1
|
Klementz BC, Kulkarni SS, Abshire KM, Sharma PP. Exploring genome architecture as a source of phylogenetic characters for resolving the apulmonate arachnid polytomy. Mol Phylogenet Evol 2025:108380. [PMID: 40414544 DOI: 10.1016/j.ympev.2025.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/19/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
Chromosome-level genome assemblies are powerful tools for identifying the presence of rare genomic changes that can overcome phylogenetically intractable problems. Chelicerata, the sister group to the remaining arthropods, harbors a soft polytomy at the base of an internal node named Euchelicerata, which is variably resolved across phylogenomic studies. As a result, seven orders, comprising horseshoe crabs and six apulmonate arachnid lineages, exhibit highly unstable placements from one study to the next, typically with maximal nodal support. Here, we analyzed recently released chromosome-level genomes of two of these orders, Opiliones (harvestmen) and Solifugae (camel spiders). We show that both Opiliones and Solifugae exhibit an unduplicated genome condition, as inferred from analysis of gene clusters, microRNAs, and macrosynteny. These results are congruent with phylogenomic studies that have refuted traditional morphological placements of Opiliones and Solifugae as close relatives of orders within Arachnopulmonata, a subset of six arachnid orders that are united by a shared whole genome duplication. Additionally, we examine irreversible chromosome fusion-with-mixing events as potential sources of phylogenetic data. We show that while fusion and mixing events are common in apulmonate arachnids, multiple mixing events support incompatible unrooted tree topologies. These results suggest that fusion and mixing events have evolved convergently in the chelicerate tree of life, particularly for extant lineages with a small number of chromosomes. Overall, our findings demonstrate that broader sampling of chelicerate genomes and establishment of genomic resources for key missing orders are essential to unlocking the potential of rare genomic changes as phylogenetic data sources.
Collapse
Affiliation(s)
- Benjamin C Klementz
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, United States; Zoological Museum, University of Wisconsin-Madison, Madison, WI, United States
| | - Siddharth S Kulkarni
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, United States; Zoological Museum, University of Wisconsin-Madison, Madison, WI, United States; Indian Institute of Science Education and Research, School of Biology, Thiruvananthapuram, Vithura, Kerala, India
| | - Kaitlyn M Abshire
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, United States; Zoological Museum, University of Wisconsin-Madison, Madison, WI, United States
| | - Prashant P Sharma
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, United States; Zoological Museum, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
2
|
Au HM, Nong W, Hui JHL. Whole Genome Duplication in the Genomics Era: The Hidden Gems in Invertebrates? Genome Biol Evol 2025; 17:evaf073. [PMID: 40275750 PMCID: PMC12056724 DOI: 10.1093/gbe/evaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Whole genome duplication (WGD) events generate potent new genomic resources for rewiring existing genetic regulatory networks. Studying WGDs in vertebrates is of considerable importance to understand vertebrate evolution. Recent studies have shown that different invertebrate lineages, including lophotrochozoans/spiralians and ecdysozoans, have also undergone WGDs. Here we summarize recent developments and argue that more studies of WGD events in different invertebrate lineages are required to better understand the molecular evolution of metazoans.
Collapse
Affiliation(s)
- Hing Man Au
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Shen C, Li H, Shu L, Huang WZ, Zhu RL. Ancient large-scale gene duplications and diversification in bryophytes illuminate the plant terrestrialization. THE NEW PHYTOLOGIST 2025; 245:2292-2308. [PMID: 39449253 DOI: 10.1111/nph.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Large-scale gene duplications (LSGDs) are crucial for evolutionary adaptation and recurrent in vascular plants. However, the role of ancient LSGDs in the terrestrialization and diversification of bryophytes, the second most species-rich group of land plants, remains largely elusive due to limited sampling in bryophytes. Employing the most extensive nuclear gene dataset in bryophytes to date, we reconstructed a time-calibrated phylogenetic tree from 209 species, covering virtually all key bryophyte lineages, for phylogenomic analyses of LSGDs and diversification. We newly identified two ancient LSGDs: one in the most recent common ancestor (MRCA) of extant bryophytes and another in the MRCA of the majority of Jungermanniales s. lato. Duplicated genes from these two LSGDs show significant enrichment in photosynthesis-related processes and structures. Rhizoid-responsive ROOTHAIR DEFECTIVE SIX-LIKE (RSL) genes from ancient LSGDs are present in rhizoidless bryophytes, challenging assumptions about rhizoid absence mechanisms. We highlighted four major diversification rate upshifts, two of which slightly postdated LSGDs, potentially linked to the flourishing of gymnosperms and angiosperms and explaining over 80% of bryophyte diversity. Our findings, supported by extensive bryophyte sampling, highlight the significance of LSGDs in the early terrestrialization and diversification of bryophytes, offering new insights into land plant evolution.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| |
Collapse
|
4
|
Liu J, Wei Q, Zhao Z, Qiang F, Li G, Wu G. Bona Fide Plant Steroid Receptors are Innovated in Seed Plants and Angiosperms through Successive Whole-Genome Duplication Events. PLANT & CELL PHYSIOLOGY 2024; 65:1655-1673. [PMID: 38757845 DOI: 10.1093/pcp/pcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Whole-genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR INSENSITIVE 1) and BRL1/3 (BRI1-LIKES 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants, while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Qiang Wei
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Zhen Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Fanqi Qiang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guishuang Li
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| | - Guang Wu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, China
| |
Collapse
|
5
|
McKibben MTW, Finch G, Barker MS. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny. AMERICAN JOURNAL OF BOTANY 2024; 111:e16378. [PMID: 39039654 DOI: 10.1002/ajb2.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
PREMISE The history of angiosperms is marked by repeated rounds of ancient whole-genome duplications (WGDs). Here we used state-of-the-art methods to provide an up-to-date view of the distribution of WGDs in the history of angiosperms that considers both uncertainty introduced by different WGD inference methods and different underlying species-tree hypotheses. METHODS We used the distribution synonymous divergences (Ks) of paralogs and orthologs from transcriptomic and genomic data to infer and place WGDs across two hypothesized angiosperm phylogenies. We further tested these WGD hypotheses with syntenic inferences and Bayesian models of duplicate gene gain and loss. RESULTS The predicted number of WGDs in the history of angiosperms (~170) based on the current taxon sampling is largely similar across different inference methods, but varies in the precise placement of WGDs on the phylogeny. Ks-based methods often yield alternative hypothesized WGD placements due to variation in substitution rates among lineages. Phylogenetic models of duplicate gene gain and loss are more robust to topological variation. However, errors in species-tree inference can still produce spurious WGD hypotheses, regardless of method used. CONCLUSIONS Here we showed that different WGD inference methods largely agree on an average of 3.5 WGD in the history of individual angiosperm species. However, the precise placement of WGDs on the phylogeny is subject to the WGD inference method and tree topology. As researchers continue to test hypotheses regarding the impacts ancient WGDs have on angiosperm evolution, it is important to consider the uncertainty of the phylogeny as well as WGD inference methods.
Collapse
Affiliation(s)
- Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey Finch
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Naranjo JG, Sither CB, Conant GC. Shared single copy genes are generally reliable for inferring phylogenetic relationships among polyploid taxa. Mol Phylogenet Evol 2024; 196:108087. [PMID: 38677353 DOI: 10.1016/j.ympev.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Polyploidy, or whole-genome duplication, is expected to confound the inference of species trees with phylogenetic methods for two reasons. First, the presence of retained duplicated genes requires the reconciliation of the inferred gene trees to a proposed species tree. Second, even if the analyses are restricted to shared single copy genes, the occurrence of reciprocal gene loss, where the surviving genes in different species are paralogs from the polyploidy rather than orthologs, will mean that such genes will not have evolved under the corresponding species tree and may not produce gene trees that allow inference of that species tree. Here we analyze three different ancient polyploidy events, using synteny-based inferences of orthology and paralogy to infer gene trees from nearly 17,000 sets of homologous genes. We find that the simple use of single copy genes from polyploid organisms provides reasonably robust phylogenetic signals, despite the presence of reciprocal gene losses. Such gene trees are also most often in accord with the inferred species relationships inferred from maximum likelihood models of gene loss after polyploidy: a completely distinct phylogenetic signal present in these genomes. As seen in other studies, however, we find that methods for inferring phylogenetic confidence yield high support values even in cases where the underlying data suggest meaningful conflict in the phylogenetic signals.
Collapse
Affiliation(s)
- Jaells G Naranjo
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Charles B Sither
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA; Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Zhang T, Huang W, Zhang L, Li DZ, Qi J, Ma H. Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages. Nat Commun 2024; 15:3305. [PMID: 38632270 PMCID: PMC11024178 DOI: 10.1038/s41467-024-47428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Poaceae members shared a whole-genome duplication called rho. However, little is known about the evolutionary pattern of the rho-derived duplicates among Poaceae lineages and implications in adaptive evolution. Here we present phylogenomic/phylotranscriptomic analyses of 363 grasses covering all 12 subfamilies and report nine previously unknown whole-genome duplications. Furthermore, duplications from a single whole-genome duplication were mapped to multiple nodes on the species phylogeny; a whole-genome duplication was likely shared by woody bamboos with possible gene flow from herbaceous bamboos; and recent paralogues of a tetraploid Oryza are implicated in tolerance of seawater submergence. Moreover, rho duplicates showing differential retention among subfamilies include those with functions in environmental adaptations or morphogenesis, including ACOT for aquatic environments (Oryzoideae), CK2β for cold responses (Pooideae), SPIRAL1 for rapid cell elongation (Bambusoideae), and PAI1 for drought/cold responses (Panicoideae). This study presents a Poaceae whole-genome duplication profile with evidence for multiple evolutionary mechanisms that contribute to gene retention and losses.
Collapse
Affiliation(s)
- Taikui Zhang
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Weichen Huang
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ji Qi
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
8
|
Wang Y, Guan J, Zhang Q. Chromosome-scale genome, together with transcriptome and metabolome, provides insights into the evolution and anthocyanin biosynthesis of Rubus rosaefolius Sm. (Rosaceae). HORTICULTURE RESEARCH 2024; 11:uhae064. [PMID: 38689697 PMCID: PMC11060340 DOI: 10.1093/hr/uhae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
Rubus rosaefolius is a kind of red raspberry possessing high nutritional and pharmaceutical value. Here we present a chromosome-level draft genome of R. rosaefolius. Of the total 131 assembled scaffolds, 70 with a total size of 219.02 Mb, accounting for 99.33% of the estimated genome size, were anchored to seven pseudochromosomes. We traced a whole-genome duplication (WGD) event shared among members of the Rosaceae family, from which were derived 5090 currently detectable duplicated gene pairs (dgps). Of the WGD-dgps 75.09% underwent purifying selection, and approximately three-quarters of informative WGD-dgps expressed their two paralogs with significant differences. We detected a wide variety of anthocyanins in the berries of R. rosaefolius, and their total concentration remained relatively stable during berry development but increased rapidly during the ripening stage, mainly because of the contributions of pelargonidin-3-O-glucoside and pelargonidin-3-O-(6″-O-malonyl)glucoside. We identified many structural genes that encode enzymes, such as RrDFR, RrF3H, RrANS, and RrBZ1, and play key roles in anthocyanin biosynthesis. The expression of some of these genes significantly increased or decreased with the accumulation of pelargonidin-3-O-glucoside and pelargonidin-3-O-(6″-O-malonyl)glucoside. We also identified some transcription factors and specific methylase-encoding genes that may play a role in regulating anthocyanin biosynthesis by targeting structural genes. In conclusion, our findings provide deeper insights into the genomic evolution and molecular mechanisms underlying anthocyanin biosynthesis in berries of R. rosaefolius. This knowledge may significantly contribute to the targeted domestication and breeding of Rubus species.
Collapse
Affiliation(s)
- Yunsheng Wang
- School of Health and Life Science, Kaili University, Kaili city, Guizhou Province 566011, China
| | - Jiyuan Guan
- Botanic Garden of Guizhou Province, Guiyang city, Guizhou Province 550081, China
| | - Qunying Zhang
- Botanic Garden of Guizhou Province, Guiyang city, Guizhou Province 550081, China
| |
Collapse
|
9
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
10
|
Assis R, Conant G, Holland B, Liberles DA, O'Reilly MM, Wilson AE. Models for the retention of duplicate genes and their biological underpinnings. F1000Res 2024; 12:1400. [PMID: 38173826 PMCID: PMC10762295 DOI: 10.12688/f1000research.141786.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 01/05/2024] Open
Abstract
Gene content in genomes changes through several different processes, with gene duplication being an important contributor to such changes. Gene duplication occurs over a range of scales from individual genes to whole genomes, and the dynamics of this process can be context dependent. Still, there are rules by which genes are retained or lost from genomes after duplication, and probabilistic modeling has enabled characterization of these rules, including their context-dependence. Here, we describe the biology and corresponding mathematical models that are used to understand duplicate gene retention and its contribution to the set of biochemical functions encoded in a genome.
Collapse
Affiliation(s)
- Raquel Assis
- Florida Atlantic University, Boca Raton, Florida, USA
| | - Gavin Conant
- North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
11
|
Halabi K, Shafir A, Mayrose I. PloiDB: the plant ploidy database. THE NEW PHYTOLOGIST 2023; 240:918-927. [PMID: 37337836 DOI: 10.1111/nph.19057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
See also the Commentary on this article by Spoelhof et al., 240: 909–911.
Collapse
Affiliation(s)
- Keren Halabi
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Anat Shafir
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| |
Collapse
|
12
|
D’Andrea L, Sierro N, Ouadi S, Hasing T, Rinaldi E, Ivanov NV, Bombarely A. Polyploid Nicotiana section Suaveolentes originated by hybridization of two ancestral Nicotiana clades. FRONTIERS IN PLANT SCIENCE 2023; 14:999887. [PMID: 37223799 PMCID: PMC10200995 DOI: 10.3389/fpls.2023.999887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/30/2023] [Indexed: 05/25/2023]
Abstract
Introduction Nicotiana section Suaveolentes is an almost all-Australian clade of allopolyploid tobacco species that emerged through hybridization between diploid relatives of the genus. In this study, we aimed to assess the phylogenetic relationship of the Suaveolentes section with several Nicotiana diploid species based on both plastidial and nuclear genes. Methods The Nicotiana plastome-based phylogenetic analysis representing 47 newly re-built plastid genomes suggested that an ancestor of N. section Noctiflorae is the most likely maternal donor of the Suaveolentes clade. Nevertheless, we found clear evidence of plastid recombination with an ancestor from the Sylvestres clade. We analyzed 411 maximum likelihood-based phylogenetic trees from a set of conserved nuclear diploid single copy gene families following an approach that assessed the genomic origin of each homeolog. Results We found that Nicotiana section Suaveolentes is monophyletic with contributions from the sections Alatae, Sylvestres, Petunioides and Noctiflorae. The dating of the divergence between these sections indicates that the Suaveolentes hybridization predates the split between Alatae/Sylvestres, and Noctiflorae/Petunioides. Discussion We propose that Nicotiana section Suaveolentes arose from the hybridization of two ancestral species from which the Noctiflorae/Petunioides and Alatae/Sylvestres sections are derived, with Noctiflorae the maternal parent. This study is a good example in which the use of genome wide data provided additional evidence about the origin of a complex polyploid clade.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Department of Bioscience, Universita degli Studi di Milano, Milan, Italy
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Sonia Ouadi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | | | - Elijah Rinaldi
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nikolai V. Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Aureliano Bombarely
- Department of Bioscience, Universita degli Studi di Milano, Milan, Italy
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), Valencia, Spain
| |
Collapse
|
13
|
Chen H, Zwaenepoel A. Inference of Ancient Polyploidy from Genomic Data. Methods Mol Biol 2023; 2545:3-18. [PMID: 36720805 DOI: 10.1007/978-1-0716-2561-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software "wgd," geared toward a typical exploratory analysis of a newly obtained genome sequence.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Chen H, Fang Y, Zwaenepoel A, Huang S, Van de Peer Y, Li Z. Revisiting ancient polyploidy in leptosporangiate ferns. THE NEW PHYTOLOGIST 2023; 237:1405-1417. [PMID: 36349406 PMCID: PMC7614084 DOI: 10.1111/nph.18607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS -age distributions and applying substitution rate corrections and by conducting statistical gene tree-species tree reconciliation analyses. Our integrative analyses not only identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree-species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Yuhan Fang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sanwen Huang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
15
|
Sun P, Jiao B, Yang Y, Shan L, Li T, Li X, Xi Z, Wang X, Liu J. WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. MOLECULAR PLANT 2022; 15:1841-1851. [PMID: 36307977 DOI: 10.1016/j.molp.2022.10.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 05/25/2023]
Abstract
Evidence of whole-genome duplications (WGDs) and subsequent karyotype changes has been detected in most major lineages of living organisms on Earth. To clarify the complex resulting multi-layered patterns of gene collinearity in genome analyses, there is a need for convenient and accurate toolkits. To meet this need, we developed WGDI (Whole-Genome Duplication Integrated analysis), a Python-based command-line tool that facilitates comprehensive analysis of recursive polyploidization events and cross-species genome alignments. WGDI supports three main workflows (polyploid inference, hierarchical inference of genomic homology, and ancestral chromosome karyotyping) that can improve the detection of WGD and characterization of WGD-related events based on high-quality chromosome-level genomes. Significantly, it can extract complete synteny blocks and facilitate reconstruction of detailed karyotype evolution. This toolkit is freely available at GitHub (https://github.com/SunPengChuan/wgdi). As an example of its application, WGDI convincingly clarified karyotype evolution in Aquilegia coerulea and Vitis vinifera following WGDs and rejected the hypothesis that Aquilegia contributed as a parental lineage to the allopolyploid origin of core dicots.
Collapse
Affiliation(s)
- Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Beibei Jiao
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Lanxing Shan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ting Li
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaonan Li
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiyin Wang
- Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei, China.
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China; State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Nie S, Tian XC, Kong L, Zhao SW, Chen ZY, Jiao SQ, El-Kassaby YA, Porth I, Yang FS, Zhao W, Mao JF. Potential allopolyploid origin of Ericales revealed with gene-tree reconciliation. FRONTIERS IN PLANT SCIENCE 2022; 13:1006904. [PMID: 36457535 PMCID: PMC9706204 DOI: 10.3389/fpls.2022.1006904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Few incidents of ancient allopolyploidization (polyploidization by hybridization or merging diverged genomes) were previously revealed, although there is significant evidence for the accumulation of whole genome duplications (WGD) in plants. Here, we focused on Ericales, one of the largest and most diverse angiosperm orders with significant ornamental and economic value. Through integrating 24 high-quality whole genome data selected from ~ 200 Superasterids genomes/species and an algorithm of topology-based gene-tree reconciliation, we explored the evolutionary history of in Ericales with ancient complex. We unraveled the allopolyploid origin of Ericales and detected extensive lineage-specific gene loss following the polyploidization. Our study provided a new hypothesis regarding the origin of Ericales and revealed an instructive perspective of gene loss as a pervasive source of genetic variation and adaptive phenotypic diversity in Ericales.
Collapse
Affiliation(s)
- Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao-Yang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, Canada
| | - Fu-Sheng Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Wang Z, Li Y, Sun P, Zhu M, Wang D, Lu Z, Hu H, Xu R, Zhang J, Ma J, Liu J, Yang Y. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol 2022; 20:216. [PMID: 36195948 PMCID: PMC9533543 DOI: 10.1186/s12915-022-01420-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.
Collapse
Affiliation(s)
- Zhenyue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Dandan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
18
|
Marchant DB, Chen G, Cai S, Chen F, Schafran P, Jenkins J, Shu S, Plott C, Webber J, Lovell JT, He G, Sandor L, Williams M, Rajasekar S, Healey A, Barry K, Zhang Y, Sessa E, Dhakal RR, Wolf PG, Harkess A, Li FW, Rössner C, Becker A, Gramzow L, Xue D, Wu Y, Tong T, Wang Y, Dai F, Hua S, Wang H, Xu S, Xu F, Duan H, Theißen G, McKain MR, Li Z, McKibben MTW, Barker MS, Schmitz RJ, Stevenson DW, Zumajo-Cardona C, Ambrose BA, Leebens-Mack JH, Grimwood J, Schmutz J, Soltis PS, Soltis DE, Chen ZH. Dynamic genome evolution in a model fern. NATURE PLANTS 2022; 8:1038-1051. [PMID: 36050461 PMCID: PMC9477723 DOI: 10.1038/s41477-022-01226-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.
Collapse
Affiliation(s)
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Laura Sandor
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Emily Sessa
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Rijan R Dhakal
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Paul G Wolf
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Clemens Rössner
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Gießen, Germany
| | - Annette Becker
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Gießen, Germany
| | - Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tong
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengchun Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fei Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
19
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
20
|
Pelosi JA, Kim EH, Barbazuk WB, Sessa EB. Phylotranscriptomics Illuminates the Placement of Whole Genome Duplications and Gene Retention in Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:882441. [PMID: 35909764 PMCID: PMC9330400 DOI: 10.3389/fpls.2022.882441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Ferns are the second largest clade of vascular plants with over 10,000 species, yet the generation of genomic resources for the group has lagged behind other major clades of plants. Transcriptomic data have proven to be a powerful tool to assess phylogenetic relationships, using thousands of markers that are largely conserved across the genome, and without the need to sequence entire genomes. We assembled the largest nuclear phylogenetic dataset for ferns to date, including 2884 single-copy nuclear loci from 247 transcriptomes (242 ferns, five outgroups), and investigated phylogenetic relationships across the fern tree, the placement of whole genome duplications (WGDs), and gene retention patterns following WGDs. We generated a well-supported phylogeny of ferns and identified several regions of the fern phylogeny that demonstrate high levels of gene tree-species tree conflict, which largely correspond to areas of the phylogeny that have been difficult to resolve. Using a combination of approaches, we identified 27 WGDs across the phylogeny, including 18 large-scale events (involving more than one sampled taxon) and nine small-scale events (involving only one sampled taxon). Most inferred WGDs occur within single lineages (e.g., orders, families) rather than on the backbone of the phylogeny, although two inferred events are shared by leptosporangiate ferns (excluding Osmundales) and Polypodiales (excluding Lindsaeineae and Saccolomatineae), clades which correspond to the majority of fern diversity. We further examined how retained duplicates following WGDs compared across independent events and found that functions of retained genes were largely convergent, with processes involved in binding, responses to stimuli, and certain organelles over-represented in paralogs while processes involved in transport, organelles derived from endosymbiotic events, and signaling were under-represented. To date, our study is the most comprehensive investigation of the nuclear fern phylogeny, though several avenues for future research remain unexplored.
Collapse
Affiliation(s)
- Jessie A. Pelosi
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Emily H. Kim
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - W. Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Emily B. Sessa
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Chen LY, Lu B, Morales-Briones DF, Moody ML, Liu F, Hu GW, Huang CH, Chen JM, Wang QF. Phylogenomic Analyses of Alismatales Shed Light into Adaptations to Aquatic Environments. Mol Biol Evol 2022; 39:msac079. [PMID: 35438770 PMCID: PMC9070837 DOI: 10.1093/molbev/msac079] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Land plants first evolved from freshwater algae, and flowering plants returned to water as early as the Cretaceous and multiple times subsequently. Alismatales is the largest clade of aquatic angiosperms including all marine angiosperms, as well as terrestrial plants. We used Alismatales to explore plant adaptations to aquatic environments by analyzing a data set that included 95 samples (89 Alismatales species) covering four genomes and 91 transcriptomes (59 generated in this study). To provide a basis for investigating adaptations, we assessed phylogenetic conflict and whole-genome duplication (WGD) events in Alismatales. We recovered a relationship for the three main clades in Alismatales as (Tofieldiaceae, Araceae) + core Alismatids. We also found phylogenetic conflict among the three main clades that was best explained by incomplete lineage sorting and introgression. Overall, we identified 18 putative WGD events across Alismatales. One of them occurred at the most recent common ancestor of core Alismatids, and three occurred at seagrass lineages. We also found that lineage and life-form were both important for different evolutionary patterns for the genes related to freshwater and marine adaptation. For example, several light- or ethylene-related genes were lost in the seagrass Zosteraceae, but are present in other seagrasses and freshwater species. Stomata-related genes were lost in both submersed freshwater species and seagrasses. Nicotianamine synthase genes, which are important in iron intake, expanded in both submersed freshwater species and seagrasses. Our results advance the understanding of the adaptation to aquatic environments and WGDs using phylogenomics.
Collapse
Affiliation(s)
- Ling-Yun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diego F. Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 Munich, Germany
| | - Michael L. Moody
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Fan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jin-Ming Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Core Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
22
|
Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, Wen J, Kim H, Lu F, Zhao H, Chen S, Li H, Wu W, Yu C, Chen S, Fan W, Chen S, Bao X, Li L, Zhang D, Jiang L, Khadka D, Yan X, Liao Z, Zhou G, Guo Y, Ralph J, Sederoff RR, Wei H, Zhu P, Li FW, Ming R, Li Q. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. NATURE PLANTS 2022; 8:500-512. [PMID: 35534720 PMCID: PMC9122828 DOI: 10.1038/s41477-022-01146-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.
Collapse
Affiliation(s)
- Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenling Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David Wickell
- Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Changjiang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Longyu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dipak Khadka
- GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fay-Wei Li
- Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
23
|
Zhou X, Liu Z. Unlocking plant metabolic diversity: A (pan)-genomic view. PLANT COMMUNICATIONS 2022; 3:100300. [PMID: 35529944 PMCID: PMC9073316 DOI: 10.1016/j.xplc.2022.100300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 05/28/2023]
Abstract
Plants produce a remarkable diversity of structurally and functionally diverse natural chemicals that serve as adaptive compounds throughout their life cycles. However, unlocking this metabolic diversity is significantly impeded by the size, complexity, and abundant repetitive elements of typical plant genomes. As genome sequencing becomes routine, we anticipate that links between metabolic diversity and genetic variation will be strengthened. In addition, an ever-increasing number of plant genomes have revealed that biosynthetic gene clusters are not only a hallmark of microbes and fungi; gene clusters for various classes of compounds have also been found in plants, and many are associated with important agronomic traits. We present recent examples of plant metabolic diversification that have been discovered through the exploration and exploitation of various genomic and pan-genomic data. We also draw attention to the fundamental genomic and pan-genomic basis of plant chemodiversity and discuss challenges and future perspectives for investigating metabolic diversity in the coming pan-genomics era.
Collapse
Affiliation(s)
- Xuan Zhou
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Jarvis DE, Maughan PJ, DeTemple J, Mosquera V, Li Z, Barker MS, Johnson LA, Whipple CJ. Chromosome-Scale Genome Assembly of Gilia yorkii Enables Genetic Mapping of Floral Traits in an Interspecies Cross. Genome Biol Evol 2022; 14:evac017. [PMID: 35106544 PMCID: PMC8920513 DOI: 10.1093/gbe/evac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Substantial morphological variation in land plants remains inaccessible to genetic analysis because current models lack variation in important ecological and agronomic traits. The genus Gilia was historically a model for biosystematics studies and includes variation in morphological traits that are poorly understood at the genetic level. We assembled a chromosome-scale reference genome of G. yorkii and used it to investigate genome evolution in the Polemoniaceae. We performed QTL (quantitative trait loci) mapping in a G. yorkii×G. capitata interspecific population for traits related to inflorescence architecture and flower color. The genome assembly spans 2.75 Gb of the estimated 2.80-Gb genome, with 96.7% of the sequence contained in the nine largest chromosome-scale scaffolds matching the haploid chromosome number. Gilia yorkii experienced at least one round of whole-genome duplication shared with other Polemoniaceae after the eudicot paleohexaploidization event. We identified QTL linked to variation in inflorescence architecture and petal color, including a candidate for the major flower color QTL-a tandem duplication of flavanol 3',5'-hydroxylase. Our results demonstrate the utility of Gilia as a forward genetic model for dissecting the evolution of development in plants including the causal loci underlying inflorescence architecture transitions.
Collapse
Affiliation(s)
- David E Jarvis
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | - Peter J Maughan
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | | | | | - Zheng Li
- Department of Integrative Biology, University of Texas, Austin, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | | | |
Collapse
|
25
|
Li M, Zheng Z, Liu J, Yang Y, Ren G, Ru D, Zhang S, Du X, Ma T, Milne R, Liu J. Evolutionary origin of a tetraploid Allium species on the Qinghai-Tibet Plateau. Mol Ecol 2021; 30:5780-5795. [PMID: 34487579 DOI: 10.1111/mec.16168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
Extinct taxa may be detectable if they were ancestors to extant hybrid species, which retain their genetic signature. In this study, we combined phylogenomics, population genetics and fluorescence in situ hybridization (GISH and FISH) analyses to trace the origin of the alpine tetraploid Allium tetraploideum (2n = 4x = 32), one of the five known members in the subgenus Cyathophora. We found that A. tetraploideum was an obvious allotetrapoploid derived from ancestors including at least two closely related diploid species, A. farreri and A. cyathophorum, from which it differs by multiple ecological and genomic attributes. However, these two species cannot account for the full genome of A. tetraploideum, indicating that at least one extinct diploid is also involved in its ancestry. Furthermore, A. tetraploideum appears to have arisen via homoploid hybrid speciation (HHS) from two extinct allotetraploid parents, which derived in turn from the aforementioned diploids. Other modes of origin were possible, but all were even more complex and involved additional extinct ancestors. Our study together highlights how some polyploid species might have very complex origins, involving both HHS and polyploid speciation and also extinct ancestors.
Collapse
Affiliation(s)
- Minjie Li
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juncheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.,Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Fukunaga T, Iwasaki W. Mirage: estimation of ancestral gene-copy numbers by considering different evolutionary patterns among gene families. BIOINFORMATICS ADVANCES 2021; 1:vbab014. [PMID: 36700099 PMCID: PMC9710636 DOI: 10.1093/bioadv/vbab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023]
Abstract
Motivation Reconstruction of gene copy number evolution is an essential approach for understanding how complex biological systems have been organized. Although various models have been proposed for gene copy number evolution, existing evolutionary models have not appropriately addressed the fact that different gene families can have very different gene gain/loss rates. Results In this study, we developed Mirage (MIxtuRe model for Ancestral Genome Estimation), which allows different gene families to have flexible gene gain/loss rates. Mirage can use three models for formulating heterogeneous evolution among gene families: the discretized Γ model, probability distribution-free model and pattern mixture (PM) model. Simulation analysis showed that Mirage can accurately estimate heterogeneous gene gain/loss rates and reconstruct gene-content evolutionary history. Application to empirical datasets demonstrated that the PM model fits genome data from various taxonomic groups better than the other heterogeneous models. Using Mirage, we revealed that metabolic function-related gene families displayed frequent gene gains and losses in all taxa investigated. Availability and implementation The source code of Mirage is freely available at https://github.com/fukunagatsu/Mirage. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Tokyo 1690051, Japan,Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 1130032, Japan,To whom correspondence should be addressed. or
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 2770882, Japan,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 1130032, Japan,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 2770882, Japan,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 2770882, Japan,Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 1130032, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 1130032, Japan,To whom correspondence should be addressed. or
| |
Collapse
|
27
|
Liu Y, Wang B, Shu S, Li Z, Song C, Liu D, Niu Y, Liu J, Zhang J, Liu H, Hu Z, Huang B, Liu X, Liu W, Jiang L, Alami MM, Zhou Y, Ma Y, He X, Yang Y, Zhang T, Hu H, Barker MS, Chen S, Wang X, Nie J. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun 2021; 12:3276. [PMID: 34078898 PMCID: PMC8172641 DOI: 10.1038/s41467-021-23611-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Chinese goldthread (Coptis chinensis Franch.), a member of the Ranunculales, represents an important early-diverging eudicot lineage with diverse medicinal applications. Here, we present a high-quality chromosome-scale genome assembly and annotation of C. chinensis. Phylogenetic and comparative genomic analyses reveal the phylogenetic placement of this species and identify a single round of ancient whole-genome duplication (WGD) shared by the Ranunculaceae. We characterize genes involved in the biosynthesis of protoberberine-type alkaloids in C. chinensis. In particular, local genomic tandem duplications contribute to member amplification of a Ranunculales clade-specific gene family of the cytochrome P450 (CYP) 719. The functional versatility of a key CYP719 gene that encodes the (S)-canadine synthase enzyme involved in the berberine biosynthesis pathway may play critical roles in the diversification of other berberine-related alkaloids in C. chinensis. Our study provides insights into the genomic landscape of early-diverging eudicots and provides a valuable model genome for genetic and applied studies of Ranunculales.
Collapse
Affiliation(s)
- Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Chi Song
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Jinxin Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Heping Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bisheng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiuyu Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liping Jiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Yuxin Zhou
- Hubei Institute for Drug Control, Wuhan, China
| | - Yutao Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangxiang He
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Yicheng Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Hui Hu
- Jing Brand Chizhengtang Pharmaceutical Company Limited, Huangshi, China
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xuekui Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jing Nie
- Hubei Institute for Drug Control, Wuhan, China.
| |
Collapse
|
28
|
Eriksson JS, Bacon CD, Bennett DJ, Pfeil BE, Oxelman B, Antonelli A. Gene count from target sequence capture places three whole genome duplication events in Hibiscus L. (Malvaceae). BMC Ecol Evol 2021; 21:107. [PMID: 34078291 PMCID: PMC8170824 DOI: 10.1186/s12862-021-01751-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background The great diversity in plant genome size and chromosome number is partly due to polyploidization (i.e. genome doubling events). The differences in genome size and chromosome number among diploid plant species can be a window into the intriguing phenomenon of past genome doubling that may be obscured through time by the process of diploidization. The genus Hibiscus L. (Malvaceae) has a wide diversity of chromosome numbers and a complex genomic history. Hibiscus is ideal for exploring past genomic events because although two ancient genome duplication events have been identified, more are likely to be found due to its diversity of chromosome numbers. To reappraise the history of whole-genome duplication events in Hibiscus, we tested three alternative scenarios describing different polyploidization events. Results Using target sequence capture, we designed a new probe set for Hibiscus and generated 87 orthologous genes from four diploid species. We detected paralogues in > 54% putative single-copy genes. 34 of these genes were selected for testing three different genome duplication scenarios using gene counting. All species of Hibiscus sampled shared one genome duplication with H. syriacus, and one whole genome duplication occurred along the branch leading to H. syriacus. Conclusions Here, we corroborated the independent genome doubling previously found in the lineage leading to H. syriacus and a shared genome doubling of this lineage and the remainder of Hibiscus. Additionally, we found a previously undiscovered genome duplication shared by the /Pavonia and /Malvaviscus clades (both nested within Hibiscus) with the occurrences of two copies in what were otherwise single-copy genes. Our results highlight the complexity of genomic diversity in some plant groups, which makes orthology assessment and accurate phylogenomic inference difficult.
Collapse
Affiliation(s)
- J S Eriksson
- School of Bioscience, Systems Biology Research Center, 541 45, Skövde, Sweden. .,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden.
| | - C D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
| | - D J Bennett
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
| | - B E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
| | - B Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
| | - A Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden.,Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3 RB, UK
| |
Collapse
|
29
|
Paszek J, Tiuryn J, Górecki P. Minimizing genomic duplication episodes. Comput Biol Chem 2020; 89:107260. [PMID: 33038778 DOI: 10.1016/j.compbiolchem.2020.107260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The genomic duplication study is fundamental to understand the process of evolution. In evolutionary molecular biology, many approaches focus on discovering the occurrences of gene duplications and multiple gene duplication episodes and their locations in the Tree of Life. To reconstruct such episodes, one can cluster single gene duplications inferred by reconciling a set of gene trees with a species tree. RESULTS We propose an efficient quadratic time algorithm to solve the problem of genomic duplication clustering, in which input gene trees are rooted, episode locations are restricted to preserve the minimal number of single gene duplications, clustering rules are described by minimum episodes method, and the goal is based on the recently introduced new approach to minimize the maximal number of duplication episodes on a single path, called here the MP score. Based on our theoretical results, we show new algorithmic relationships between the MP score and the minimum episodes (ME) score, defined as the minimal number of duplication episodes. CONCLUSIONS Our evaluation analysis on three empirical datasets demonstrates, that under the model in which the minimal number of duplications is preserved, the duplication clusterings with minimal MP score support the clusterings with the minimal total number of duplication episodes. AVAILABILITY The software is available at https://bitbucket.org/pgor17/rmp.
Collapse
Affiliation(s)
- Jarosław Paszek
- Warsaw University, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, 02-097 Warsaw, Poland.
| | - Jerzy Tiuryn
- Warsaw University, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, 02-097 Warsaw, Poland.
| | - Paweł Górecki
- Warsaw University, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, 02-097 Warsaw, Poland.
| |
Collapse
|
30
|
Zwaenepoel A, Van de Peer Y. Model-Based Detection of Whole-Genome Duplications in a Phylogeny. Mol Biol Evol 2020; 37:2734-2746. [PMID: 32359154 DOI: 10.1093/molbev/msaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ancient whole-genome duplications (WGDs) leave signatures in comparative genomic data sets that can be harnessed to detect these events of presumed evolutionary importance. Current statistical approaches for the detection of ancient WGDs in a phylogenetic context have two main drawbacks. The first is that unwarranted restrictive assumptions on the "background" gene duplication and loss rates make inferences unreliable in the face of model violations. The second is that most methods can only be used to examine a limited set of a priori selected WGD hypotheses and cannot be used to discover WGDs in a phylogeny. In this study, we develop an approach for WGD inference using gene count data that seeks to overcome both issues. We employ a phylogenetic birth-death model that includes WGD in a flexible hierarchical Bayesian approach and use reversible-jump Markov chain Monte Carlo to perform Bayesian inference of branch-specific duplication, loss, and WGD retention rates across the space of WGD configurations. We evaluate the proposed method using simulations, apply it to data sets from flowering plants, and discuss the statistical intricacies of model-based WGD inference.
Collapse
Affiliation(s)
- Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
31
|
Koenen EJM, Ojeda DI, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Herendeen PS, Bruneau A, Hughes CE. The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous-Paleogene (K-Pg) Mass Extinction Event. Syst Biol 2020; 70:508-526. [PMID: 32483631 PMCID: PMC8048389 DOI: 10.1093/sysbio/syaa041] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The consequences of the Cretaceous–Paleogene (K–Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous–Paleogene (K–Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events]
Collapse
Affiliation(s)
- Erik J M Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Dario I Ojeda
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.,Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan J Wieringa
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Catherine Kidner
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK
| | - Olivier J Hardy
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - R Toby Pennington
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,Geography, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, UK
| | | | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Colin E Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
32
|
Lv Q, Qiu J, Liu J, Li Z, Zhang W, Wang Q, Fang J, Pan J, Chen Z, Cheng W, Barker MS, Huang X, Wei X, Cheng K. The Chimonanthus salicifolius genome provides insight into magnoliid evolution and flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1910-1923. [PMID: 32524692 DOI: 10.1111/tpj.14874] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome-level genome assembly of C. salicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein-coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole-genome duplication were inferred in the C. salicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for C. salicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole-genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of C. salicifolius.
Collapse
Affiliation(s)
- Qundan Lv
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Wenting Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jie Fang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Zhengdao Chen
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Wenliang Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| |
Collapse
|
33
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Yang JF, Chen MX, Zhang JH, Hao GF, Yang GF. Genome-wide phylogenetic and structural analysis reveals the molecular evolution of the ABA receptor gene family. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1322-1336. [PMID: 31740933 DOI: 10.1093/jxb/erz511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role during the plant life cycle as well as in adaptive responses to environmental stresses. The core regulatory components of ABA signaling in plants are the pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor family (PYLs), which comprise the largest plant hormone receptor family known. They act as negative regulators of members of the protein phosphatase type 2C family. Due to the biological importance of PYLs, many researchers have focused on their genetic redundancy and consequent functional divergence. However, little is understood of their evolution and its impact on the generation of regulatory diversity. In this study, we identify positive selection and functional divergence in PYLs through phylogenetic reconstruction, gene structure and expression pattern analysis, positive selection analysis, functional divergence analysis, and structure comparison. We found the correlation of desensitization of PYLs under specific modifications in the molecular recognition domain with functional diversification. Hence, an interesting antagonistic co-evolutionary mechanism is proposed for the functional diversification of ABA receptor family proteins. We believe a compensatory evolutionary pathway may have occurred.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China
| | - Mo-Xian Chen
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Jian-Hua Zhang
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, P. R. China
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
- State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
35
|
Li Z, Barker MS. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. Gigascience 2020; 9:giaa004. [PMID: 32043527 PMCID: PMC7011446 DOI: 10.1093/gigascience/giaa004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Polyploidy, or whole-genome duplications (WGDs), repeatedly occurred during green plant evolution. To examine the evolutionary history of green plants in a phylogenomic framework, the 1KP project sequenced >1,000 transcriptomes across the Viridiplantae. The 1KP project provided a unique opportunity to study the distribution and occurrence of WGDs across the green plants. As an accompaniment to the capstone publication, this article provides expanded methodological details, results validation, and descriptions of newly released datasets that will aid researchers who wish to use the extended data generated by the 1KP project. RESULTS In the 1KP capstone analyses, we used a total evidence approach that combined inferences of WGDs from Ks and phylogenomic methods to infer and place 244 putative ancient WGDs across the Viridiplantae. Here, we provide an expanded explanation of our approach by describing our methodology and walk-through examples. We also evaluated the consistency of our WGD inferences by comparing them to evidence from published syntenic analyses of plant genome assemblies. We find that our inferences are consistent with whole-genome synteny analyses and our total evidence approach may minimize the false-positive rate throughout the dataset. CONCLUSIONS We release 383,679 nuclear gene family phylogenies and 2,306 gene age distributions with Ks plots from the 1KP capstone paper. These resources will be useful for many future analyses on gene and genome evolution in green plants.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
36
|
One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019; 574:679-685. [PMID: 31645766 PMCID: PMC6872490 DOI: 10.1038/s41586-019-1693-2] [Citation(s) in RCA: 1005] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/12/2019] [Indexed: 11/08/2022]
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
37
|
Zwaenepoel A, Van de Peer Y. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates. Mol Biol Evol 2019; 36:1384-1404. [PMID: 31004147 DOI: 10.1093/molbev/msz088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene tree-species tree reconciliation methods have been employed for studying ancient whole-genome duplication (WGD) events across the eukaryotic tree of life. Most approaches have relied on using maximum likelihood trees and the maximum parsimony reconciliation thereof to count duplication events on specific branches of interest in a reference species tree. Such approaches do not account for uncertainty in the gene tree and reconciliation, or do so only heuristically. The effects of these simplifications on the inference of ancient WGDs are unclear. In particular, the effects of variation in gene duplication and loss rates across the species tree have not been considered. Here, we developed a full probabilistic approach for phylogenomic reconciliation-based WGD inference, accounting for both gene tree and reconciliation uncertainty using a method based on the principle of amalgamated likelihood estimation. The model and methods are implemented in a maximum likelihood and Bayesian setting and account for variation of duplication and loss rates across the species tree, using methods inspired by phylogenetic divergence time estimation. We applied our newly developed framework to ancient WGDs in land plants and investigated the effects of duplication and loss rate variation on reconciliation and gene count based assessment of these earlier proposed WGDs.
Collapse
Affiliation(s)
- Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Pett W, Adamski M, Adamska M, Francis WR, Eitel M, Pisani D, Wörheide G. The Role of Homology and Orthology in the Phylogenomic Analysis of Metazoan Gene Content. Mol Biol Evol 2019; 36:643-649. [PMID: 30690573 DOI: 10.1093/molbev/msz013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resolving the relationships of animals (Metazoa) is crucial to our understanding of the origin of key traits such as muscles, guts, and nerves. However, a broadly accepted metazoan consensus phylogeny has yet to emerge. In part, this is because the genomes of deeply diverging and fast-evolving lineages may undergo significant gene turnover, reducing the number of orthologs shared with related phyla. This can limit the usefulness of traditional phylogenetic methods that rely on alignments of orthologous sequences. Phylogenetic analysis of gene content has the potential to circumvent this orthology requirement, with binary presence/absence of homologous gene families representing a source of phylogenetically informative characters. Applying binary substitution models to the gene content of 26 complete animal genomes, we demonstrate that patterns of gene conservation differ markedly depending on whether gene families are defined by orthology or homology, that is, whether paralogs are excluded or included. We conclude that the placement of some deeply diverging lineages may exceed the limit of resolution afforded by the current methods based on comparisons of orthologous protein sequences, and novel approaches are required to fully capture the evolutionary signal from genes within genomes.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Marcin Adamski
- Computational Biology and Bioinformatics Unit, Research School of Biology, The Australian National University, Canberra, Australia
| | - Maja Adamska
- Computational Biology and Bioinformatics Unit, Research School of Biology, The Australian National University, Canberra, Australia
| | - Warren R Francis
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gert Wörheide
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
39
|
Yang Y, Li Y, Chen Q, Sun Y, Lu Z. WGDdetector: a pipeline for detecting whole genome duplication events using the genome or transcriptome annotations. BMC Bioinformatics 2019; 20:75. [PMID: 30760221 PMCID: PMC6375192 DOI: 10.1186/s12859-019-2670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the availability of well-assembled genomes of a growing number of organisms, identifying the bioinformatic basis of whole genome duplication (WGD) is a growing field of genomics. The most extant software for detecting footprints of WGDs has been restricted to a well-assembled genome. However, the massive poor quality genomes and the more accessible transcriptomes have been largely ignored, and in theoretically they are also likely to contribute to detect WGD using dS based method. Here, to resolve these problems, we have designed a universal and simple technical tool WGDdetector for detecting WGDs using either genome or transcriptome annotations in different organisms based on the widely used dS based method. RESULTS We have constructed WGDdetector pipeline that integrates all analyses including gene family constructing, dS estimating and phasing, and outputting the dS values of each paralogs pairs processed with only one command. We further chose four species (Arabidopsis thaliana, Juglans regia, Populus trichocarpa and Xenopus laevis) representing herb, wood and animal, to test its practicability. Our final results showed a high degree of accuracy with the previous studies using both genome and transcriptome data. CONCLUSION WGDdetector is not only reliable and stable for genome data, but also a new way to using the transcriptome data to obtain the correct dS distribution for detecting WGD. The source code is freely available, and is implemented in Windows and Linux operation system.
Collapse
Affiliation(s)
- Yongzhi Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.,State Key Laboratory of Grassland Agro-Ecosystem, College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiao Chen
- State Key Laboratory of Grassland Agro-Ecosystem, College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
| |
Collapse
|
40
|
A Likely Ancient Genome Duplication in the Speciose Reef-Building Coral Genus, Acropora. iScience 2019; 13:20-32. [PMID: 30798090 PMCID: PMC6389592 DOI: 10.1016/j.isci.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Whole-genome duplication (WGD) has been recognized as a significant evolutionary force in the origin and diversification of multiple organisms. Acropora, a speciose reef-building coral genus, is suspected to have originated by polyploidy. Yet, there is no genetic evidence to support this hypothesis. Using comprehensive phylogenomic and comparative genomic approaches, we analyzed six Acroporid genomes and found that a WGD event likely occurred ∼31 million years ago in the most recent common ancestor of Acropora, concurrent with a worldwide coral extinction. We found that duplicated genes were highly enriched in gene regulation functions, including those of stress responses. The functional clusters of duplicated genes are related to the divergence of gene expression patterns during development. Some proteinaceous toxins were generated by WGD in Acropora compared with other cnidarian species. Collectively, this study provides evidence for an ancient WGD event in corals, which helps explain the origin and diversification of Acropora. An ancient genome duplication occurred in the most recent common ancestor of Acropora This WGD event likely occurred between 28 and 36 mya in Acropora The WGD event potentially contributes to the origin and diversification of Acropora Duplications of toxic proteins were found in Acropora following the WGD
Collapse
|
41
|
Mao Y. GenoDup Pipeline: a tool to detect genome duplication using the dS-based method. PeerJ 2019; 7:e6303. [PMID: 30697488 PMCID: PMC6347962 DOI: 10.7717/peerj.6303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022] Open
Abstract
Understanding whole genome duplication (WGD), or polyploidy, is fundamental to investigating the origin and diversification of organisms in evolutionary biology. The wealth of genomic data generated by next generation sequencing (NGS) has resulted in an urgent need for handy and accurate tools to detect WGD. Here, I present a useful and user-friendly pipeline called GenoDup for inferring WGD using the dS-based method. I have successfully applied GenoDup to identify WGD in empirical data from both plants and animals. The GenoDup Pipeline provides a reliable and useful tool to infer WGD from NGS data.
Collapse
Affiliation(s)
- Yafei Mao
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
42
|
Cai L, Xi Z, Amorim AM, Sugumaran M, Rest JS, Liu L, Davis CC. Widespread ancient whole-genome duplications in Malpighiales coincide with Eocene global climatic upheaval. THE NEW PHYTOLOGIST 2019; 221:565-576. [PMID: 30030969 PMCID: PMC6265113 DOI: 10.1111/nph.15357] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 05/12/2023]
Abstract
Whole-genome duplications (WGDs) are widespread and prevalent in vascular plants and frequently coincide with major episodes of global and climatic upheaval, including the mass extinction at the Cretaceous-Tertiary boundary (c. 65 Ma) and during more recent periods of global aridification in the Miocene (c. 10-5 Ma). Here, we explore WGDs in the diverse flowering plant clade Malpighiales. Using transcriptomes and complete genomes from 42 species, we applied a multipronged phylogenomic pipeline to identify, locate, and determine the age of WGDs in Malpighiales using three means of inference: distributions of synonymous substitutions per synonymous site (Ks ) among paralogs, phylogenomic (gene tree) reconciliation, and a likelihood-based gene-count method. We conservatively identify 22 ancient WGDs, widely distributed across Malpighiales subclades. Importantly, these events are clustered around the Eocene-Paleocene transition (c. 54 Ma), during which time the planet was warmer and wetter than any period in the Cenozoic. These results establish that the Eocene Climatic Optimum likely represents a previously unrecognized period of prolific WGDs in plants, and lends further support to the hypothesis that polyploidization promotes adaptation and enhances plant survival during episodes of global change, especially for tropical organisms like Malpighiales, which have tight thermal tolerances.
Collapse
Affiliation(s)
- Liming Cai
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - André M. Amorim
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, 45.662-900, Bahia, Brazil
| | - M. Sugumaran
- Rimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joshua S. Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Liang Liu
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Charles C. Davis
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
43
|
Conover JL, Karimi N, Stenz N, Ané C, Grover CE, Skema C, Tate JA, Wolff K, Logan SA, Wendel JF, Baum DA. A Malvaceae mystery: A mallow maelstrom of genome multiplications and maybe misleading methods? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:12-31. [PMID: 30474311 DOI: 10.1111/jipb.12746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Previous research suggests that Gossypium has undergone a 5- to 6-fold multiplication following its divergence from Theobroma. However, the number of events, or where they occurred in the Malvaceae phylogeny remains unknown. We analyzed transcriptomic and genomic data from representatives of eight of the nine Malvaceae subfamilies. Phylogenetic analysis of nuclear data placed Dombeya (Dombeyoideae) as sister to the rest of Malvadendrina clade, but the plastid DNA tree strongly supported Durio (Helicteroideae) in this position. Intraspecific Ks plots indicated that all sampled taxa, except Theobroma (Byttnerioideae), Corchorus (Grewioideae), and Dombeya (Dombeyoideae), have experienced whole genome multiplications (WGMs). Quartet analysis suggested WGMs were shared by Malvoideae-Bombacoideae and Sterculioideae-Tilioideae, but did not resolve whether these are shared with each other or Helicteroideae (Durio). Gene tree reconciliation and Bayesian concordance analysis suggested a complex history. Alternative hypotheses are suggested, each involving two independent autotetraploid and one allopolyploid event. They differ in that one entails an allopolyploid origin for the Durio lineage, whereas the other invokes an allopolyploid origin for Malvoideae-Bombacoideae. We highlight the need for more genomic information in the Malvaceae and improved methods to resolve complex evolutionary histories that may include allopolyploidy, incomplete lineage sorting, and variable rates of gene and genome evolution.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nisa Karimi
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
| | - Noah Stenz
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin Madison, WI, 53706, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cynthia Skema
- Morris Arboretum of the University of Pennsylvania, 100 E. Northwestern Avenue, Philadelphia, PA, 19118, USA
| | - Jennifer A Tate
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
| | - Samuel A Logan
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - David A Baum
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, 330 N Orchard St, Madison, WI 53715, USA
| |
Collapse
|
44
|
Tiley GP, Barker MS, Burleigh JG. Assessing the Performance of Ks Plots for Detecting Ancient Whole Genome Duplications. Genome Biol Evol 2018; 10:2882-2898. [PMID: 30239709 PMCID: PMC6225891 DOI: 10.1093/gbe/evy200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Genomic data have provided evidence of previously unknown ancient whole genome duplications (WGDs) and highlighted the role of WGDs in the evolution of many eukaryotic lineages. Ancient WGDs often are detected by examining distributions of synonymous substitutions per site (Ks) within a genome, or “Ks plots.” For example, WGDs can be detected from Ks plots by using univariate mixture models to identify peaks in Ks distributions. We performed gene family simulation experiments to evaluate the effects of different Ks estimation methods and mixture models on our ability to detect ancient WGDs from Ks plots. The simulation experiments, which accounted for variation in substitution rates and gene duplication and loss rates across gene families, tested the effects of WGD age and gene retention rates following WGD on inferring WGDs from Ks plots. Our simulations reveal limitations of Ks plot analyses. Strict interpretations of mixture model analyses often overestimate the number of WGD events, and Ks plot analyses typically fail to detect WGDs when ≤10% of the duplicated genes are retained following the WGD. However, WGDs can accurately be characterized over an intermediate range of Ks. The simulation results are supported by empirical analyses of transcriptomic data, which also suggest that biases in gene retention likely affect our ability to detect ancient WGDs. Although our results indicate mixture model results should be interpreted with great caution, using node-averaged Ks estimates and applying more appropriate mixture models can improve the accuracy of detecting WGDs.
Collapse
Affiliation(s)
- George P Tiley
- Department of Biology, University of Florida.,Department of Biology, Duke University
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | |
Collapse
|
45
|
Li FW, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J, Delaux PM, Eily A, Koppers N, Kuo LY, Li Z, Simenc M, Small I, Wafula E, Angarita S, Barker MS, Bräutigam A, dePamphilis C, Gould S, Hosmani PS, Huang YM, Huettel B, Kato Y, Liu X, Maere S, McDowell R, Mueller LA, Nierop KGJ, Rensing SA, Robison T, Rothfels CJ, Sigel EM, Song Y, Timilsena PR, Van de Peer Y, Wang H, Wilhelmsson PKI, Wolf PG, Xu X, Der JP, Schluepmann H, Wong GKS, Pryer KM. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. NATURE PLANTS 2018; 4:460-472. [PMID: 29967517 PMCID: PMC6786969 DOI: 10.1038/s41477-018-0188-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/24/2018] [Indexed: 05/18/2023]
Abstract
Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns-one at the base of 'core leptosporangiates' and one specific to Azolla. One fern-specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbuscular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla-cyanobacterial symbiosis. These genomic resources will help in exploring the biotechnological potential of Azolla and address fundamental questions in the evolution of plant life.
Collapse
Affiliation(s)
- Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Paul Brouwer
- Molecular Plant Physiology Department, Utrecht University, Utrecht, the Netherlands
| | - Lorenzo Carretero-Paulet
- Bioinformatics Institute Ghent and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet Tolosan, France
| | - Ariana Eily
- Department of Biology, Duke University, Durham, NC, USA
| | - Nils Koppers
- Department of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Mathew Simenc
- Department of Biological Science, California State University, Fullerton, CA, USA
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eric Wafula
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Stephany Angarita
- Department of Biological Science, California State University, Fullerton, CA, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Claude dePamphilis
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sven Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | - Yoichiro Kato
- Institute for Sustainable Agro-ecosystem Services, University of Tokyo, Tokyo, Japan
| | - Xin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Steven Maere
- Bioinformatics Institute Ghent and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rose McDowell
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Klaas G J Nierop
- Geolab, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | | | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Erin M Sigel
- Department of Biology, University of Louisiana, Lafayette, LA, USA
| | - Yue Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Prakash R Timilsena
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yves Van de Peer
- Bioinformatics Institute Ghent and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Hongli Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | | | - Paul G Wolf
- Department of Biology, Utah State University, Logan, UT, USA
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Joshua P Der
- Department of Biological Science, California State University, Fullerton, CA, USA
| | | | - Gane K-S Wong
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
46
|
Morales-Briones DF, Liston A, Tank DC. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). THE NEW PHYTOLOGIST 2018; 218:1668-1684. [PMID: 29604235 DOI: 10.1111/nph.15099] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 05/10/2023]
Abstract
Hybridization, incomplete lineage sorting, and phylogenetic error produce similar incongruence patterns, representing a great challenge for phylogenetic reconstruction. Here, we use sequence capture data and multiple species tree and species network approaches to resolve the backbone phylogeny of the Neotropical genus Lachemilla, while distinguishing among sources of incongruence. We used 396 nuclear loci and nearly complete plastome sequences from 27 species to clarify the relationships among the major groups of Lachemilla, and explored multiple sources of conflict between gene trees and species trees inferred with a plurality of approaches. All phylogenetic methods recovered the four major groups previously proposed for Lachemilla, but species tree methods recovered different topologies for relationships between these four clades. Species network analyses revealed that one major clade, Orbiculate, is likely of ancient hybrid origin, representing one of the main sources of incongruence among the species trees. Additionally, we found evidence for a potential whole genome duplication event shared by Lachemilla and allied genera. Lachemilla shows clear evidence of ancient and recent hybridization throughout the evolutionary history of the group. Also, we show the necessity to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups that show patterns of reticulation.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
47
|
Abstract
Background One of evolutionary molecular biology fundamental issues is to discover genomic duplication events and their correspondence to the species tree. Such events can be reconstructed by clustering single gene duplications inferred by reconciling a set of gene trees with a species tree. Results Here we propose the first solutions to the genomic duplication problem in which every reconciliation with the minimal number of single gene duplications is allowed and the method of clustering called minimum episodes under the assumption that input gene trees are unrooted. Conclusions We showed new theoretical properties of unrooted reconciliation for the duplication cost and apply them to design several exact and heuristic algorithms for solving the problem. Our evaluation study on empirical dataset confirmed several genomic duplication events from the literature and demonstrate that algorithms can be successfully applied.
Collapse
Affiliation(s)
- Jarosław Paszek
- Warsaw University, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, Warsaw, 02-097, Poland.
| | - Paweł Górecki
- Warsaw University, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, Warsaw, 02-097, Poland
| |
Collapse
|
48
|
Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc Natl Acad Sci U S A 2018; 115:4713-4718. [PMID: 29674453 DOI: 10.1073/pnas.1710791115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyploidy or whole genome duplication (WGD) is a major contributor to genome evolution and diversity. Although polyploidy is recognized as an important component of plant evolution, it is generally considered to play a relatively minor role in animal evolution. Ancient polyploidy is found in the ancestry of some animals, especially fishes, but there is little evidence for ancient WGDs in other metazoan lineages. Here we use recently published transcriptomes and genomes from more than 150 species across the insect phylogeny to investigate whether ancient WGDs occurred during the evolution of Hexapoda, the most diverse clade of animals. Using gene age distributions and phylogenomics, we found evidence for 18 ancient WGDs and six other large-scale bursts of gene duplication during insect evolution. These bursts of gene duplication occurred in the history of lineages such as the Lepidoptera, Trichoptera, and Odonata. To further corroborate the nature of these duplications, we evaluated the pattern of gene retention from putative WGDs observed in the gene age distributions. We found a relatively strong signal of convergent gene retention across many of the putative insect WGDs. Considering the phylogenetic breadth and depth of the insect phylogeny, this observation is consistent with polyploidy as we expect dosage balance to drive the parallel retention of genes. Together with recent research on plant evolution, our hexapod results suggest that genome duplications contributed to the evolution of two of the most diverse lineages of eukaryotes on Earth.
Collapse
|
49
|
Zheng S, Long J, Liu Z, Tao W, Wang D. Identification and Evolution of TGF-β Signaling Pathway Members in Twenty-Four Animal Species and Expression in Tilapia. Int J Mol Sci 2018; 19:E1154. [PMID: 29641448 PMCID: PMC5979292 DOI: 10.3390/ijms19041154] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling controls diverse cellular processes during embryogenesis as well as in mature tissues of multicellular animals. Here we carried out a comprehensive analysis of TGF-β pathway members in 24 representative animal species. The appearance of the TGF-β pathway was intrinsically linked to the emergence of metazoan. The total number of TGF-β ligands, receptors, and smads changed slightly in all invertebrates and jawless vertebrates analyzed. In contrast, expansion of the pathway members, especially ligands, was observed in jawed vertebrates most likely due to the second round of whole genome duplication (2R) and additional rounds in teleosts. Duplications of TGFB2, TGFBR2, ACVR1, SMAD4 and SMAD6, which were resulted from 2R, were first isolated. Type II receptors may be originated from the ACVR2-like ancestor. Interestingly, AMHR2 was not identified in Chimaeriformes and Cypriniformes even though they had the ligand AMH. Based on transcriptome data, TGF-β ligands exhibited a tissue-specific expression especially in the heart and gonads. However, most receptors and smads were expressed in multiple tissues indicating they were shared by different ligands. Spatial and temporal expression profiles of 8 genes in gonads of different developmental stages provided a fundamental clue for understanding their important roles in sex determination and reproduction. Taken together, our findings provided a global insight into the phylogeny and expression patterns of the TGF-β pathway genes, and hence contribute to the greater understanding of their biological roles in the organism especially in teleosts.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Juan Long
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
50
|
Emery M, Willis MMS, Hao Y, Barry K, Oakgrove K, Peng Y, Schmutz J, Lyons E, Pires JC, Edger PP, Conant GC. Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLoS Genet 2018; 14:e1007267. [PMID: 29590103 PMCID: PMC5891031 DOI: 10.1371/journal.pgen.1007267] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/09/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is increasingly seen as a driver of both evolutionary innovation and ecological success. One source of polyploid organisms' successes may be their origins in the merging and mixing of genomes from two different species (e.g., allopolyploidy). Using POInT (the Polyploid Orthology Inference Tool), we model the resolution of three allopolyploidy events, one from the bakers' yeast (Saccharomyces cerevisiae), one from the thale cress (Arabidopsis thaliana) and one from grasses including Sorghum bicolor. Analyzing a total of 21 genomes, we assign to every gene a probability for having come from each parental subgenome (i.e., derived from the diploid progenitor species), yielding orthologous segments across all genomes. Our model detects statistically robust evidence for the existence of biased fractionation in all three lineages, whereby genes from one of the two subgenomes were more likely to be lost than those from the other subgenome. We further find that a driver of this pattern of biased losses is the co-retention of genes from the same parental genome that share functional interactions. The pattern of biased fractionation after the Arabidopsis and grass allopolyploid events was surprisingly constant in time, with the same parental genome favored throughout the lineages' history. In strong contrast, the yeast allopolyploid event shows evidence of biased fractionation only immediately after the event, with balanced gene losses more recently. The rapid loss of functionally associated genes from a single subgenome is difficult to reconcile with the action of genetic drift and suggests that selection may favor the removal of specific duplicates. Coupled to the evidence for continuing, functionally-associated biased fractionation after the A. thaliana At-α event, we suggest that, after allopolyploidy, there are functional conflicts between interacting genes encoded in different subgenomes that are ultimately resolved through preferential duplicate loss.
Collapse
Affiliation(s)
- Marianne Emery
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - M. Madeline S. Willis
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Khouanchy Oakgrove
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Yi Peng
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Gavin C. Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|