicated in diverse physiological and developmental processes in multicellular organisms, as causal macroevolutionary agents and for phylogeny inference. However, the conservation and phylogenetic utility of microRNAs has been questioned on evidence of pervasive loss. Here, we show that apparent widespread losses are, largely, an artefact of poorly sampled and annotated microRNAomes. Using a curated data set of animal microRNAomes, we reject the view that miRNA families are never lost, but they are rarely lost (92% are never lost). A small number of families account for a majority of losses (1.7% of families account for >45% losses), and losses are associated with lineages exhibiting phenotypic simplification. Phylogenetic analyses based on the presence/absence of microRNA families among animal lineages, and based on microRNA sequences among Osteichthyes, demonstrate the power of these small data sets in phylogenetic inference. Perceptions of widespread evolutionary loss of microRNA families are due to the uncritical use of public archives corrupted by spurious microRNA annotations, and failure to discriminate false absences that occur because of incomplete microRNAome annotation.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Richard S Taylor
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Mark N Puttick
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Graeme T Lloyd
- School of Earth and Environment, University of Leeds, United Kingdom
| | - Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Bettina E Schirrmeister
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Davide Pisani
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Philip C J Donoghue
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
10
|
Iwama H, Kato K, Imachi H, Murao K, Masaki T. Human microRNAs preferentially target genes with intermediate levels of expression and its formation by mammalian evolution. PLoS One 2018; 13:e0198142. [PMID: 29795674 PMCID: PMC5967834 DOI: 10.1371/journal.pone.0198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short, endogenous RNAs that post-transcriptionally repress mRNAs. Over the course of evolution, many new miRNAs are known to have emerged and added to the existing miRNA repertoires of drosophilids and vertebrates. Despite the large number of miRNAs in existence, the complementary pairing of only ~7 bases between miRNAs and mRNAs is sufficient to induce repression. Thus, miRNA targeting is so widespread that genes coexpressed with a miRNA have evolved to avoid sites that are targeted by the miRNA. Besides this avoidance, little is known about the preferential modes of miRNA targeting. Therefore, to elucidate miRNA targeting preference and avoidance, we evaluated the bias of the number of miRNA targeting occurrences in relation to expression intensities of miRNAs and their coexpressed target mRNAs by surveying transcriptome data from human organs. We found that miRNAs preferentially target genes with intermediate levels of expression, while avoiding highly expressed ones, and that older miRNAs have greater targeting specificity, suggesting that specificity increases during the course of evolution.
Collapse
Affiliation(s)
- Hisakazu Iwama
- Life Science Research Center, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Kiyohito Kato
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
11
|
miRNA in Rat Liver Sinusoidal Endothelial Cells and Hepatocytes and Application to Circulating Biomarkers that Discern Pathogenesis of Liver Injuries. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:916-928. [DOI: 10.1016/j.ajpath.2017.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/25/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
|
12
|
Primate-specific Long Non-coding RNAs and MicroRNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:187-195. [PMID: 28602844 PMCID: PMC5487532 DOI: 10.1016/j.gpb.2017.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/25/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Non-coding RNAs (ncRNAs) are critical regulators of gene expression in essentially all life forms. Long ncRNAs (lncRNAs) and microRNAs (miRNAs) are two important RNA classes possessing regulatory functions. Up to date, many primate-specific ncRNAs have been identified and investigated. Their expression specificity to primate lineage suggests primate-specific roles. It is thus critical to elucidate the biological significance of primate or even human-specific ncRNAs, and to develop potential ncRNA-based therapeutics. Here, we have summarized the studies regarding regulatory roles of some key primate-specific lncRNAs and miRNAs.
Collapse
|
13
|
França GS, Hinske LC, Galante PAF, Vibranovski MD. Unveiling the Impact of the Genomic Architecture on the Evolution of Vertebrate microRNAs. Front Genet 2017; 8:34. [PMID: 28377786 PMCID: PMC5359303 DOI: 10.3389/fgene.2017.00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes frequently exhibit interdependency between transcriptional units, as evidenced by regions of high gene density. It is well recognized that vertebrate microRNAs (miRNAs) are usually embedded in those regions. Recent work has shown that the genomic context is of utmost importance to determine miRNA expression in time and space, thus affecting their evolutionary fates over long and short terms. Consequently, understanding the inter- and intraspecific changes on miRNA genomic architecture may bring novel insights on the basic cellular processes regulated by miRNAs, as well as phenotypic evolution and disease-related mechanisms.
Collapse
Affiliation(s)
- Gustavo S França
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo São Paulo, Brazil
| | - Ludwig C Hinske
- Department of Anesthesiology, Clinic of the University of Munich, Ludwig Maximilian University of Munich Munich, Germany
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês São Paulo, Brazil
| | - Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
14
|
Koenig EM, Fisher C, Bernard H, Wolenski FS, Gerrein J, Carsillo M, Gallacher M, Tse A, Peters R, Smith A, Meehan A, Tirrell S, Kirby P. The beagle dog MicroRNA tissue atlas: identifying translatable biomarkers of organ toxicity. BMC Genomics 2016; 17:649. [PMID: 27535741 PMCID: PMC4989286 DOI: 10.1186/s12864-016-2958-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/21/2016] [Indexed: 01/28/2023] Open
Abstract
Background MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression patterns, miRNAs have the potential to be specific biomarkers of organ injury. The identification of miRNA biomarkers requires a systematic approach: 1) determine the miRNA tissue expression profiles within a mammalian species via next generation sequencing; 2) identify enriched and/or specific miRNA expression within organs of toxicologic interest, and 3) in vivo validation with tissue-specific toxicants. While miRNA tissue expression has been reported in rodents and humans, little data exists on miRNA tissue expression in the dog, a relevant toxicology species. The generation and evaluation of the first dog miRNA tissue atlas is described here. Results Analysis of 16 tissues from five male beagle dogs identified 106 tissue enriched miRNAs, 60 of which were highly enriched in a single organ, and thus may serve as biomarkers of organ injury. A proof of concept study in dogs dosed with hepatotoxicants evaluated a qPCR panel of 15 tissue enriched miRNAs specific to liver, heart, skeletal muscle, pancreas, testes, and brain. Dogs with elevated serum levels of miR-122 and miR-885 had a correlative increase of alanine aminotransferase, and microscopic analysis confirmed liver damage. Other non-liver enriched miRNAs included in the screening panel were unaffected. Eli Lilly authors created a complimentary Sprague Dawely rat miRNA tissue atlas and demonstrated increased pancreas enriched miRNA levels in circulation, following caerulein administration in rat and dog. Conclusion The dog miRNA tissue atlas provides a resource for biomarker discovery and can be further mined with refinement of dog genome annotation. The 60 highly enriched tissue miRNAs identified within the dog miRNA tissue atlas could serve as diagnostic biomarkers and will require further validation by in vivo correlation to histopathology. Once validated, these tissue enriched miRNAs could be combined into a powerful qPCR screening panel to identify organ toxicity during early drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2958-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik M Koenig
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Craig Fisher
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Hugues Bernard
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Francis S Wolenski
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Joseph Gerrein
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Mary Carsillo
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Matt Gallacher
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Aimy Tse
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Rachel Peters
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Aaron Smith
- Eli Lilly and Company, 893 S. Delaware, Indianapolis, IN, 46285, USA
| | - Alexa Meehan
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Stephen Tirrell
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Patrick Kirby
- Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Santpere G, Lopez-Valenzuela M, Petit-Marty N, Navarro A, Espinosa-Parrilla Y. Differences in molecular evolutionary rates among microRNAs in the human and chimpanzee genomes. BMC Genomics 2016; 17:528. [PMID: 27474039 PMCID: PMC4966751 DOI: 10.1186/s12864-016-2863-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
Background The rise of the primate lineage is accompanied by an outstanding emergence of microRNAs, small non-coding RNAs with a prominent role in gene regulation. In spite of their biological importance little is known about the way in which natural selection has influenced microRNAs in the human lineage. To study the recent evolutionary history of human microRNAs and to analyze the signatures of natural selection in genomic regions harbouring microRNAs we have investigated the nucleotide substitution rates of 1,872 human microRNAs in the human and chimpanzee lineages. Results We produced a depurated set of microRNA alignments of human, chimpanzee and orang-utan orthologs combining BLAT and liftOver and selected 1,214 microRNA precursors presenting optimal secondary structures. We classified microRNAs in categories depending on their genomic organization, duplication status and conservation along evolution. We compared substitution rates of the aligned microRNAs between human and chimpanzee using Tajima’s Relative Rate Test taking orang-utan as out-group and found several microRNAs with particularly high substitution rates in either the human or chimpanzee branches. We fitted different models of natural selection on these orthologous microRNA alignments and compared them using a likelihood ratio test that uses ancestral repeats and microRNA flanking regions as neutral sequences. We found that although a large fraction of human microRNAs is highly conserved among the three species studied, significant differences in rates of molecular evolution exist among microRNA categories. Particularly, primate-specific microRNAs, which are enriched in isolated and single copy microRNAs, more than doubled substitution rates of those belonging to older, non primate-specific microRNA families. Conclusions Our results corroborate the remarkable conservation of microRNAs, a proxy of their functional relevance, and indicate that a subset of human microRNAs undergo nucleotide substitutions at higher rates, which may be suggestive of the action of positive selection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Santpere
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra -CSIC), Barcelona, Catalonia, Spain.,Department of Neurobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maria Lopez-Valenzuela
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra -CSIC), Barcelona, Catalonia, Spain
| | - Natalia Petit-Marty
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra -CSIC), Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra -CSIC), Barcelona, Catalonia, Spain. .,Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. .,National Institute for Bioinformatics (INB), Barcelona, Catalonia, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Yolanda Espinosa-Parrilla
- Department of Experimental and Health Sciences, IBE, Institute of Evolutionary Biology, (Universitat Pompeu Fabra -CSIC), Barcelona, Catalonia, Spain. .,School of Medicine, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
16
|
Jovelin R, Krizus A, Taghizada B, Gray JC, Phillips PC, Claycomb JM, Cutter AD. Comparative genomic analysis of upstream miRNA regulatory motifs in Caenorhabditis. RNA (NEW YORK, N.Y.) 2016; 22:968-978. [PMID: 27140965 PMCID: PMC4911920 DOI: 10.1261/rna.055392.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Aldis Krizus
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Bakhtiyar Taghizada
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Oregon 97403, USA
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
17
|
Nozawa M, Fujimi M, Iwamoto C, Onizuka K, Fukuda N, Ikeo K, Gojobori T. Evolutionary Transitions of MicroRNA-Target Pairs. Genome Biol Evol 2016; 8:1621-33. [PMID: 27189995 PMCID: PMC4898806 DOI: 10.1093/gbe/evw092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
How newly generated microRNA (miRNA) genes are integrated into gene regulatory networks during evolution is fundamental in understanding the molecular and evolutionary bases of robustness and plasticity in gene regulation. A recent model proposed that after the birth of a miRNA, the miRNA is generally integrated into the network by decreasing the number of target genes during evolution. However, this decreasing model remains to be carefully examined by considering in vivo conditions. In this study, we therefore compared the number of target genes among miRNAs with different ages, combining experiments with bioinformatics predictions. First, we focused on three Drosophila miRNAs with different ages. As a result, we found that an older miRNA has a greater number of target genes than a younger miRNA, suggesting the increasing number of targets for each miRNA during evolution (increasing model). To further confirm our results, we also predicted all target genes for all miRNAs in D. melanogaster, considering co-expression of miRNAs and mRNAs in vivo. The results obtained also do not support the decreasing model but are reasonably consistent with the increasing model of miRNA-target pairs. Furthermore, our large-scale analyses of currently available experimental data of miRNA-target pairs also showed a weak but the same trend in humans. These results indicate that the current decreasing model of miRNA-target pairs should be reconsidered and the increasing model may be more appropriate to explain the evolutionary transitions of miRNA-target pairs in many organisms.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan Department of Genetics, SOKENDAI, Shizuoka, Japan
| | - Mai Fujimi
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Chie Iwamoto
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Kanako Onizuka
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Nana Fukuda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan Department of Genetics, SOKENDAI, Shizuoka, Japan
| | - Takashi Gojobori
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan King Abdullah University of Science and Technology, Computational Bioscience Research Center, Biological and Environmental Science and Engineering, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
França GS, Vibranovski MD, Galante PAF. Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nat Commun 2016; 7:11438. [PMID: 27109497 PMCID: PMC4848552 DOI: 10.1038/ncomms11438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has shown that recent miRNAs tend to emerge within coding genes. Here we conjecture that human miRNA evolution is tightly influenced by the genomic context, especially by host genes. Our findings show a preferential emergence of intragenic miRNAs within old genes. We found that miRNAs within old host genes are significantly more broadly expressed than those within young ones. Young miRNAs within old genes are more broadly expressed than their intergenic counterparts, suggesting that young miRNAs have an initial advantage by residing in old genes, and benefit from their hosts' expression control and from the exposure to diverse cellular contexts and target genes. Our results demonstrate that host genes may provide stronger expression constraints to intragenic miRNAs in the long run. We also report associated functional implications, highlighting the genomic context and host genes as driving factors for the expression and evolution of human miRNAs. Recent miRNAs tend to emerge within coding genes. Here, by analysing miRNA expression data from six species and comparing genomes from 13 species, the authors report that host genes may provide stronger expression constraints to intragenic miRNAs in the long run.
Collapse
Affiliation(s)
- Gustavo S França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matao 277, 05508-090 São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil
| |
Collapse
|
19
|
Functional Implications of Human-Specific Changes in Great Ape microRNAs. PLoS One 2016; 11:e0154194. [PMID: 27105073 PMCID: PMC4841587 DOI: 10.1371/journal.pone.0154194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species.
Collapse
|
20
|
Pignatelli M, Vilella AJ, Muffato M, Gordon L, White S, Flicek P, Herrero J. ncRNA orthologies in the vertebrate lineage. Database (Oxford) 2016; 2016:bav127. [PMID: 26980512 PMCID: PMC4792531 DOI: 10.1093/database/bav127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/07/2023]
Abstract
Annotation of orthologous and paralogous genes is necessary for many aspects of evolutionary analysis. Methods to infer these homology relationships have traditionally focused on protein-coding genes and evolutionary models used by these methods normally assume the positions in the protein evolve independently. However, as our appreciation for the roles of non-coding RNA genes has increased, consistently annotated sets of orthologous and paralogous ncRNA genes are increasingly needed. At the same time, methods such as PHASE or RAxML have implemented substitution models that consider pairs of sites to enable proper modelling of the loops and other features of RNA secondary structure. Here, we present a comprehensive analysis pipeline for the automatic detection of orthologues and paralogues for ncRNA genes. We focus on gene families represented in Rfam and for which a specific covariance model is provided. For each family ncRNA genes found in all Ensembl species are aligned using Infernal, and several trees are built using different substitution models. In parallel, a genomic alignment that includes the ncRNA genes and their flanking sequence regions is built with PRANK. This alignment is used to create two additional phylogenetic trees using the neighbour-joining (NJ) and maximum-likelihood (ML) methods. The trees arising from both the ncRNA and genomic alignments are merged using TreeBeST, which reconciles them with the species tree in order to identify speciation and duplication events. The final tree is used to infer the orthologues and paralogues following Fitch's definition. We also determine gene gain and loss events for each family using CAFE. All data are accessible through the Ensembl Comparative Genomics ('Compara') API, on our FTP site and are fully integrated in the Ensembl genome browser, where they can be accessed in a user-friendly manner. Database URL: http://www.ensembl.org.
Collapse
Affiliation(s)
- Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute
| | - Albert J Vilella
- European Molecular Biology Laboratory, European Bioinformatics Institute
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute
| | - Leo Gordon
- European Molecular Biology Laboratory, European Bioinformatics Institute
| | - Simon White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute UCL Cancer Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
Koufaris C. Human and primate-specific microRNAs in cancer: Evolution, and significance in comparison with more distantly-related research models. Bioessays 2016; 38:286-94. [DOI: 10.1002/bies.201500135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Costas Koufaris
- Department of Cytogenetics and Genomics; Cyprus institute of Neurology and Genetics; Nicosia Cyprus
| |
Collapse
|
22
|
Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet 2015; 49:213-42. [PMID: 26473382 DOI: 10.1146/annurev-genet-120213-092023] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database--MirGeneDB ( http://mirgenedb.org )--to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.
Collapse
Affiliation(s)
- Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research
| | - Tyler Billipp
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Liam E Peck
- Department of Biology and Health Sciences, New England College, Henniker, New Hampshire 03242
| | | | - James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Kildare, Ireland.,School of Earth Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom
| | - Benjamin L King
- Kathryn W. Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672
| | - James M Newcomb
- Department of Biology and Health Sciences, New England College, Henniker, New Hampshire 03242
| | - Lorenzo F Sempere
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research.,Department of Gastroenterological Surgery.,Institute of Clinical Medicine
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research.,Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, N-0424 Oslo, Norway.,Department of Informatics, University of Oslo, Blindern, N-0318 Oslo, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
23
|
Abstract
Micro-RNA (miRNA) genes encode abundant small regulatory RNAs that play key roles during development and in homeostasis by fine tuning and buffering gene expression. This layer of regulatory control over transcriptional networks is preserved by selection across deep evolutionary time, yet selection pressures on individual miRNA genes in contemporary populations remain poorly characterized in any organism. Here, we quantify nucleotide variability for 129 miRNAs in the genome of the nematode Caenorhabditis remanei to understand the microevolution of this important class of regulatory genes. Our analysis of three population samples and C. remanei's sister species revealed ongoing natural selection that constrains evolution of all sequence domains within miRNA hairpins. We also show that new miRNAs evolve faster than older miRNAs but that selection nevertheless favors their persistence. Despite the ongoing importance of purging of new mutations, we discover a trove of >400 natural miRNA sequence variants that include single nucleotide polymorphisms in seed motifs, indels that ablate miRNA functional domains, and origination of new miRNAs by duplication. Moreover, we demonstrate substantial nucleotide divergence of pre-miRNA hairpin alleles between populations and sister species. These findings from the first global survey of miRNA microevolution in Caenorhabditis support the idea that changes in gene expression, mediated through divergence in miRNA regulation, can contribute to phenotypic novelty and adaptation to specific environments in the present day as well as the distant past.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
24
|
Friedländer MR, Lizano E, Houben AJS, Bezdan D, Báñez-Coronel M, Kudla G, Mateu-Huertas E, Kagerbauer B, González J, Chen KC, LeProust EM, Martí E, Estivill X. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 2014; 15:R57. [PMID: 24708865 PMCID: PMC4054668 DOI: 10.1186/gb-2014-15-4-r57] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/07/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are established regulators of development, cell identity and disease. Although nearly two thousand human miRNA genes are known and new ones are continuously discovered, no attempt has been made to gauge the total miRNA content of the human genome. RESULTS Employing an innovative computational method on massively pooled small RNA sequencing data, we report 2,469 novel human miRNA candidates of which 1,098 are validated by in-house and published experiments. Almost 300 candidates are robustly expressed in a neuronal cell system and are regulated during differentiation or when biogenesis factors Dicer, Drosha, DGCR8 or Ago2 are silenced. To improve expression profiling, we devised a quantitative miRNA capture system. In a kidney cell system, 400 candidates interact with DGCR8 at transcript positions that suggest miRNA hairpin recognition, and 1,000 of the new miRNA candidates interact with Ago1 or Ago2, indicating that they are directly bound by miRNA effector proteins. From kidney cell CLASH experiments, in which miRNA-target pairs are ligated and sequenced, we observe hundreds of interactions between novel miRNAs and mRNA targets. The novel miRNA candidates are specifically but lowly expressed, raising the possibility that not all may be functional. Interestingly, the majority are evolutionarily young and overrepresented in the human brain. CONCLUSIONS In summary, we present evidence that the complement of human miRNA genes is substantially larger than anticipated, and that more are likely to be discovered in the future as more tissues and experimental conditions are sequenced to greater depth.
Collapse
Affiliation(s)
- Marc R Friedländer
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Esther Lizano
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Anna JS Houben
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Daniela Bezdan
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Genomic and Epigenomic Variation in Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Mónica Báñez-Coronel
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Elisabet Mateu-Huertas
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Birgit Kagerbauer
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Justo González
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Kevin C Chen
- Department of Genetics, Rutgers, State University of New Jersey, Frelinghuysen Road 174, Piscataway, NJ 08854, USA
- BioMaPS Institute for Quantitative Biology, Rutgers, State University of New Jersey, Frelinghuysen Road 174, Piscataway, NJ 08854, USA
| | - Emily M LeProust
- Genomics Solution Unit, Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Eulàlia Martí
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| | - Xavier Estivill
- Genomics and Disease Group, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain
- Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
| |
Collapse
|
25
|
Large Numbers of Novel miRNAs Originate from DNA Transposons and Are Coincident with a Large Species Radiation in Bats. Mol Biol Evol 2014; 31:1536-45. [DOI: 10.1093/molbev/msu112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
26
|
Desvignes T, Contreras A, Postlethwait JH. Evolution of the miR199-214 cluster and vertebrate skeletal development. RNA Biol 2014; 11:281-94. [PMID: 24643020 PMCID: PMC4075512 DOI: 10.4161/rna.28141] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRs) are short non-coding RNAs that fine-tune the regulation of gene expression to coordinate a wide range of biological processes. MicroRNAs are transcribed from miR genes and primary miR transcripts are processed to approximately 22 nucleotide single strand mature forms that function as repressors of transcript translation when bound to the 3'UTR of protein coding transcripts in association with the RISC. Because of their role in the regulation of gene expression, miRs are essential players in development by acting on cell fate determination and progression toward cell differentiation. The miR199 and miR214 genes occupy an intronic cluster located on the opposite strand of the Dynamin3 gene. These miRNAs play major roles in a broad variety of developmental processes and diseases, including skeletal development and several types of cancer. In the work reported here, we first deciphered the origin of the miR199 and miR214 families by following evolution of miR paralogs and their host Dynamin paralogs. We then examined the expression patterns of miR199 and miR214 in developing zebrafish embryos and demonstrated their regulation through a common primary transcript. Results suggest an evolutionarily conserved regulation across vertebrate lineages. Our expression study showed predominant expression patterns for both miR in tissues surrounding developing craniofacial skeletal elements consistent with expression data in mouse and human, thus indicating a conserved role of miR199 and miR214 in vertebrate skeletogenesis.
Collapse
Affiliation(s)
| | - Adam Contreras
- Institute of Neuroscience; University of Oregon; Eugene, OR USA
| | | |
Collapse
|
27
|
Jovelin R. Pleiotropic constraints, expression level, and the evolution of miRNA sequences. J Mol Evol 2013; 77:206-20. [PMID: 24100521 DOI: 10.1007/s00239-013-9588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3'UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada,
| |
Collapse
|