1
|
Tahir Ul Qamar M, Fatima K, Rao MJ, Tang Q, Sadaqat M, Ding B, Chen LL, Zhu XT. Comparative genomics profiling of Citrus species reveals the diversity and disease responsiveness of the GLP pangenes family. BMC PLANT BIOLOGY 2025; 25:388. [PMID: 40140737 PMCID: PMC11948695 DOI: 10.1186/s12870-025-06397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Citrus is an important nutritional fruit globally; however, its yield is affected by various stresses. This study presents the draft pangenome of Citrus, developed using 11 species to examine their genetic diversity and identify members of the germin-like proteins (GLPs) gene family involved in disease responsiveness. The developed sequence-based pangenome contains 954 Mb sequence and 74,755 genes. The comparative genomics analysis revealed the presence-absence variations (PAVs) among the Citrus genomes and species-specific protein-coding genes. Gene-based pangenome analysis revealed 4,936 new genes missing in the reference genome and highlighted the core and shell genes with putative functions in stress regulation. The pangenome-wide identification of GLP gene family members indicated the intraspecies diversity among the members across 11 genomes by analyzing their gene structure, motifs, and chromosomal distribution patterns. The synteny and evolutionary constraints analyses of Citrus GLPs provide detailed evidence of their evolutionary conservation and divergence. Further, the interaction, functional enrichment, and promoter analysis revealed their involvement in abiotic-, biotic-stress, signaling, and development-related pathways. The expression patterns of C. sinensis GLPs were studied in Huanglongbing (HLB) and Citrus canker disease. Several genes including CsGLPs1-2 and CsGLPs8-4 showed changes in expression patterns under both disease conditions. The qRT-PCR analysis revealed that these two genes were highly expressed in leaves infected with HLB disease across seven HLB-tolerant and susceptible citrus species. This Citrus pangenome and pangenes family study offers a comprehensive resource and new insights into the structural and functional diversity, identifying candidate genes that are important for future research to understand the stress-responsive mechanisms in Citrus.
Collapse
Affiliation(s)
- Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kinza Fatima
- College of Natural & Agricultural Sciences, University of California, Riverside, CA, 92521, USA
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Qian Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Muhammad Sadaqat
- UMR CNRS 6553 Ecosystèmes, Biodiversité, Evolution (ECOBIO), Université de Rennes 1, Rennes, France
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education and Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong, Shanxi, 037009, People's Republic of China
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Wang D, Wang H, Xu X, Wang M, Wang Y, Chen H, Ping F, Zhong H, Mu Z, Xie W, Li X, Feng J, Zhang M, Fan Z, Yang T, Zhao J, Liu B, Ruan Y, Zhang G, Liu C, Liu Z. Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice. Nat Commun 2023; 14:4531. [PMID: 37507369 PMCID: PMC10382596 DOI: 10.1038/s41467-023-40189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Understanding the evolutionary forces in speciation is a central goal in evolutionary biology. Asian cultivated rice has two subspecies, indica and japonica, but the underlying mechanism of the partial reproductive isolation between them remains obscure. Here we show a presence-absence variation (PAV) at the Se locus functions as an indica-japonica reproductive barrier by causing hybrid sterility (HS) in indica-japonica crosses. The locus comprises two adjacent genes: ORF3 encodes a sporophytic pollen killer, whereas ORF4 protects pollen in a gametophytic manner. In F1 of indica-japonica crosses, pollen with the japonica haplotype, which lacks the sequence containing the protective ORF4, is aborted due to the pollen-killing effect of ORF3 from indica. Evolutionary analysis suggests ORF3 is a gene associated with the Asian cultivated rice species complex, and the PAV has contributed to the reproductive isolation between the two subspecies of Asian cultivated rice. Our analyses provide perspectives on rice inter-subspecies post-zygotic isolation, and will promote efforts to overcome reproductive barriers in indica-japonica hybrid rice breeding.
Collapse
Affiliation(s)
- Daiqi Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomic Insitute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Xiaomei Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Man Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yahuan Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Fei Ping
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Huanhuan Zhong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhengkun Mu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Wantong Xie
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiangyu Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jingbin Feng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Milan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhilan Fan
- National Field Genebank for Wild Rice (Guangzhou), Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Tifeng Yang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Junliang Zhao
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ziqiang Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
3
|
Wei W, Wu X, Garcia A, McCoppin N, Viana JPG, Murad PS, Walker DR, Hartman GL, Domier LL, Hudson ME, Clough SJ. An NBS-LRR protein in the Rpp1 locus negates the dominance of Rpp1-mediated resistance against Phakopsora pachyrhizi in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:915-933. [PMID: 36424366 DOI: 10.1111/tpj.16038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The soybean Rpp1 locus confers resistance to Phakopsora pachyrhizi, causal agent of rust, and resistance is usually dominant over susceptibility. However, dominance of Rpp1-mediated resistance is lost when a resistant genotype (Rpp1 or Rpp1b) is crossed with susceptible line TMG06_0011, and the mechanism of this dominant susceptibility (DS) is unknown. Sequencing the Rpp1 region reveals that the TMG06_0011 Rpp1 locus has a single nucleotide-binding site leucine-rich repeat (NBS-LRR) gene (DS-R), whereas resistant PI 594760B (Rpp1b) is similar to PI 200492 (Rpp1) and has three NBS-LRR resistance gene candidates. Evidence that DS-R is the cause of DS was reflected in virus-induced gene silencing of DS-R in Rpp1b/DS-R or Rpp1/DS-R heterozygous plants with resistance partially restored. In heterozygous Rpp1b/DS-R plants, expression of Rpp1b candidate genes was not significantly altered, indicating no effect of DS-R on transcription. Physical interaction of the DS-R protein with candidate Rpp1b resistance proteins was supported by yeast two-hybrid studies and in silico modeling. Thus, we conclude that suppression of resistance most likely does not occur at the transcript level, but instead probably at the protein level, possibly with Rpp1 function inhibited by binding to the DS-R protein. The DS-R gene was found in other soybean lines, with an estimated allele frequency of 6% in a diverse population, and also found in wild soybean (Glycine soja). The identification of a dominant susceptible NBS-LRR gene provides insight into the behavior of NBS-LRR proteins and serves as a reminder to breeders that the dominance of an R gene can be influenced by a susceptibility allele.
Collapse
Affiliation(s)
- Wei Wei
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Xing Wu
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Ave # 266, New Haven, CT, 06511, USA
| | - Alexandre Garcia
- Tropical Melhoramento e Genética, LTDA, Rodovia Celso Garcia Cid, Km 87, Cambé, PR, CEP: 86183-600, Brazil
| | - Nancy McCoppin
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - João Paulo Gomes Viana
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Praerona S Murad
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - David R Walker
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Vasseur F, Westgeest AJ, Vile D, Violle C. Solving the grand challenge of phenotypic integration: allometry across scales. Genetica 2022; 150:161-169. [PMID: 35857239 PMCID: PMC9355930 DOI: 10.1007/s10709-022-00158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible-but so far neglected-solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.
Collapse
Affiliation(s)
- François Vasseur
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | | | - Denis Vile
- LEPSE, University Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Bush SJ, Murren CJ, Urrutia AO, Kover PX. Contrasting gene-level signatures of selection with reproductive fitness. Mol Ecol 2021; 31:1515-1526. [PMID: 34918851 PMCID: PMC9304172 DOI: 10.1111/mec.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic datasets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.
Collapse
Affiliation(s)
- Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA, 29424
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico, 04510, Mexico
| | - Paula X Kover
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
6
|
Yi C, Wang X, Chen Q, Callahan DL, Fournier-Level A, Whelan J, Jost R. Diverse phosphate and auxin transport loci distinguish phosphate tolerant from sensitive Arabidopsis accessions. PLANT PHYSIOLOGY 2021; 187:2656-2673. [PMID: 34636851 PMCID: PMC8644285 DOI: 10.1093/plphys/kiab441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 05/11/2023]
Abstract
Phosphorus (P) is an essential element for plant growth often limiting agroecosystems. To identify genetic determinants of performance under variable phosphate (Pi) supply, we conducted genome-wide association studies on five highly predictive Pi starvation response traits in 200 Arabidopsis (Arabidopsis thaliana) accessions. Pi concentration in Pi-limited organs had the strongest, and primary root length had the weakest genetic component. Of 70 trait-associated candidate genes, 17 responded to Pi withdrawal. The PHOSPHATE TRANSPORTER1 gene cluster on chromosome 5 comprises PHT1;1, PHT1;2, and PHT1;3 with known impact on P status. A second locus featured uncharacterized endomembrane-associated auxin efflux carrier encoding PIN-LIKES7 (PILS7) which was more strongly suppressed in Pi-limited roots of Pi-starvation sensitive accessions. In the Col-0 background, Pi uptake and organ growth were impaired in both Pi-limited pht1;1 and two pils7 T-DNA insertion mutants, while Pi -limited pht1;2 had higher biomass and pht1;3 was indistinguishable from wild-type. Copy number variation at the PHT1 locus with loss of the PHT1;3 gene and smaller scale deletions in PHT1;1 and PHT1;2 predicted to alter both protein structure and function suggest diversification of PHT1 is a key driver for adaptation to P limitation. Haplogroup analysis revealed a phosphorylation site in the protein encoded by the PILS7 allele from stress-sensitive accessions as well as additional auxin-responsive elements in the promoter of the "stress tolerant" allele. The former allele's inability to complement the pils7-1 mutant in the Col-0 background implies the presence of a kinase signaling loop controlling PILS7 activity in accessions from P-rich environments, while survival in P-poor environments requires fine-tuning of stress-responsive root auxin signaling.
Collapse
Affiliation(s)
- Changyu Yi
- Department of Animal, Plant and Soil Sciences and La Trobe Institute for Agriculture and Food (LIAF), ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora VIC 3086, Australia
| | - Xinchao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang 31008, China
| | - Qian Chen
- Department of Animal, Plant and Soil Sciences and La Trobe Institute for Agriculture and Food (LIAF), ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora VIC 3086, Australia
| | - Damien L Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University (Burwood Campus), Burwood VIC 3125, Australia
| | | | - James Whelan
- Department of Animal, Plant and Soil Sciences and La Trobe Institute for Agriculture and Food (LIAF), ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora VIC 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences and La Trobe Institute for Agriculture and Food (LIAF), ARC Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora VIC 3086, Australia
- Author for communication:
| |
Collapse
|
7
|
Liu DX, Rajaby R, Wei LL, Zhang L, Yang ZQ, Yang QY, Sung WK. Calling large indels in 1047 Arabidopsis with IndelEnsembler. Nucleic Acids Res 2021; 49:10879-10894. [PMID: 34643730 PMCID: PMC8565333 DOI: 10.1093/nar/gkab904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Large indels greatly impact the observable phenotypes in different organisms including plants and human. Hence, extracting large indels with high precision and sensitivity is important. Here, we developed IndelEnsembler to detect large indels in 1047 Arabidopsis whole-genome sequencing data. IndelEnsembler identified 34 093 deletions, 12 913 tandem duplications and 9773 insertions. Our large indel dataset was more comprehensive and accurate compared with the previous dataset of AthCNV (1). We captured nearly twice of the ground truth deletions and on average 27% more ground truth duplications compared with AthCNV, though our dataset has less number of large indels compared with AthCNV. Our large indels were positively correlated with transposon elements across the Arabidopsis genome. The non-homologous recombination events were the major formation mechanism of deletions in Arabidopsis genome. The Neighbor joining (NJ) tree constructed based on IndelEnsembler's deletions clearly divided the geographic subgroups of 1047 Arabidopsis. More importantly, our large indels represent a previously unassessed source of genetic variation. Approximately 49% of the deletions have low linkage disequilibrium (LD) with surrounding single nucleotide polymorphisms. Some of them could affect trait performance. For instance, using deletion-based genome-wide association study (DEL-GWAS), the accessions containing a 182-bp deletion in AT1G11520 had delayed flowering time and all accessions in north Sweden had the 182-bp deletion. We also found the accessions with 65-bp deletion in the first exon of AT4G00650 (FRI) flowered earlier than those without it. These two deletions cannot be detected in AthCNV and, interestingly, they do not co-occur in any Arabidopsis thaliana accession. By SNP-GWAS, surrounding SNPs of these two deletions do not correlate with flowering time. This example demonstrated that existing large indel datasets miss phenotypic variations and our large indel dataset filled in the gap.
Collapse
Affiliation(s)
- Dong-Xu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ramesh Rajaby
- School of Computing, National University of Singapore, 117417 Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Lu-Lu Wei
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Zhi-Quan Yang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,School of Computing, National University of Singapore, 117417 Singapore
| | - Wing-Kin Sung
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.,School of Computing, National University of Singapore, 117417 Singapore.,Genome Institute of Singapore, Genome, 138672 Singapore
| |
Collapse
|
8
|
Pidon H, Wendler N, Habekuβ A, Maasberg A, Ruge-Wehling B, Perovic D, Ordon F, Stein N. High-resolution mapping of Rym14 Hb, a wild relative resistance gene to barley yellow mosaic disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:823-833. [PMID: 33263784 PMCID: PMC7925471 DOI: 10.1007/s00122-020-03733-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley's secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
| | - Neele Wendler
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574, Einbeck, Germany
| | - Antje Habekuβ
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Anja Maasberg
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research On Agricultural Crops, Julius Kühn Institute (JKI), Groß Lüsewitz, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Von Siebold Straße 8, 37075, Göttingen, Germany.
| |
Collapse
|
9
|
Ruperao P, Thirunavukkarasu N, Gandham P, Selvanayagam S, Govindaraj M, Nebie B, Manyasa E, Gupta R, Das RR, Odeny DA, Gandhi H, Edwards D, Deshpande SP, Rathore A. Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. FRONTIERS IN PLANT SCIENCE 2021; 12:666342. [PMID: 34140962 PMCID: PMC8204017 DOI: 10.3389/fpls.2021.666342] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 05/05/2023]
Abstract
Sorghum (Sorghum bicolor L.) is a staple food crops in the arid and rainfed production ecologies. Sorghum plays a critical role in resilient farming and is projected as a smart crop to overcome the food and nutritional insecurity in the developing world. The development and characterisation of the sorghum pan-genome will provide insight into genome diversity and functionality, supporting sorghum improvement. We built a sorghum pan-genome using reference genomes as well as 354 genetically diverse sorghum accessions belonging to different races. We explored the structural and functional characteristics of the pan-genome and explain its utility in supporting genetic gain. The newly-developed pan-genome has a total of 35,719 genes, a core genome of 16,821 genes and an average of 32,795 genes in each cultivar. The variable genes are enriched with environment responsive genes and classify the sorghum accessions according to their race. We show that 53% of genes display presence-absence variation, and some of these variable genes are predicted to be functionally associated with drought adaptation traits. Using more than two million SNPs from the pan-genome, association analysis identified 398 SNPs significantly associated with important agronomic traits, of which, 92 were in genes. Drought gene expression analysis identified 1,788 genes that are functionally linked to different conditions, of which 79 were absent from the reference genome assembly. This study provides comprehensive genomic diversity resources in sorghum which can be used in genome assisted crop improvement.
Collapse
Affiliation(s)
- Pradeep Ruperao
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | | - Prasad Gandham
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | | | | - Baloua Nebie
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Bamako, Mali
| | - Eric Manyasa
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Roma Rani Das
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Damaris A. Odeny
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Harish Gandhi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Santosh P. Deshpande
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- Santosh P. Deshpande
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- *Correspondence: Abhishek Rathore
| |
Collapse
|
10
|
Abstract
The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, was used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.
Collapse
|
11
|
Schnable JC. Genes and gene models, an important distinction. THE NEW PHYTOLOGIST 2020; 228:50-55. [PMID: 31241760 DOI: 10.1111/nph.16011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/07/2019] [Indexed: 05/22/2023]
Abstract
Genome sequencing has fundamentally changed how plant biologists think about genes. All or nearly all genes can ultimately be associated with a gene model. However, many gene models appear to play little or no role in the traits of an organism. A range of structural, molecular, population and evolutionary features all show a separation between genes with known phenotypes and the overall set of annotated gene models. These different features could be combined to develop models to distinguish the genes that determine the traits of plants from the subset gene other annotated gene models which are unlikely to play a role in doing so. Efforts to identify the subset of annotated gene models likely involved in specifying the characteristics of plants would help aid a wide range of researchers.
Collapse
Affiliation(s)
- James C Schnable
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
12
|
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, Karlowski WM, Figlerowicz M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. THE PLANT CELL 2020; 32:1797-1819. [PMID: 32265262 PMCID: PMC7268809 DOI: 10.1105/tpc.19.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
13
|
Read AC, Moscou MJ, Zimin AV, Pertea G, Meyer RS, Purugganan MD, Leach JE, Triplett LR, Salzberg SL, Bogdanove AJ. Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genet 2020; 16:e1008571. [PMID: 31986137 PMCID: PMC7004385 DOI: 10.1371/journal.pgen.1008571] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/06/2020] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety. Plants lack adaptive immunity, and instead contain repeat-rich, disease resistance genes that evolve rapidly through duplication, recombination, and transposition. The number, variation, and often clustered arrangement of these genes make them challenging to sequence and catalog. The US heirloom rice variety Carolina Gold Select has resistance to two important bacterial diseases. Toward identifying the responsible gene(s), we combined long- and short-read sequencing technologies to assemble the whole genome and identify the resistance gene repertoire. We previously narrowed the location of the gene(s) to a region on chromosome four. The region in Carolina Gold Select is larger than in the rice reference genome (Nipponbare) and contains twice as many resistance genes. One shares unusual features with a known bacterial disease resistance gene, suggesting that it confers the resistance. Across diverse varieties and related species, we identified two widely-distributed groups of such genes. The results are an important step toward mechanistic characterization and deployment of the bacterial disease resistance. The genome assembly also identified a resistance gene for a fungal disease and predicted a marker phenotype used in breeding for resistance. Thus, the Carolina Gold Select genome assembly can be expected to aid in the identification and deployment of other valuable traits.
Collapse
Affiliation(s)
- Andrew C. Read
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksey V. Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Geo Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Rachel S. Meyer
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
| | - Michael D. Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
- Center for Genomics and Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Lindsay R. Triplett
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Adam J. Bogdanove
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Weisweiler M, Montaigu AD, Ries D, Pfeifer M, Stich B. Transcriptomic and presence/absence variation in the barley genome assessed from multi-tissue mRNA sequencing and their power to predict phenotypic traits. BMC Genomics 2019; 20:787. [PMID: 31664921 PMCID: PMC6819542 DOI: 10.1186/s12864-019-6174-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/06/2019] [Indexed: 02/04/2023] Open
Abstract
Background Barley is the world’s fourth most cultivated cereal and is an important crop model for genetic studies. One layer of genomic information that remains poorly explored in barley is presence/absence variation (PAV), which has been suggested to contribute to phenotypic variation of agronomic importance in various crops. Results An mRNA sequencing approach was used to study genomic PAV and transcriptomic variation in 23 spring barley inbreds. 1502 new genes identified here were physically absent from the Morex reference sequence, and 11,523 previously unannotated genes were not expressed in Morex. The procedure applied to detect expression PAV revealed that more than 50% of all genes of our data set are not expressed in all inbreds. Interestingly, expression PAV were not in strong linkage disequilibrium with neighboring sequence variants (SV), and therefore provided an additional layer of genetic information. Optimal combinations of expression PAV, SV, and gene abundance data could enhance the prediction accuracy of predicting three different agronomic traits. Conclusions Our results highlight the advantage of mRNA sequencing for genomic prediction over other technologies, as it allows extracting multiple layers of genomic data from a single sequencing experiment. Finally, we propose low coverage mRNA sequencing based characterization of breeding material harvested as seedlings in petri dishes as a powerful and cost efficient approach to replace current single nucleotide polymorphism (SNP) based characterizations.
Collapse
Affiliation(s)
- Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Amaury de Montaigu
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - David Ries
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Mara Pfeifer
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, Düsseldorf, 40225, Germany. .,Cluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|
15
|
Yang N, Wu S, Yan J. Structural variation in complex genome: detection, integration and function. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1098-1100. [PMID: 31376014 DOI: 10.1007/s11427-019-9664-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Zhang B, Zhu W, Diao S, Wu X, Lu J, Ding C, Su X. The poplar pangenome provides insights into the evolutionary history of the genus. Commun Biol 2019; 2:215. [PMID: 31240253 PMCID: PMC6581948 DOI: 10.1038/s42003-019-0474-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
The genus Populus comprises a complex amalgam of ancient and modern species that has become a prime model for evolutionary and taxonomic studies. Here we sequenced the genomes of 10 species from five sections of the genus Populus, identified 71 million genomic variations, and observed new correlations between the single-nucleotide polymorphism-structural variation (SNP-SV) density and indel-SV density to complement the SNP-indel density correlation reported in mammals. Disease resistance genes (R genes) with heterozygous loss-of-function (LOF) were significantly enriched in the 10 species, which increased the diversity of poplar R genes during evolution. Heterozygous LOF mutations in the self-incompatibility genes were closely related to the self-fertilization of poplar, suggestive of genomic control of self-fertilization in dioecious plants. The phylogenetic genome-wide SNPs tree also showed possible ancient hybridization among species in sections Tacamahaca, Aigeiros, and Leucoides. The pangenome resource also provided information for poplar genetics and breeding.
Collapse
Affiliation(s)
- Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| | - Wenxu Zhu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| | - Shu Diao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| | - Xiaojuan Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| | - Junqian Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| | - ChangJun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 100091 Beijing, China
| |
Collapse
|
17
|
Brown SM, Bush SJ, Summers KM, Hume DA, Lawrence AB. Environmentally enriched pigs have transcriptional profiles consistent with neuroprotective effects and reduced microglial activity. Behav Brain Res 2018; 350:6-15. [PMID: 29778628 PMCID: PMC6002610 DOI: 10.1016/j.bbr.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Environmental enrichment (EE) is widely used to study the effects of external factors on brain development, function and health in rodent models, but very little is known of the effects of EE on the brain in a large animal model such as the pig. Twenty-four young pigs (aged 5 weeks at start of study, 1:1 male: female ratio) were housed in environmentally enriched (EE) pens and provided with additional enrichment stimulation (a bag filled with straw) once daily. Litter, weight and sex matched controls n= (24) were housed in barren (B) conditions. Behaviour was recorded on alternate days from study day 10. After 21 days, RNA-sequencing of the frontal cortex of male piglets culled one hour after the enrichment stimulation, but not those at 4 h after stimulation, showed upregulation of genes involved in neuronal activity and synaptic plasticity in the EE compared to the B condition. This result is mirrored in the behavioural response to the stimulation which showed a peak in activity around the 1 h time-point. By contrast, EE piglets displayed a signature consistent with a relative decrease in microglial activity compared to those in the B condition. These results confirm those from rodents, suggesting that EE may also confer neuronal health benefits in large mammal models, through a potential relative reduction in neuroinflammatory process and increase in neuroprotection driven by an enrichment-induced increase in behavioural activity.
Collapse
Affiliation(s)
- S M Brown
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| | - S J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - K M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - D A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - A B Lawrence
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| |
Collapse
|
18
|
Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IAP, Pires JC, Chalhoub B, King GJ, Snowdon R, Batley J, Edwards D. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1265-1274. [PMID: 29205771 PMCID: PMC5999312 DOI: 10.1111/pbi.12867] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 05/08/2023]
Abstract
Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
Collapse
Affiliation(s)
- Bhavna Hurgobin
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
- School of Agriculture and Food SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVICAustralia
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Chon‐Kit Kenneth Chan
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Aria Dolatabadian
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Sarah V. Schiessl
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Birgit Samans
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Juan D. Montenegro
- School of Agriculture and Food SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| | | | - J. Chris Pires
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Boulos Chalhoub
- Institute of System and Synthetic Biology, Organization and Evolution of Complex GenomesInstitut National de la Recherche agronomique, GenopoleCentre National de la Recherche ScientifiqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayEvryFrance
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - Rod Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
19
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
20
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
21
|
Yin J, Gosney MJ, Dilkes BP, Mickelbart MV. Dark period transcriptomic and metabolic profiling of two diverse Eutrema salsugineum accessions. PLANT DIRECT 2018; 2:e00032. [PMID: 31245703 PMCID: PMC6508522 DOI: 10.1002/pld3.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 05/16/2023]
Abstract
Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Michael J. Gosney
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Michael V. Mickelbart
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
22
|
Baggs E, Dagdas G, Krasileva KV. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:59-67. [PMID: 28494248 DOI: 10.1016/j.pbi.2017.04.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/21/2023]
Abstract
Plant innate immunity relies on genetically predetermined repertoires of immune receptors to detect pathogens and trigger an effective immune response. A large proportion of these receptors are from the Nucletoide Binding Leucine Rich Repeat (NLR) gene family. As plants live longer than most pathogens, maintaining diversity of NLRs and deploying efficient 'pathogen traps' is necessary to withstand the evolutionary battle. In this review, we summarize the sources of diversity in NLR plant immune receptors giving an overview of genomic, regulatory as well as functional studies, including the latest concepts of NLR helpers and NLRs with integrated domains.
Collapse
Affiliation(s)
- E Baggs
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, United Kingdom
| | - G Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - K V Krasileva
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, United Kingdom; The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
23
|
Contreras-Moreira B, Cantalapiedra CP, García-Pereira MJ, Gordon SP, Vogel JP, Igartua E, Casas AM, Vinuesa P. Analysis of Plant Pan-Genomes and Transcriptomes with GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. FRONTIERS IN PLANT SCIENCE 2017; 8:184. [PMID: 28261241 PMCID: PMC5306281 DOI: 10.3389/fpls.2017.00184] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/30/2017] [Indexed: 05/22/2023]
Abstract
The pan-genome of a species is defined as the union of all the genes and non-coding sequences found in all its individuals. However, constructing a pan-genome for plants with large genomes is daunting both in sequencing cost and the scale of the required computational analysis. A more affordable alternative is to focus on the genic repertoire by using transcriptomic data. Here, the software GET_HOMOLOGUES-EST was benchmarked with genomic and RNA-seq data of 19 Arabidopsis thaliana ecotypes and then applied to the analysis of transcripts from 16 Hordeum vulgare genotypes. The goal was to sample their pan-genomes and classify sequences as core, if detected in all accessions, or accessory, when absent in some of them. The resulting sequence clusters were used to simulate pan-genome growth, and to compile Average Nucleotide Identity matrices that summarize intra-species variation. Although transcripts were found to under-estimate pan-genome size by at least 10%, we concluded that clusters of expressed sequences can recapitulate phylogeny and reproduce two properties observed in A. thaliana gene models: accessory loci show lower expression and higher non-synonymous substitution rates than core genes. Finally, accessory sequences were observed to preferentially encode transposon components in both species, plus disease resistance genes in cultivated barleys, and a variety of protein domains from other families that appear frequently associated with presence/absence variation in the literature. These results demonstrate that pan-genome analyses are useful to explore germplasm diversity.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones CientíficasZaragoza, Spain; Fundación ARAIDZaragoza, Spain
| | - Carlos P Cantalapiedra
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | - María J García-Pereira
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | | | - John P Vogel
- DOE Joint Genome Institute, Walnut Creek CA, USA
| | - Ernesto Igartua
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | - Ana M Casas
- Estación Experimental de Aula Dei - Consejo Superior de Investigaciones Científicas Zaragoza, Spain
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
24
|
The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 2016; 7:13390. [PMID: 27834372 PMCID: PMC5114598 DOI: 10.1038/ncomms13390] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
There is an increasing awareness that as a result of structural variation, a reference sequence representing a genome of a single individual is unable to capture all of the gene repertoire found in the species. A large number of genes affected by presence/absence and copy number variation suggest that it may contribute to phenotypic and agronomic trait diversity. Here we show by analysis of the Brassica oleracea pangenome that nearly 20% of genes are affected by presence/absence variation. Several genes displaying presence/absence variation are annotated with functions related to major agronomic traits, including disease resistance, flowering time, glucosinolate metabolism and vitamin biosynthesis. Brassica oleracea is a single species that includes diverse crops such as cabbage, broccoli and Brussels sprouts. Here, the authors identify genes not captured in existing B. oleracea reference genomes by the assembly of a pangenome and show variations in gene content that may be related to important agronomic traits
Collapse
|
25
|
Pinosio S, Giacomello S, Faivre-Rampant P, Taylor G, Jorge V, Le Paslier MC, Zaina G, Bastien C, Cattonaro F, Marroni F, Morgante M. Characterization of the Poplar Pan-Genome by Genome-Wide Identification of Structural Variation. Mol Biol Evol 2016; 33:2706-19. [PMID: 27499133 PMCID: PMC5026262 DOI: 10.1093/molbev/msw161] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many recent studies have emphasized the important role of structural variation (SV) in determining human genetic and phenotypic variation. In plants, studies aimed at elucidating the extent of SV are still in their infancy. Evidence has indicated a high presence and an active role of SV in driving plant genome evolution in different plant species. With the aim of characterizing the size and the composition of the poplar pan-genome, we performed a genome-wide analysis of structural variation in three intercrossable poplar species: Populus nigra, Populus deltoides, and Populus trichocarpa. We detected a total of 7,889 deletions and 10,586 insertions relative to the P. trichocarpa reference genome, covering respectively 33.2 Mb and 62.9 Mb of genomic sequence, and 3,230 genes affected by copy number variation (CNV). The majority of the detected variants are inter-specific in agreement with a recent origin following separation of species. Insertions and deletions (INDELs) were preferentially located in low-gene density regions of the poplar genome and were, for the majority, associated with the activity of transposable elements. Genes affected by SV showed lower-than-average expression levels and higher levels of dN/dS, suggesting that they are subject to relaxed selective pressure or correspond to pseudogenes. Functional annotation of genes affected by INDELs showed over-representation of categories associated with transposable elements activity, while genes affected by genic CNVs showed enrichment in categories related to resistance to stress and pathogens. This study provides a genome-wide catalogue of SV and the first insight on functional and structural properties of the poplar pan-genome.
Collapse
Affiliation(s)
- Sara Pinosio
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Firenze, Italy Istituto di Genomica Applicata (IGA), Udine, Italy
| | - Stefania Giacomello
- Istituto di Genomica Applicata (IGA), Udine, Italy Dipartimento di Scienze Agro-alimentari, Università di Udine, Ambientali e Animali (DI4A), Udine, Italy
| | | | - Gail Taylor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Veronique Jorge
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, Orléans, France
| | | | - Giusi Zaina
- Dipartimento di Scienze Agro-alimentari, Università di Udine, Ambientali e Animali (DI4A), Udine, Italy
| | | | | | - Fabio Marroni
- Istituto di Genomica Applicata (IGA), Udine, Italy Dipartimento di Scienze Agro-alimentari, Università di Udine, Ambientali e Animali (DI4A), Udine, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata (IGA), Udine, Italy Dipartimento di Scienze Agro-alimentari, Università di Udine, Ambientali e Animali (DI4A), Udine, Italy
| |
Collapse
|
26
|
Buckley J, Kilbride E, Cevik V, Vicente JG, Holub EB, Mable BK. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol Biol 2016; 16:93. [PMID: 27150007 PMCID: PMC4858910 DOI: 10.1186/s12862-016-0665-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Examining allelic variation of R-genes in closely related perennial species of Arabidopsis thaliana is critical to understanding how population structure and ecology interact with selection to shape the evolution of innate immunity in plants. We finely sampled natural populations of Arabidopsis lyrata from the Great Lakes region of North America (A. l. lyrata) and broadly sampled six European countries (A. l. petraea) to investigate allelic variation of two R-genes (RPM1 and WRR4) and neutral genetic markers (Restriction Associated DNA sequences and microsatellites) in relation to mating system, phylogeographic structure and subspecies divergence. Results Fine-scale sampling of populations revealed strong effects of mating system and population structure on patterns of polymorphism for both neutral loci and R-genes, with no strong evidence for selection. Broad geographic sampling revealed evidence of balancing selection maintaining polymorphism in R-genes, with elevated heterozygosity and diversity compared to neutral expectations and sharing of alleles among diverged subspecies. Codon-based tests detected both positive and purifying selection for both R-genes, as commonly found for animal immune genes. Conclusions Our results highlight that combining fine and broad-scale sampling strategies can reveal the multiple factors influencing polymorphism and divergence at potentially adaptive genes such as R-genes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0665-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Current address: Center for Adaptation to a Changing Environment, ETH Zurich, Zurich, 8092, Switzerland.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Volkan Cevik
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK.,Current address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR47UH, UK
| | - Joana G Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK
| | - Eric B Holub
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
27
|
Golicz AA, Batley J, Edwards D. Towards plant pangenomics. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1099-105. [PMID: 26593040 PMCID: PMC11388911 DOI: 10.1111/pbi.12499] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 05/05/2023]
Abstract
As an increasing number of genome sequences become available for a wide range of species, there is a growing understanding that the genome of a single individual is insufficient to represent the gene diversity within a whole species. Many studies examine the sequence diversity within genes, and this allelic variation is an important source of phenotypic variation which can be selected for by man or nature. However, the significant gene presence/absence variation that has been observed within species and the impact of this variation on traits is only now being studied in detail. The sum of the genes for a species is termed the pangenome, and the determination and characterization of the pangenome is a requirement to understand variation within a species. In this review, we explore the current progress in pangenomics as well as methods and approaches for the characterization of pangenomes for a wide range of plant species.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD, Australia
- School of Plant Biology, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD, Australia
- School of Plant Biology, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD, Australia
- School of Plant Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
28
|
Christie N, Tobias PA, Naidoo S, Külheim C. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots. FRONTIERS IN PLANT SCIENCE 2016; 6:1238. [PMID: 26793216 PMCID: PMC4709456 DOI: 10.3389/fpls.2015.01238] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/20/2015] [Indexed: 05/03/2023]
Abstract
Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Peri A. Tobias
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of SydneyNSW, Australia
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Carsten Külheim
- Research School of Biology, College of Medicine, Biology and Environment, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
29
|
Mable BK, Kilbride E, Viney ME, Tinsley RC. Copy number variation and genetic diversity of MHC Class IIb alleles in an alien population of Xenopus laevis. Immunogenetics 2015; 67:591-603. [PMID: 26329765 PMCID: PMC4572066 DOI: 10.1007/s00251-015-0860-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
Abstract
Xenopus laevis (the African clawed frog), which originated through hybridisation and whole genome duplication, has been used as a model for genetics and development for many years, but surprisingly little is known about immune gene variation in natural populations. The purpose of this study was to use an isolated population of X. laevis that was introduced to Wales, UK in the past 50 years to investigate how variation at the MHC compares to that at other loci, following a severe population bottleneck. Among 18 individuals, we found nine alleles based on exon 2 sequences of the Class IIb region (which includes the peptide binding region). Individuals carried from one to three of the loci identified from previous laboratory studies. Genetic variation was an order of magnitude higher at the MHC compared with three single-copy nuclear genes, but all loci showed high levels of heterozygosity and nucleotide diversity and there was not an excess of homozygosity or decrease in diversity over time that would suggest extensive inbreeding in the introduced population. Tajima’s D was positive for all loci, which is consistent with a bottleneck. Moreover, comparison with published sequences identified the source of the introduced population as the Western Cape region of South Africa, where most commercial suppliers have obtained their stocks. These factors suggest that despite founding by potentially already inbred individuals, the alien population in Wales has maintained substantial genetic variation at both adaptively important and neutral genes.
Collapse
Affiliation(s)
- Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Richard C Tinsley
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
30
|
Shen X, Liu ZQ, Mocoeur A, Xia Y, Jing HC. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:623-37. [PMID: 25634103 PMCID: PMC4361761 DOI: 10.1007/s00122-015-2458-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 01/06/2015] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE 5,511 genic small-size PAVs in sorghum were identified and examined, including the pattern and the function enrichment of PAV genes. 325 PAV markers were developed to construct a genetic map. Presence/absence variants (PAVs) correlate closely to the phenotypic variation, by impacting plant genome sizes and the adaption to the environment. To shed more light on their genome-wide patterns, functions and the possibility of using them as molecular markers, we generated next generation genome sequencing data for four sorghum inbred lines and used associated bioinformatic pipelines to identify small-size PAVs (40-10 kb). Five thousand five hundreds and eleven genic PAVs (40-10 kb) were identified and found to affect 3,238 genes. These PAVs were mainly distributed on the sub-telomeric regions, but the highest proportions occurred in the vicinity of the centromeric regions. One of the prominent features of the PAVs is the high occurrence of long terminal repeats retrotransposons and DNA transposons. PAVs caused various alterations to gene structure, primarily including the coding sequence variants, intron variants, transcript ablation, and initiator codon changes. The genes affected by PAVs were significantly enriched in those involved in stress responses and protein modification. We used 325 PAVs polymorphic between two sorghum inbred lines Ji2731 and E-Tian, together with 49 SSR markers, and constructed a genetic map, which consisted of 10 linkage groups corresponding to the 10 chromosomes of sorghum and spanned 1,430.3 cM in length covering 97% of the physical genome. The resources reported here should be useful for genetic study and breeding of sorghum and related species.
Collapse
Affiliation(s)
- Xin Shen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi-Quan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Anne Mocoeur
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- Department of Plant and Environment, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Yan Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|