1
|
Marinov GK, Chen X, Wu T, He C, Grossman AR, Kundaje A, Greenleaf WJ. The chromatin organization of a chlorarachniophyte nucleomorph genome. Genome Biol 2022; 23:65. [PMID: 35232465 PMCID: PMC8887012 DOI: 10.1186/s13059-022-02639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. RESULTS In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans. We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. CONCLUSIONS We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Tong Wu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - William James Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 2020; 117:5364-5375. [PMID: 32094181 DOI: 10.1073/pnas.1911884117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.
Collapse
|
3
|
Grisdale CJ, Smith DR, Archibald JM. Relative Mutation Rates in Nucleomorph-Bearing Algae. Genome Biol Evol 2019; 11:1045-1053. [PMID: 30859201 PMCID: PMC6456004 DOI: 10.1093/gbe/evz056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/23/2022] Open
Abstract
Chlorarachniophyte and cryptophyte algae are unique among plastid-containing species in that they have a nucleomorph genome: a compact, highly reduced nuclear genome from a photosynthetic eukaryotic endosymbiont. Despite their independent origins, the nucleomorph genomes of these two lineages have similar genomic architectures, but little is known about the evolutionary pressures impacting nucleomorph DNA, particularly how their rates of evolution compare to those of the neighboring genetic compartments (the mitochondrion, plastid, and nucleus). Here, we use synonymous substitution rates to estimate relative mutation rates in the four genomes of nucleomorph-bearing algae. We show that the relative mutation rates of the host versus endosymbiont nuclear genomes are similar in both chlorarachniophytes and cryptophytes, despite the fact that nucleomorph gene sequences are notoriously highly divergent. There is some evidence, however, for slightly elevated mutation rates in the nucleomorph DNA of chlorarachniophytes-a feature not observed in that of cryptophytes. For both lineages, relative mutation rates in the plastid appear to be lower than those in the nucleus and nucleomorph (and, in one case, the mitochondrion), which is consistent with studies of other plastid-bearing protists. Given the divergent nature of nucleomorph genes, our finding of relatively low evolutionary rates in these genomes suggests that for both lineages a burst of evolutionary change and/or decreased selection pressures likely occurred early in the integration of the secondary endosymbiont.
Collapse
Affiliation(s)
- Cameron J Grisdale
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Rangsrikitphoti P, Durnford DG. Transcriptome Profiling of Bigelowiella natans in Response to Light Stress. J Eukaryot Microbiol 2018; 66:316-333. [PMID: 30055063 DOI: 10.1111/jeu.12672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/17/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Bigelowiella natans is a marine chlorarachniophyte whose plastid was acquired secondarily via endosymbiosis with a green alga. During plastid evolution, the photosynthetic endosymbiont would have integrated with the host metabolic pathways. This would require the evolution and coordination of strategies to cope with changes in light intensity that includes changes in the expression of both endosymbiont and host-derived genes. To investigate the transcriptional response to light intensity in chlorarachniophytes, we conducted an RNA-seq experiment to identify differentially expressed genes following a 4-h shift to high or very-low light. A shift to high light altered the expression of over 2,000 genes, many involved with photosynthesis, PSII assembly, primary metabolism, and reactive-oxygen scavenging. These changes are an attempt to optimize photosynthesis and increase energy sinks for excess reductant, while minimizing photooxidative stress. A transfer to very-low light resulted in a lower photosynthetic performance and metabolic alteration, reflecting an energy-limited state. Genes located on the nucleomorph, the vestigial nucleus in the plastid, had few changes in expression in either light treatment, indicating this organelle has relinquished most transcriptional control to the nucleus. Overall, during plastid origin, both host and transferred endosymbiont genes evolved a harmonized transcriptional network to respond to a classic photosynthetic stress.
Collapse
Affiliation(s)
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
5
|
Wong DK, Grisdale CJ, Fast NM. Evolution and Diversity of Pre-mRNA Splicing in Highly Reduced Nucleomorph Genomes. Genome Biol Evol 2018; 10:1573-1583. [PMID: 29860351 PMCID: PMC6009652 DOI: 10.1093/gbe/evy111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genes are interrupted by introns that are removed in a conserved process known as pre-mRNA splicing. Though well-studied in select model organisms, we are only beginning to understand the variation and diversity of this process across the tree of eukaryotes. We explored pre-mRNA splicing and other features of transcription in nucleomorphs, the highly reduced remnant nuclei of secondary endosymbionts. Strand-specific transcriptomes were sequenced from the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, whose plastids are derived from red and green algae, respectively. Both organisms exhibited elevated nucleomorph antisense transcription and gene expression relative to their respective nuclei, suggesting unique properties of gene regulation and transcriptional control in nucleomorphs. Marked differences in splicing were observed between the two nucleomorphs: the few introns of the G. theta nucleomorph were largely retained in mature transcripts, whereas the many short introns of the B. natans nucleomorph are spliced at typical eukaryotic levels (>90%). These differences in splicing levels could be reflecting the ancestries of the respective plastids, the different intron densities due to independent genome reduction events, or a combination of both. In addition to extending our understanding of the diversity of pre-mRNA splicing across eukaryotes, our study also indicates potential links between splicing, antisense transcription, and gene regulation in reduced genomes.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron J Grisdale
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Suzuki S, Ishida KI, Hirakawa Y. Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans. Genome Biol Evol 2016; 8:2672-82. [PMID: 27503292 PMCID: PMC5635652 DOI: 10.1093/gbe/evw188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chlorarachniophyte algae possess complex plastids acquired by the secondary endosymbiosis of a green alga, and the plastids harbor a relict nucleus of the endosymbiont, the so-called nucleomorph. Due to massive gene transfer from the endosymbiont to the host, many proteins involved in plastid and nucleomorph are encoded by the nuclear genome. Genome sequences have provided a blueprint for the fate of endosymbiotically derived genes; however, transcriptional regulation of these genes remains poorly understood. To gain insight into the evolution of endosymbiotic genes, we performed genome-wide transcript profiling along the cell cycle of the chlorarachniophyte Bigelowiella natans, synchronized by light and dark cycles. Our comparative analyses demonstrated that transcript levels of 7,751 nuclear genes (35.7% of 21,706 genes) significantly oscillated along the diurnal/cell cycles, and those included 780 and 147 genes for putative plastid and nucleomorph-targeted proteins, respectively. Clustering analysis of those genes revealed the existence of transcriptional networks related to specific biological processes such as photosynthesis, carbon metabolism, translation, and DNA replication. Interestingly, transcripts of many plastid-targeted proteins in B. natans were induced before dawn, unlike other photosynthetic organisms. In contrast to nuclear genes, 99% nucleomorph genes were found to be constitutively expressed during the cycles. We also found that the nucleomorph DNA replication would be controlled by a nucleus-encoded viral-like DNA polymerase. The results of this study suggest that nucleomorph genes have lost transcriptional regulation along the diurnal cycles, and nuclear genes exert control over the complex plastid including the nucleomorph.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Tanifuji G, Archibald JM, Hashimoto T. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Sci Rep 2016; 6:21016. [PMID: 26888293 PMCID: PMC4757882 DOI: 10.1038/srep21016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.
Collapse
Affiliation(s)
- Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Canada.,Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario Canada
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| |
Collapse
|
8
|
Pennisi R, Ascenzi P, di Masi A. Hsp90: A New Player in DNA Repair? Biomolecules 2015; 5:2589-618. [PMID: 26501335 PMCID: PMC4693249 DOI: 10.3390/biom5042589] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis), transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR) pathways that include: (i) cell cycle arrest; (ii) transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii) triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| |
Collapse
|
9
|
The periplastidal compartment: a naturally minimized eukaryotic cytoplasm. Curr Opin Microbiol 2014; 22:88-93. [DOI: 10.1016/j.mib.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 11/24/2022]
|