1
|
Buzby C, Plavskin Y, Sartori FMO, Tong Q, Vail JK, Siegal ML. Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast. Genetics 2025; 229:iyaf026. [PMID: 39989051 PMCID: PMC12005261 DOI: 10.1093/genetics/iyaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025] Open
Abstract
The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis (BSA), wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use BSA to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here, we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find 7 loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the 7 interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation-in this case, chromosome VIII, which contains the large-effect QTL mapping to CUP1-increases power to detect the contributions of other loci to trait differences.
Collapse
Affiliation(s)
- Cassandra Buzby
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Yevgeniy Plavskin
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Federica M O Sartori
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Qiange Tong
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Janessa K Vail
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- New York Presbyterian Queens Medical Group, Bayside, NY 11361, USA
| | - Mark L Siegal
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
2
|
Buzby C, Plavskin Y, Sartori FM, Tong Q, Vail JK, Siegal ML. Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620582. [PMID: 39605464 PMCID: PMC11601411 DOI: 10.1101/2024.10.28.620582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis, wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use bulk segregant analysis to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find seven loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the seven interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation - in this case chromosome VIII, which contains the large-effect QTL mapping to CUP1 - increases power to detect the contributions of other loci to trait differences.
Collapse
Affiliation(s)
- Cassandra Buzby
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Yevgeniy Plavskin
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Federica M.O. Sartori
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Current affiliation: Department of Oncological Sciences, Mount Sinai, New York, NY, USA
| | - Qiange Tong
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Janessa K. Vail
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Mark L. Siegal
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
3
|
Longan ER, Fay JC. The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation. Genetics 2024; 228:iyae160. [PMID: 39373582 PMCID: PMC11631397 DOI: 10.1093/genetics/iyae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024] Open
Abstract
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast could be driven by a number of factors including niche differences or differential access to resistance mutations between species. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants. We found that the distributions of mutational effects displayed by the two species were similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a de novo duplication of the CUP1 gene in S. paradoxus but not in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger effects in S. paradoxus. Our results show that even when available mutations are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
Collapse
Affiliation(s)
- Emery R Longan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
4
|
Scholes AN, Stuecker TN, Hood SE, Locke CJ, Stacy CL, Zhang Q, Lewis JA. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance. BMC Biol 2024; 22:149. [PMID: 38965504 PMCID: PMC11225312 DOI: 10.1186/s12915-024-01945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.
Collapse
Affiliation(s)
- Amanda N Scholes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Tara N Stuecker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Stephanie E Hood
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Cader J Locke
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Carson L Stacy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Qingyang Zhang
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
5
|
Longan ER, Fay JC. The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597243. [PMID: 38895255 PMCID: PMC11185594 DOI: 10.1101/2024.06.03.597243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus, has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast represents a case of apparent evolutionary constraints favoring greater adaptive capacity in S. cerevisiae. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants isolated from our screen. We found that the distributions of mutational effects displayed by the two species were very similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a single de novo duplication of the CUP1 gene in S. paradoxus but none in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger average effects in S. paradoxus. Our results show that even when the distributions of mutational effects are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
6
|
Chen Y, Jiang J, Song Y, Zang X, Wang G, Pei Y, Song Y, Qin Y, Liu Y. Yeast Diversity during Spontaneous Fermentations and Oenological Characterisation of Indigenous Saccharomyces cerevisiae for Potential as Wine Starter Cultures. Microorganisms 2022; 10:microorganisms10071455. [PMID: 35889174 PMCID: PMC9325129 DOI: 10.3390/microorganisms10071455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diversity of regional yeast can be influenced by geography, grape cultivars and the use of SO2, but at single vineyard scale in China, the impact of these factors on yeast population, particularly Saccharomyces cerevisiae, is not well studied. Here, we characterised yeast species and dynamics during spontaneous fermentations with/without SO2 using eight typical grape cultivars from Yuma vineyard in Ningxia wine region of China. Results show that distribution and abundance of yeast species varied by grape varieties, fermentation stage and SO2 treatment. A number of 290 S. cerevisiae isolates were further classified into 33 genotypes by Interdelta fingerprinting. A prevailing role of grape varieties in shaping the genetic divergence of S. cerevisiae in Yuma vineyard was observed, as compared to the impacts of fermentation stage and SO2 treatment. Pre-selected S. cerevisiae strains were subjected to vinification with Cabernet Sauvignon and Chardonnay. All strains completed fermentations but the physiochemical parameters and volatile profiles of wines were strain-specific. Some indigenous S. cerevisiae yielded more desirable aroma compounds compared to the commercial strains, among which NX16 and NX18 outcompeted others, therefore having potential for use as starters. This study provides comprehensive analysis on yeast diversity at vineyard scale in Ningxia. Information on the vinification using indigenous S. cerevisiae is of great value for improving Ningxia wine regionality.
Collapse
Affiliation(s)
- Yu Chen
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Jiao Jiang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
| | - Yaoyao Song
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Xiaomin Zang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Guoping Wang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Yingfang Pei
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Yuyang Song
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
| | - Yi Qin
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
- Correspondence: (Y.Q.); (Y.L.)
| | - Yanlin Liu
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
- Correspondence: (Y.Q.); (Y.L.)
| |
Collapse
|
7
|
Macías LG, Flores MG, Adam AC, Rodríguez ME, Querol A, Barrio E, Lopes CA, Pérez-Torrado R. Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations. PLoS Genet 2021; 17:e1009872. [PMID: 34762651 PMCID: PMC8631656 DOI: 10.1371/journal.pgen.1009872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/30/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that share similarities with other SSU1 locus chromosomal translocations previously described in domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chromosomal translocations generate an overexpression of the SSU1 gene and confer increased sulfite resistance. This study highlights the relevance of chromosomal rearrangements to promote the adaptation of yeast to anthropic environments. It is known that genetically distant species can arrive to similar evolutionary solutions during the adaptation to a specific environment, a phenomena known as convergent adaptation, and this frequently occurs after point mutations, gene duplications, or species hybridizations. In this work, we discovered a new example of convergent evolution in the adaptation of two wine fermentation yeast species to the presence of sulfite, an antimicrobial additive widely used in food production. We observed that two species, Saccharomyces cerevisiae and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentative environments. We describe new chromosomal translocations in S. uvarum strains that generate an overexpression of the SSU1 gene and confer increased sulfite resistance, a similar event that was already described in S. cerevisiae. Overall, this study describes a new case of convergent evolution in which the chromosomal rearrangements have a significant role in the adaptation of yeast to an environment created by humans to produce food.
Collapse
Affiliation(s)
- Laura G. Macías
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Melisa González Flores
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina–Universidad Nacional del Comahue), Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Cinco Saltos, Río Negro, Argentina
| | - Ana Cristina Adam
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - María E. Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina–Universidad Nacional del Comahue), Neuquén, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina–Universidad Nacional del Comahue), Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Cinco Saltos, Río Negro, Argentina
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- * E-mail:
| |
Collapse
|
8
|
St. Leger RJ, Wang JB. Metarhizium: jack of all trades, master of many. Open Biol 2020; 10:200307. [PMID: 33292103 PMCID: PMC7776561 DOI: 10.1098/rsob.200307] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The genus Metarhizium and Pochonia chlamydosporia comprise a monophyletic clade of highly abundant globally distributed fungi that can transition between long-term beneficial associations with plants to transitory pathogenic associations with frequently encountered protozoans, nematodes or insects. Some very common 'specialist generalist' species are adapted to particular soil and plant ecologies, but can overpower a wide spectrum of insects with numerous enzymes and toxins that result from extensive gene duplications made possible by loss of meiosis and associated genome defence mechanisms. These species use parasexuality instead of sex to combine beneficial mutations from separate clonal individuals into one genome (Vicar of Bray dynamics). More weakly endophytic species which kill a narrow range of insects retain sexuality to facilitate host-pathogen coevolution (Red Queen dynamics). Metarhizium species can fit into numerous environments because they are very flexible at the genetic, physiological and ecological levels, providing tractable models to address how new mechanisms for econutritional heterogeneity, host switching and virulence are acquired and relate to diverse sexual life histories and speciation. Many new molecules and functions have been discovered that underpin Metarhizium associations, and have furthered our understanding of the crucial ecology of these fungi in multiple habitats.
Collapse
|
9
|
Marullo P, Claisse O, Raymond Eder ML, Börlin M, Feghali N, Bernard M, Legras JL, Albertin W, Rosa AL, Masneuf-Pomarede I. SSU1 Checkup, a Rapid Tool for Detecting Chromosomal Rearrangements Related to the SSU1 Promoter in Saccharomyces cerevisiae: An Ecological and Technological Study on Wine Yeast. Front Microbiol 2020; 11:1331. [PMID: 32695077 PMCID: PMC7336578 DOI: 10.3389/fmicb.2020.01331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosomal rearrangements (CR) such as translocations, duplications and inversions play a decisive role in the adaptation of microorganisms to specific environments. In enological Saccharomyces cerevisiae strains, CR involving the promoter region of the gene SSU1 lead to a higher sulfite tolerance by enhancing the SO2 efflux. To date, three different SSU1 associated CR events have been described, including translocations XV-t-XVI and VIII-t-XVI and inversion inv-XVI. In the present study, we developed a multiplex PCR method (SSU1 checkup) that allows a rapid characterization of these three chromosomal configurations in a single experiment. Nearly 600 S. cerevisiae strains collected from fermented grape juice were genotyped by microsatellite markers. We demonstrated that alleles of the SSU1 promoter are differently distributed according to the wine environment (cellar versus vineyard) and the nature of the grape juice. Moreover, rearranged SSU1 promoters are significantly enriched among commercial starters. In addition, the analysis of nearly isogenic strains collected in wine related environments demonstrated that the inheritance of these CR shapes the genetic diversity of clonal populations. Finally, the link between the nature of SSU1 promoter and the tolerance to sulfite was statistically validated in natural grape juice containing various SO2 concentrations. The SSU1 checkup is therefore a convenient new tool for addressing population genetics questions and for selecting yeast strains by using molecular markers.
Collapse
Affiliation(s)
- Philippe Marullo
- University of Bordeaux, INRAE, ENSCBP Bordeaux-INP, UR Oenology, EA-4577, USC-1366, ISVV, Villenave-d'Ornon, France.,Biolaffort, Bordeaux, France
| | - Olivier Claisse
- University of Bordeaux, INRAE, ENSCBP Bordeaux-INP, UR Oenology, EA-4577, USC-1366, ISVV, Villenave-d'Ornon, France
| | - Maria Laura Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Bioquímica de Alimentos II, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Marine Börlin
- University of Bordeaux, INRAE, ENSCBP Bordeaux-INP, UR Oenology, EA-4577, USC-1366, ISVV, Villenave-d'Ornon, France
| | - Nadine Feghali
- Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, Lebanon.,Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - Margaux Bernard
- University of Bordeaux, INRAE, ENSCBP Bordeaux-INP, UR Oenology, EA-4577, USC-1366, ISVV, Villenave-d'Ornon, France.,Biolaffort, Bordeaux, France
| | - Jean-Luc Legras
- SPO, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Warren Albertin
- University of Bordeaux, INRAE, ENSCBP Bordeaux-INP, UR Oenology, EA-4577, USC-1366, ISVV, Villenave-d'Ornon, France
| | - Alberto Luis Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Bioquímica de Alimentos II, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Isabelle Masneuf-Pomarede
- University of Bordeaux, INRAE, ENSCBP Bordeaux-INP, UR Oenology, EA-4577, USC-1366, ISVV, Villenave-d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| |
Collapse
|
10
|
Chalvantzi I, Banilas G, Tassou C, Nisiotou A. Patterns of Genetic Diversity and the Invasion of Commercial Starters in Saccharomyces cerevisiae Vineyard Populations of Santorini Island. Foods 2020; 9:E561. [PMID: 32370232 PMCID: PMC7278685 DOI: 10.3390/foods9050561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Autochthonous Saccharomyces cerevisiae vineyard populations are important components of the grape/wine system. Besides their direct impact on winemaking, they also constitute an untapped reservoir of genotypes with special technological attributes for the wine industry. Research so far on S. cerevisiae populations has focused on spatial distribution on large scales, yet little is known about the genetic variability of populations within viticultural zones and their temporal genotypic variation. Here, S. cerevisiae populations from different vineyards in Santorini, a small Aegean island, were genotyped and their genetic diversity was assessed within and between vineyards during two consecutive years. Despite the relative geographical isolation of the island, a relatively high genetic diversity was uncovered. The vast majority of genotypes were vineyard-specific, while in one of the vintages, significant differences in the genotypic composition of vineyards were detected. Overall, higher differences were detected between vintages rather than among vineyards. Notably, only four genotypes were common for the two vintages, three of which were commercial S. cerevisiae strains, probably "escapees" from wineries. Nevertheless, the populations of the two vintages were not genetically distinct. Present results highlight the magnitude of genetic diversity in natural wine yeast populations on a small spatial scale, yet the invasion of commercial starters may constitute a potential risk for loss of local yeast biodiversity. However, present results show that industrial strains do not necessarily dominate over the natural strains or their high abundance may be temporary.
Collapse
Affiliation(s)
- Ioanna Chalvantzi
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, GR-14123 Lykovryssi, Greece; (I.C.); (C.T.)
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, GR-12243 Athens, Greece;
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, GR-12243 Athens, Greece;
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, GR-14123 Lykovryssi, Greece; (I.C.); (C.T.)
| | - Aspasia Nisiotou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Demeter”, Sofokli Venizelou 1, GR-14123 Lykovryssi, Greece; (I.C.); (C.T.)
| |
Collapse
|
11
|
García-Ríos E, Nuévalos M, Barrio E, Puig S, Guillamón JM. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. Environ Microbiol 2019; 21:1771-1781. [PMID: 30859719 DOI: 10.1111/1462-2920.14586] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 11/27/2022]
Abstract
Sulfite-generating compounds are widely used during winemaking as preservatives because of its antimicrobial and antioxidant properties. Thus, wine yeast strains have developed different genetic strategies to increase its sulfite resistance. The most efficient sulfite detoxification mechanism in Saccharomyces cerevisiae uses a plasma membrane protein called Ssu1 to efflux sulfite. In wine yeast strains, two chromosomal translocations (VIIItXVI and XVtXVI) involving the SSU1 promoter region have been shown to upregulate SSU1 expression and, as a result, increase sulfite tolerance. In this study, we have identified a novel chromosomal rearrangement that triggers wine yeast sulfite adaptation. An inversion in chromosome XVI (inv-XVI) probably due to sequence microhomology, which involves SSU1 and GCR1 regulatory regions, increases the expression of SSU1 and the sulfite resistance of a commercial wine yeast strain. A detailed dissection of this chimeric SSU1 promoter indicates that both the removed SSU1 promoter sequence and the relocated GCR1 sequence contribute to SSU1 upregulation and sulfite tolerance. However, no relevant function has been attributed to the SSU1-promoter-binding transcription factor Fzf1. These results unveil a new genomic event that confers an evolutive advantage to wine yeast strains.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - Marcos Nuévalos
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain.,Departament de Genètica, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, E-46980, Paterna, Valencia, Spain
| |
Collapse
|
12
|
Alonso-Del-Real J, Pérez-Torrado R, Querol A, Barrio E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ Microbiol 2019; 21:1627-1644. [PMID: 30672093 DOI: 10.1111/1462-2920.14536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
13
|
Tang W, Huang L, Bu S, Zhang X, Wu W. Estimation of QTL heritability based on pooled sequencing data. Bioinformatics 2019; 34:978-984. [PMID: 29106443 DOI: 10.1093/bioinformatics/btx703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Motivation Bulked segregant analysis combined with next generation sequencing has proven to be a simple and efficient approach for fast mapping of quantitative trait loci (QTLs). However, how to estimate the proportion of phenotypic variance explained by a QTL (or termed QTL heritability) in such pooled QTL mapping is an unsolved problem. Results In this paper, we propose a method called PQHE to estimate QTL heritability using pooled sequencing data obtained under different experimental designs. Simulation studies indicated that our method is correct and feasible. Four practical examples from rice and yeast are demonstrated, each representing a different situation. Availability and implementation The R scripts of our method are open source under GPLv3 license at http://genetics.fafu.edu.cn/PQHE or https://github.com/biotangweiqi/PQHE. The R scripts require the R package rootSolve. Contact wuwr@fafu.edu.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Likun Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Suhong Bu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuzhang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
14
|
Drumonde-Neves J, Franco-Duarte R, Vieira E, Mendes I, Lima T, Schuller D, Pais C. Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology. Food Microbiol 2018; 74:151-162. [DOI: 10.1016/j.fm.2018.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
15
|
Sardi M, Paithane V, Place M, Robinson DE, Hose J, Wohlbach DJ, Gasch AP. Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet 2018; 14:e1007217. [PMID: 29474395 PMCID: PMC5849340 DOI: 10.1371/journal.pgen.1007217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/13/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Cellulosic plant biomass is a promising sustainable resource for generating alternative biofuels and biochemicals with microbial factories. But a remaining bottleneck is engineering microbes that are tolerant of toxins generated during biomass processing, because mechanisms of toxin defense are only beginning to emerge. Here, we exploited natural diversity in 165 Saccharomyces cerevisiae strains isolated from diverse geographical and ecological niches, to identify mechanisms of hydrolysate-toxin tolerance. We performed genome-wide association (GWA) analysis to identify genetic variants underlying toxin tolerance, and gene knockouts and allele-swap experiments to validate the involvement of implicated genes. In the process of this work, we uncovered a surprising difference in genetic architecture depending on strain background: in all but one case, knockout of implicated genes had a significant effect on toxin tolerance in one strain, but no significant effect in another strain. In fact, whether or not the gene was involved in tolerance in each strain background had a bigger contribution to strain-specific variation than allelic differences. Our results suggest a major difference in the underlying network of causal genes in different strains, suggesting that mechanisms of hydrolysate tolerance are very dependent on the genetic background. These results could have significant implications for interpreting GWA results and raise important considerations for engineering strategies for industrial strain improvement. Understanding the genetic architecture of complex traits is important for elucidating the genotype-phenotype relationship. Many studies have sought genetic variants that underlie phenotypic variation across individuals, both to implicate causal variants and to inform on architecture. Here we used genome-wide association analysis to identify genes and processes involved in tolerance of toxins found in plant-biomass hydrolysate, an important substrate for sustainable biofuel production. We found substantial variation in whether or not individual genes were important for tolerance across genetic backgrounds. Whether or not a gene was important in a given strain background explained more variation than the alleleic differences in the gene. These results suggest substantial variation in gene contributions, and perhaps underlying mechanisms, of toxin tolerance.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vaishnavi Paithane
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - De Elegant Robinson
- Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dana J Wohlbach
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 2017; 18:581-598. [DOI: 10.1038/nrg.2017.49] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth. Genetics 2017; 206:1645-1657. [PMID: 28495957 DOI: 10.1534/genetics.116.195180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/02/2017] [Indexed: 01/10/2023] Open
Abstract
In all organisms, the majority of traits vary continuously between individuals. Explaining the genetic basis of quantitative trait variation requires comprehensively accounting for genetic and nongenetic factors as well as their interactions. The growth of microbial cells can be characterized by a lag duration, an exponential growth phase, and a stationary phase. Parameters that characterize these growth phases can vary among genotypes (phenotypic variation), environmental conditions (phenotypic plasticity), and among isogenic cells in a given environment (phenotypic variability). We used a high-throughput microscopy assay to map genetic loci determining variation in lag duration and exponential growth rate in growth rate-limiting and nonlimiting glucose concentrations, using segregants from a cross of two natural isolates of the budding yeast, Saccharomyces cerevisiae We find that some quantitative trait loci (QTL) are common between traits and environments whereas some are unique, exhibiting gene-by-environment interactions. Furthermore, whereas variation in the central tendency of growth rate or lag duration is explained by many additive loci, differences in phenotypic variability are primarily the result of genetic interactions. We used bulk segregant mapping to increase QTL resolution by performing whole-genome sequencing of complex mixtures of an advanced intercross mapping population grown in selective conditions using glucose-limited chemostats. We find that sequence variation in the high-affinity glucose transporter HXT7 contributes to variation in growth rate and lag duration. Allele replacements of the entire locus, as well as of a single polymorphic amino acid, reveal that the effect of variation in HXT7 depends on genetic, and allelic, background. Amplifications of HXT7 are frequently selected in experimental evolution in glucose-limited environments, but we find that HXT7 amplifications result in antagonistic pleiotropy that is absent in naturally occurring variants of HXT7 Our study highlights the complex nature of the genotype-to-phenotype map within and between environments.
Collapse
|
18
|
Filteau M, Charron G, Landry CR. Identification of the fitness determinants of budding yeast on a natural substrate. THE ISME JOURNAL 2017; 11:959-971. [PMID: 27935595 PMCID: PMC5364353 DOI: 10.1038/ismej.2016.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/15/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
The budding yeasts are prime models in genomics and cell biology, but the ecological factors that determine their success in non-human-associated habitats is poorly understood. In North America Saccharomyces yeasts are present on the bark of deciduous trees, where they feed on bark and sap exudates. In the North East, Saccharomyces paradoxus is found on maples, which makes maple sap a natural substrate for this species. We measured growth rates of S. paradoxus natural isolates on maple sap and found variation along a geographical gradient not explained by the inherent variation observed under optimal laboratory conditions. We used a functional genomic screen to reveal the ecologically relevant genes and conditions required for optimal growth in this substrate. We found that the allantoin degradation pathway is required for optimal growth in maple sap, in particular genes necessary for allantoate utilization, which we demonstrate is the major nitrogen source available to yeast in this environment. Growth with allantoin or allantoate as the sole nitrogen source recapitulated the variation in growth rates in maple sap among strains. We also show that two lineages of S. paradoxus display different life-history traits on allantoin and allantoate media, highlighting the ecological relevance of this pathway.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, PROTEO, Big Data Research Center and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Département des Sciences des aliments, Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Québec, Canada
| | - Guillaume Charron
- Département de Biologie, PROTEO, Big Data Research Center and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Big Data Research Center and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
19
|
Almeida P, Barbosa R, Bensasson D, Gonçalves P, Sampaio JP. Adaptive divergence in wine yeasts and their wild relatives suggests a prominent role for introgressions and rapid evolution at noncoding sites. Mol Ecol 2017; 26:2167-2182. [PMID: 28231394 DOI: 10.1111/mec.14071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
In Saccharomyces cerevisiae, the main yeast in wine fermentation, the opportunity to examine divergence at the molecular level between a domesticated lineage and its wild counterpart arose recently due to the identification of the closest relatives of wine strains, a wild population associated with Mediterranean oaks. As genomic data are available for a considerable number of representatives belonging to both groups, we used population genomics to estimate the degree and distribution of nucleotide variation between wine yeasts and their closest wild relatives. We found widespread genomewide divergence, particularly at noncoding sites, which, together with above average divergence in trans-acting DNA binding proteins, may suggest an important role for divergence at the level of transcriptional regulation. Nine outlier regions putatively under strong divergent selection were highlighted by a genomewide scan under stringent conditions. Several cases of introgressions, originating in the sibling species Saccharomyces paradoxus, were also identified in the Mediterranean oak population. FZF1 and SSU1, mostly known for conferring sulphite resistance in wine yeasts, were among the introgressed genes, although not fixed. Because the introgressions detected in our study are not found in wine strains, we hypothesize that ongoing divergent ecological selection segregates the two forms between the different niches. Together, our results provide a first insight into the extent and kind of divergence between wine yeasts and their closest wild relatives.
Collapse
Affiliation(s)
- Pedro Almeida
- Departamento de Ciências da Vida, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Raquel Barbosa
- Departamento de Ciências da Vida, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Douda Bensasson
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Paula Gonçalves
- Departamento de Ciências da Vida, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - José Paulo Sampaio
- Departamento de Ciências da Vida, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
20
|
Sardi M, Rovinskiy N, Zhang Y, Gasch AP. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. Appl Environ Microbiol 2016; 82:5838-49. [PMID: 27451446 PMCID: PMC5038035 DOI: 10.1128/aem.01603-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms. IMPORTANCE Recent studies on natural variation within Saccharomyces cerevisiae have uncovered substantial phenotypic diversity. Here, we took advantage of this diversity, using it as a tool to infer the effects of combinatorial stress found in lignocellulosic hydrolysate. By comparing sensitive and tolerant strains, we implicated primary cellular targets of hydrolysate toxins and elucidated the physiological states of cells when exposed to this stress. We also explored the strain-specific effects of gene overexpression to further identify strain-specific responses to hydrolysate stresses and to identify genes that improve hydrolysate tolerance independent of strain background. This study underscores the importance of studying multiple strains to understand the effects of hydrolysate stress and provides a method to find genes that improve tolerance across strain backgrounds.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nikolay Rovinskiy
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress. Sci Rep 2016; 6:34304. [PMID: 27678167 PMCID: PMC5039629 DOI: 10.1038/srep34304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes.
Collapse
|
22
|
Ropars J, Lo YC, Dumas E, Snirc A, Begerow D, Rollnik T, Lacoste S, Dupont J, Giraud T, López-Villavicencio M. Fertility depression among cheese-making Penicillium roqueforti strains suggests degeneration during domestication. Evolution 2016; 70:2099-109. [PMID: 27470007 PMCID: PMC5129480 DOI: 10.1111/evo.13015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/20/2016] [Accepted: 07/09/2016] [Indexed: 11/28/2022]
Abstract
Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation.
Collapse
Affiliation(s)
- Jeanne Ropars
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, CP39, 57 rue Cuvier, 75231, Paris Cedex 05, France.,Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay cedex, France
| | - Ying-Chu Lo
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay cedex, France
| | - Emilie Dumas
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay cedex, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay cedex, France
| | - Dominik Begerow
- Ruhr-Universität Bochum, AG Geobotanik Gebäude ND 03/174 Universitätsstraße 150 44780 Bochum, Germany
| | - Tanja Rollnik
- Ruhr-Universität Bochum, AG Geobotanik Gebäude ND 03/174 Universitätsstraße 150 44780 Bochum, Germany
| | - Sandrine Lacoste
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, CP39, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Joëlle Dupont
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, CP39, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay cedex, France
| | - Manuela López-Villavicencio
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, CP39, 57 rue Cuvier, 75231, Paris Cedex 05, France.
| |
Collapse
|
23
|
Eberlein C, Leducq JB, Landry CR. The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend. Mol Ecol 2016; 24:5309-11. [PMID: 26509691 DOI: 10.1111/mec.13380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/02/2015] [Indexed: 01/09/2023]
Abstract
The domestication of plants, animals and microbes by humans are the longest artificial evolution experiments ever performed. The study of these long-term experiments can teach us about the genomics of adaptation through the identification of the genetic bases underlying the traits favoured by humans. In laboratory evolution, the characterization of the molecular changes that evolved specifically in some lineages is straightforward because the ancestors are readily available, for instance in the freezer. However, in the case of domesticated species, the ancestor is often missing, which leads to the necessity of going back to nature in order to infer the most likely ancestral state. Significant and relatively recent examples of this approach include wolves as the closest wild relative to domestic dogs (Axelsson et al. 2013) and teosinte as the closest relative to maize (reviewed in Hake & Ross-Ibarra 2015). In both cases, the joint analysis of domesticated lineages and their wild cousins has been key in reconstructing the molecular history of their domestication. While the identification of closest wild relatives has been done for many plants and animals, these comparisons represent challenges for micro-organisms. This has been the case for the budding yeast Saccharomyces cerevisiae, whose natural ecological niche is particularly challenging to define. For centuries, this unicellular fungus has been the cellular factory for wine, beer and bread crafting, and currently for bioethanol and drug production. While the recent development of genomics has lead to the identification of many genetic elements associated with important wine characteristics, the historical origin of some of the domesticated wine strains has remained elusive due to the lack of knowledge of their close wild relatives. In this issue of Molecular Ecology, Almeida et al. (2015) identified what is to date the closest known wild population of the wine yeast. This population is found associated with oak trees in Europe, presumably its natural host. Using population genomics analyses, Almeida and colleagues discovered that the initial divergence between natural and domesticated wine yeasts in the Mediterranean region took place around the early days of wine production. Surprisingly, genomic regions that are key to wine production today appeared not to be derived from these natural populations but from genes gained from other yeast species.
Collapse
Affiliation(s)
- Chris Eberlein
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec, QC, Canada, G1V 0A6
| | - Jean-Baptiste Leducq
- Département des Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, 90 rue Vincent d'Indy, Montréal, QC, Canada, H2V 2S9
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec, QC, Canada, G1V 0A6
| |
Collapse
|
24
|
Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2016; 6:957-71. [PMID: 26869621 PMCID: PMC4825664 DOI: 10.1534/g3.115.025692] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Humans have been consuming wines for more than 7000 yr . For most of this time, fermentations were presumably performed by strains of Saccharomyces cerevisiae that naturally found their way into the fermenting must . In contrast, most commercial wines are now produced by inoculation with pure yeast monocultures, ensuring consistent, reliable and reproducible fermentations, and there are now hundreds of these yeast starter cultures commercially available. In order to thoroughly investigate the genetic diversity that has been captured by over 50 yr of commercial wine yeast development and domestication, whole genome sequencing has been performed on 212 strains of S. cerevisiae, including 119 commercial wine and brewing starter strains, and wine isolates from across seven decades. Comparative genomic analysis indicates that, despite their large numbers, commercial strains, and wine strains in general, are extremely similar genetically, possessing all of the hallmarks of a population bottle-neck, and high levels of inbreeding. In addition, many commercial strains from multiple suppliers are nearly genetically identical, suggesting that the limits of effective genetic variation within this genetically narrow group may be approaching saturation.
Collapse
|
25
|
Hou J, Schacherer J. Negative epistasis: a route to intraspecific reproductive isolation in yeast? Curr Genet 2016; 62:25-9. [PMID: 26164016 PMCID: PMC4710551 DOI: 10.1007/s00294-015-0505-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 01/14/2023]
Abstract
Exploring the molecular bases of intraspecific reproductive isolation captures the ongoing phenotypic consequences of genetic divergence and provides insights into the early onset of speciation. Recent species-wide surveys using natural populations of yeasts demonstrated that intrinsic post-zygotic reproductive isolation segregates readily within the same species, and revealed the multiplicity of the genetic mechanisms underlying such processes. These advances deepened our current understandings and opened further perspectives regarding the complete picture of molecular and evolutionary origins driving the onset of intraspecific reproductive isolation in yeasts.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg / CNRS, UMR7156, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg / CNRS, UMR7156, Strasbourg, France.
| |
Collapse
|
26
|
Peter J, Schacherer J. Population genomics of yeasts: towards a comprehensive view across a broad evolutionary scale. Yeast 2016; 33:73-81. [PMID: 26592376 DOI: 10.1002/yea.3142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022] Open
Abstract
With the advent of high-throughput technologies for sequencing, the complete description of the genetic variation that occurs in populations, also known as population genomics, is foreseeable but far from being reached. Explaining the forces that govern patterns of genetic variation is essential to elucidate the evolutionary history of species. Genetic variation results from a wide assortment of evolutionary forces, among which mutation, selection, recombination and drift play major roles in shaping genomes. In addition, exploring the genetic variation within a population also corresponds to the first step towards dissecting the genotype-phenotype relationship. In this context, yeast species are of particular interest because they represent a unique resource for studying the evolution of intraspecific genetic diversity in a phylum spanning a broad evolutionary scale. Here, we briefly review recent progress in yeast population genomics and provide some perspective on this rapidly evolving field. In fact, we truly believe that it is of interest to supplement comparative and early population genomic studies with the deep sequencing of more extensive sets of individuals from the same species. In parallel, it would be more than valuable to uncover the intraspecific variation of a large number of unexplored species, including those that are closely and more distantly related. Altogether, these data would enable substantially more powerful genomic scans for functional dissection.
Collapse
Affiliation(s)
- Jackson Peter
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, Strasbourg, France
| |
Collapse
|
27
|
Clowers KJ, Will JL, Gasch AP. A unique ecological niche fosters hybridization of oak-tree and vineyard isolates of Saccharomyces cerevisiae. Mol Ecol 2015; 24:5886-98. [PMID: 26518477 PMCID: PMC4824287 DOI: 10.1111/mec.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Differential adaptation to distinct niches can restrict gene flow and promote population differentiation within a species. However, in some cases the distinction between niches can collapse, forming a hybrid niche with features of both environments. We previously reported that distinctions between vineyards and oak soil present an ecological barrier that restricts gene flow between lineages of Saccharomyces cerevisiae. Vineyard isolates are tolerant to stresses associated with grapes while North American oak strains are particularly tolerant to freeze-thaw cycles. Here, we report the isolation of S. cerevisiae strains from Wisconsin cherry trees, which display features common to vineyards (e.g. high sugar concentrations) and frequent freeze-thaw cycles. Genome sequencing revealed that the isolated strains are highly heterozygous and represent recent hybrids of the oak × vineyard lineages. We found that the hybrid strains are phenotypically similar to vineyard strains for some traits, but are more similar to oak strains for other traits. The cherry strains were exceptionally good at growing in cherry juice, raising the possibility that they have adapted to this niche. We performed transcriptome profiling in cherry, oak and vineyard strains and show that the cherry-tree hybrids display vineyard-like or oak-like expression, depending on the gene sets, and in some cases, the expression patterns linked back to shared stress tolerances. Allele-specific expression in these natural hybrids suggested concerted cis-regulatory evolution at sets of functionally regulated genes. Our results raise the possibility that hybridization of the two lineages provides a genetic solution to the thriving in this unique niche.
Collapse
Affiliation(s)
- Katie J Clowers
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Jessica L Will
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, 53706, USA
- Great Lakes Bioenergy Research Center, 1552 University Ave., Madison, WI, 53704, USA
| |
Collapse
|