1
|
Arnab SP, Campelo dos Santos AL, Fumagalli M, DeGiorgio M. Efficient Detection and Characterization of Targets of Natural Selection Using Transfer Learning. Mol Biol Evol 2025; 42:msaf094. [PMID: 40341942 PMCID: PMC12062966 DOI: 10.1093/molbev/msaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by utilizing a deep CNN pretrained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, London, UK
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
2
|
Short AW, Streisfeld MA. Disentangling Complex Histories of Hybridisation: The Genomic Consequences of Ancient and Recent Introgression in Channel Island Monkeyflowers. Mol Ecol 2025:e17778. [PMID: 40290060 DOI: 10.1111/mec.17778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Hybridisation is a common feature of evolutionary radiations, but its genomic consequences vary depending on when it occurs. Since reproductive isolation takes time to accumulate, hybridisation can occur at multiple points during divergence. Previous studies suggested that the taxonomic diversity in evolutionary radiations can help infer the timing of past gene flow events. Here, we assess the power of these approaches for revealing when gene flow occurred between two monkeyflower taxa (Mimulus aurantiacus) endemic to the Channel Islands of California. Coalescent simulations reveal that conventional four-taxon tests may not be capable of fully distinguishing between recent and ancient introgression, but genome-wide patterns of phylogenetic discordance vary predictably with different histories of hybridisation. Using whole-genome sequencing and phylogenetic tests for introgression across the M. aurantiacus radiation, we identify signals of both ancient and recent hybridisation that occurred between the island taxa and their ancestors. In addition, we find widespread selection against introgressed ancestry, consistent with polygenic barriers to gene flow. However, we also identify localised signals across the genome that may indicate adaptive introgression. This study highlights the power and challenges of trying to disentangle complex histories of hybridisation. More broadly, our results illustrate the multiple roles that gene flow can play in evolutionary radiations: hybridisation can expose genetic incompatibilities that contribute to reproductive isolation while also likely facilitating adaptation by transferring beneficial alleles between taxa. These findings underscore the dynamic interplay between the timing of hybridisation and natural selection in shaping evolutionary trajectories within radiations.
Collapse
Affiliation(s)
- Aidan W Short
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|
3
|
Yang Y, Durbin R, Iversen AKN, Lawson DJ. Sparse haplotype-based fine-scale local ancestry inference at scale reveals recent selection on immune responses. Nat Commun 2025; 16:2742. [PMID: 40113767 PMCID: PMC11926123 DOI: 10.1038/s41467-025-57601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain insights into genetic function and history as biobanks grow in scale. Here we describe two near-linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler Transform. SparsePainter is a faster, sparse replacement of previous model-based 'chromosome painting' algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further approximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation. The computational efficiency gains of these tools for fine-scale local ancestry inference offer the possibility to analyse large-scale genomic datasets using different approaches. Application to the UK Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many genomic regions associated with immune responses, suggesting avenues for understanding the pathogen-immune system interplay on a historical timescale.
Collapse
Affiliation(s)
- Yaoling Yang
- Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK.
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel J Lawson
- Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Arnab SP, Dos Santos ALC, Fumagalli M, DeGiorgio M. Efficient detection and characterization of targets of natural selection using transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641710. [PMID: 40093065 PMCID: PMC11908262 DOI: 10.1101/2025.03.05.641710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by utilizing a deep CNN pre-trained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, London, UK
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
5
|
Guan X, Xiang W, Qu K, Ahmed Z, Liu J, Cai M, Zhang J, Chen N, Lei C, Huang B. Whole genome insights into genetic diversity, introgression, and adaptation of Yunnan indigenous cattle of Southwestern China. BMC Genomics 2025; 26:216. [PMID: 40038604 PMCID: PMC11881512 DOI: 10.1186/s12864-024-11033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/12/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Yunnan Province, located in Southwestern China, the intricate geography, variable climate, and abundant vegetation of the region have collectively contributed to shaping the distinctive germplasm characteristics observed in Yunnan indigenous cattle through prolonged domestication. The different breeds of Yunnan cattle exhibit distinct advantageous characteristics and traits, which are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. However, a comprehensive genomic landscape of genetic resources has yet to be delineated. RESULTS Herein, we employed 140 whole-genome sequencing data from Yunnan indigenous cattle across eight breeds to elucidate their genetic diversity and population structure. Utilizing both uniparental and biparental markers, we elucidated the intricate genetic composition of Yunnan indigenous cattle, which is closely correlated with the geographic environment. A predominant East Asian indicine ancestry which gradually diminishes towards the north. The analysis revealed a high genetic diversity among populations and a low-to-moderate inbreeding coefficient, underscoring the rich genetic reservoir of Yunnan cattle breeds. Additionally, gene flow between Yunnan indicine and wild Bos species in and around Yunnan was verified, highlighting localized introgression from Yunnan Gayal as a critical factor in the successful adaptation of Yunnan indicine cattle to the local hot and humid environments. CONCLUSIONS Our findings established the SNPs database for facilitating resource conservation and selective breeding. Moreover, these valuable insights into the genomic diversity and adaptive history of Yunnan indigenous cattle breeds contribute significantly to our understanding of their evolutionary dynamics and offer a foundation for future genetic improvement and conservation strategies.
Collapse
Affiliation(s)
- Xiwen Guan
- Yunnan Academy of Grassland and Animal Science, Kunming, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Chuxiong Normal University, Chuxiong, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China.
| |
Collapse
|
6
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
7
|
Ongaro L, Huerta-Sanchez E. A history of multiple Denisovan introgression events in modern humans. Nat Genet 2024; 56:2612-2622. [PMID: 39501127 DOI: 10.1038/s41588-024-01960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/25/2024] [Indexed: 12/12/2024]
Abstract
The identification of a new hominin group in the Altai mountains called Denisovans was one of the most exciting discoveries in human evolution in the last decade. Unlike Neanderthal remains, the Denisovan fossil record consists of only a finger bone, jawbone, teeth and skull fragments. Leveraging the surviving Denisovan segments in modern human genomes has uncovered evidence of at least three introgression events from distinct Denisovan populations into modern humans in the past. Each of them presents different levels of relatedness to the sequenced Altai Denisovan, indicating a complex relationship between these sister lineages. Here we review the evidence suggesting that several Denisovan populations, who likely had an extensive geographical range, were adapted to distinct environments and introgressed into modern humans multiple times. We further discuss how archaic variants have been affected by demographic history, negative and positive selection and close by proposing possible new lines of future research.
Collapse
Affiliation(s)
- Linda Ongaro
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Emilia Huerta-Sanchez
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Yan H, Li J, Zhang K, Duan H, Sun A, Zhang B, Li F, Chen N, Lei C, Yi K. Local Ancestry and Adaptive Introgression in Xiangnan Cattle. BIOLOGY 2024; 13:1000. [PMID: 39765667 PMCID: PMC11673051 DOI: 10.3390/biology13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Exploring the genetic landscape of native cattle is an exciting avenue for elucidating nuanced patterns of genetic variation and adaptive dynamics. Xiangnan cattle, a native Chinese cattle breed mainly produced in Hunan Province, are well adapted to the high temperature and humidity of the local environment and exhibit strong disease resistance. Herein, we employed whole-genome sequences of 16 Xiangnan cattle complemented by published genome data from 81 cattle. Our findings revealed that Xiangnan cattle are pure East Asian indicine cattle with high genetic diversity and low inbreeding. By annotating the selection signals obtained by the CLR, θπ, FST, and XP-EHH methods, genes associated with immunity (ITGB3, CD55, OTUD1, and PRLH) and heat tolerance (COX4I2, DNAJC18, DNAJC1, EIF2AK4, and ASIC2) were identified. In addition, the considerable introgression from banteng and gaur also contributed to the rapid adaptation of Xiangnan cattle to the environment of Southern China. These results will provide a basis for the further conservation and exploitation of Xiangnan cattle genetic resources.
Collapse
Affiliation(s)
- Huixuan Yan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Kunyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Hongfeng Duan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Ao Sun
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan 417000, China;
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (K.Z.); (N.C.)
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.Y.); (J.L.); (H.D.); (A.S.); (B.Z.)
| |
Collapse
|
9
|
Ferraretti G, Abondio P, Alberti M, Dezi A, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Peluzzi D, Sarno S, Sazzini M. Archaic introgression contributed to shape the adaptive modulation of angiogenesis and cardiovascular traits in human high-altitude populations from the Himalayas. eLife 2024; 12:RP89815. [PMID: 39513938 PMCID: PMC11548878 DOI: 10.7554/elife.89815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of BolognaBolognaItaly
| | - Marta Alberti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Agnese Dezi
- Department of Emergency and Organ Transplantation, University of Bari Aldo MoroBari Aldo MoroItaly
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | | | | | | | - Luca Natali
- Explora Nunaat International, Montorio al VomanoTeramoItaly
- Italian Institute of Human PaleontologyRomeItaly
| | - Angela Corcelli
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo MoroBariItaly
| | | | - Davide Peluzzi
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of BolognaBolognaItaly
| |
Collapse
|
10
|
Pfennig A, Lachance J. The evolutionary fate of Neanderthal DNA in 30,780 admixed genomes with recent African-like ancestry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605203. [PMID: 39091830 PMCID: PMC11291122 DOI: 10.1101/2024.07.25.605203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Following introgression, Neanderthal DNA was initially purged from non-African genomes, but the evolutionary fate of remaining introgressed DNA has not been explored yet. To fill this gap, we analyzed 30,780 admixed genomes with African-like ancestry from the All of Us research program, in which Neanderthal alleles encountered novel genetic backgrounds during the last 15 generations. Observed amounts of Neanderthal DNA approximately match expectations based on ancestry proportions, suggesting neutral evolution. Nevertheless, we identified genomic regions that have significantly less or more Neanderthal ancestry than expected and are associated with spermatogenesis, innate immunity, and other biological processes. We also identified three novel introgression desert-like regions in recently admixed genomes, whose genetic features are compatible with hybrid incompatibilities and intrinsic negative selection. Overall, we find that much of the remaining Neanderthal DNA in human genomes is not under strong selection, and complex evolutionary dynamics have shaped introgression landscapes in our species.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| |
Collapse
|
11
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neandertal ancestry through time: Insights from genomes of ancient and present-day humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593955. [PMID: 38798350 PMCID: PMC11118355 DOI: 10.1101/2024.05.13.593955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gene flow from Neandertals has shaped the landscape of genetic and phenotypic variation in modern humans. We identify the location and size of introgressed Neandertal ancestry segments in more than 300 genomes spanning the last 50,000 years. We study how Neandertal ancestry is shared among individuals to infer the time and duration of the Neandertal gene flow. We find the correlation of Neandertal segment locations across individuals and their divergence to sequenced Neandertals, both support a model of single major Neandertal gene flow. Our catalog of introgressed segments through time confirms that most natural selection-positive and negative-on Neandertal ancestry variants occurred immediately after the gene flow, and provides new insights into how the contact with Neandertals shaped human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N. M. Iasi
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Alba Bossoms Mesa
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Mateja Hajdinjak
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Benjamin M. Peter
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- Department of Biology, University of Rochester; Rochester NY, 14620,USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley; Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Chen Y, Yu XY, Xu SJ, Shi XQ, Zhang XX, Sun C. An indel introduced by Neanderthal introgression, rs3835124:ATTTATT > ATT, might contribute to prostate cancer risk by regulating PDK1 expression. Ann Hum Genet 2024; 88:126-137. [PMID: 37846608 DOI: 10.1111/ahg.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Prostate cancer is one of the most common cancer types in males and rs12621278:A > G has been suggested to be associated with this disease by previous genome-wide association studies. One thousand genomes project data analysis indicated that rs12621278:A > G is within two long-core haplotypes. However, the origin, causal variant(s), and molecular function of these haplotypes were remaining unclear. MATERIALS AND METHODS Population genetics analysis and functional genomics work was performed for this locus. RESULTS Phylogeny analysis verified that the rare haplotype is derived from Neanderthal introgression. Genome annotation suggested that three genetic variants in the core haplotypes, rs116108611:G > A, rs139972066:AAAAAAAA > AAAAAAAAA, and rs3835124:ATTTATT > ATT, are located in functional regions. Luciferase assay indicated that rs139972066:AAAAAAAA > AAAAAAAAA and rs116108611:G > A are not able to alter ITGA6 (integrin alpha 6) and ITGA6 antisense RNA 1 expression, respectively. In contrast, rs3835124:ATTTATT > ATT can significantly influence PDK1 (pyruvate dehydrogenase kinase 1) expression, which was verified by expression quantitative trait locus analysis. This genetic variant can alter transcription factor cut like homeobox 1 interaction efficiency. The introgressed haplotype was observed to be subject to positive selection in East Asian populations. The molecular function of the haplotype suggested that Neanderthal should be with lower PDK1 expression and further different energy homeostasis from modern human. CONCLUSION This study provided new insight into the contribution of Neanderthal introgression to human phenotypes.
Collapse
Affiliation(s)
- Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xin-Yi Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Shuang-Jia Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
13
|
Hünemeier T. Biogeographic Perspectives on Human Genetic Diversification. Mol Biol Evol 2024; 41:msae029. [PMID: 38349332 PMCID: PMC10917211 DOI: 10.1093/molbev/msae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Modern humans originated in Africa 300,000 yr ago, and before leaving their continent of origin, they underwent a process of intense diversification involving complex demographic dynamics. Upon exiting Africa, different populations emerged on the four other inhabited continents, shaped by the interplay of various evolutionary processes, such as migrations, founder effects, and natural selection. Within each region, continental populations, in turn, diversified and evolved almost independently for millennia. As a backdrop to this diversification, introgressions from archaic species contributed to establishing different patterns of genetic diversity in different geographic regions, reshaping our understanding of our species' variability. With the increasing availability of genomic data, it has become possible to delineate the subcontinental human population structure precisely. However, the bias toward the genomic research focused on populations from the global North has limited our understanding of the real diversity of our species and the processes and events that guided different human groups throughout their evolutionary history. This perspective is part of a series of articles celebrating 40 yr since our journal, Molecular Biology and Evolution, was founded (Russo et al. 2024). The perspective is accompanied by virtual issues, a selection of papers on human diversification published by Genome Biology and Evolution and Molecular Biology and Evolution.
Collapse
Affiliation(s)
- Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Population Genetics Department, Institute of Evolutionary Biology (IBE - CSIC/Universitat Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
14
|
Kerdoncuff E, Skov L, Patterson N, Zhao W, Lueng YY, Schellenberg GD, Smith JA, Dey S, Ganna A, Dey AB, Kardia SL, Lee J, Moorjani P. 50,000 years of Evolutionary History of India: Insights from ~2,700 Whole Genome Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580575. [PMID: 38405782 PMCID: PMC10888882 DOI: 10.1101/2024.02.15.580575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
India has been underrepresented in whole genome sequencing studies. We generated 2,762 high coverage genomes from India-including individuals from most geographic regions, speakers of all major languages, and tribal and caste groups-providing a comprehensive survey of genetic variation in India. With these data, we reconstruct the evolutionary history of India through space and time at fine scales. We show that most Indians derive ancestry from three ancestral groups related to ancient Iranian farmers, Eurasian Steppe pastoralists and South Asian hunter-gatherers. We uncover a common source of Iranian-related ancestry from early Neolithic cultures of Central Asia into the ancestors of Ancestral South Indians (ASI), Ancestral North Indians (ANI), Austro-asiatic-related and East Asian-related groups in India. Following these admixtures, India experienced a major demographic shift towards endogamy, resulting in extensive homozygosity and identity-by-descent sharing among individuals. At deep time scales, Indians derive around 1-2% of their ancestry from gene flow from archaic hominins, Neanderthals and Denisovans. By assembling the surviving fragments of archaic ancestry in modern Indians, we recover ~1.5 Gb (or 50%) of the introgressing Neanderthal and ~0.6 Gb (or 20%) of the introgressing Denisovan genomes, more than any other previous archaic ancestry study. Moreover, Indians have the largest variation in Neanderthal ancestry, as well as the highest amount of population-specific Neanderthal segments among worldwide groups. Finally, we demonstrate that most of the genetic variation in Indians stems from a single major migration out of Africa that occurred around 50,000 years ago, with minimal contribution from earlier migration waves. Together, these analyses provide a detailed view of the population history of India and underscore the value of expanding genomic surveys to diverse groups outside Europe.
Collapse
Affiliation(s)
- Elise Kerdoncuff
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuk Yee Lueng
- Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States of America
| | - Gerard D. Schellenberg
- Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States of America
| | - Jennifer A. Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - AB Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jinkook Lee
- Department of Economics, and Center for Economic & Social Research, University of Southern California, Los Angeles, California, United States of America
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, United States of America
- Center for Computational Biology, University of California, Berkeley, United States of America
| |
Collapse
|
15
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
16
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutierrez-Rodríguez C, Morris M, Schumer M. Genome evolution is surprisingly predictable after initial hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572897. [PMID: 38187753 PMCID: PMC10769416 DOI: 10.1101/2023.12.21.572897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Daniel L. Powell
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Theresa Gunn
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Cheyenne Payne
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | | | - Alex Donny
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Tristram O. Dodge
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
- Developmental Biochemistry, Biocenter, University of Würzburg
| | | | | | | | - Molly Schumer
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute
| |
Collapse
|
17
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
18
|
Velazquez-Arcelay K, Colbran LL, McArthur E, Brand CM, Rinker DC, Siemann JK, McMahon DG, Capra JA. Archaic Introgression Shaped Human Circadian Traits. Genome Biol Evol 2023; 15:evad203. [PMID: 38095367 PMCID: PMC10719892 DOI: 10.1093/gbe/evad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely, Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultraviolet radiation and increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology and whether archaic introgression adaptively contributed to human chronotypes remain unknown. Here, we traced the evolution of chronotype based on genomes from archaic hominins and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants with potential to alter splicing in archaics (e.g., CLOCK, PER2, RORB, and RORC) and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA. These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among expression quantitative trait loci for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, consistent with adaptations to high latitude in other species. Finally, we identified several circadian loci with evidence of adaptive introgression or latitudinal clines in allele frequency. These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.
Collapse
Affiliation(s)
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, SanFrancisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, SanFrancisco, California, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, SanFrancisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, SanFrancisco, California, USA
| |
Collapse
|
19
|
Murga-Moreno J, Casillas S, Barbadilla A, Uricchio L, Enard D. An efficient and robust ABC approach to infer the rate and strength of adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555322. [PMID: 37693550 PMCID: PMC10491248 DOI: 10.1101/2023.08.29.555322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inferring the effects of positive selection on genomes remains a critical step in characterizing the ultimate and proximate causes of adaptation across species, and quantifying positive selection remains a challenge due to the confounding effects of many other evolutionary processes. Robust and efficient approaches for adaptation inference could help characterize the rate and strength of adaptation in non-model species for which demographic history, mutational processes, and recombination patterns are not currently well-described. Here, we introduce an efficient and user-friendly extension of the McDonald-Kreitman test (ABC-MK) for quantifying long-term protein adaptation in specific lineages of interest. We characterize the performance of our approach with forward simulations and find that it is robust to many demographic perturbations and positive selection configurations, demonstrating its suitability for applications to non-model genomes. We apply ABC-MK to the human proteome and a set of known Virus Interacting Proteins (VIPs) to test the long-term adaptation in genes interacting with viruses. We find substantially stronger signatures of positive selection on RNA-VIPs than DNA-VIPs, suggesting that RNA viruses may be an important driver of human adaptation over deep evolutionary time scales.
Collapse
Affiliation(s)
- Jesús Murga-Moreno
- University of Arizona Department of Ecology and Evolutionary Biology, Tucson, USA
| | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | - David Enard
- University of Arizona Department of Ecology and Evolutionary Biology, Tucson, USA
| |
Collapse
|
20
|
Velazquez-Arcelay K, Colbran LL, McArthur E, Brand C, Rinker D, Siemann J, McMahon D, Capra JA. Archaic Introgression Shaped Human Circadian Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527061. [PMID: 36778254 PMCID: PMC9915721 DOI: 10.1101/2023.02.03.527061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultra-violet radiation and increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology, and whether archaic introgression adaptively contributed to human chronotypes remains unknown. Results Here we traced the evolution of chronotype based on genomes from archaic hominins and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants with potential to alter splicing in archaics (e.g., CLOCK, PER2, RORB, RORC), and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA. These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among eQTLs for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, consistent with adaptations to high latitude in other species. Finally, we identified several circadian loci with evidence of adaptive introgression or latitudinal clines in allele frequency. Conclusions These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.
Collapse
Affiliation(s)
| | - Laura L. Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | | | - Colin Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Bakar Computational Health Sciences Institute, University of California, San Francisco
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University
| | - Justin Siemann
- Department of Biological Sciences, Vanderbilt University
| | | | - John A. Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Bakar Computational Health Sciences Institute, University of California, San Francisco
| |
Collapse
|
21
|
Aquino Y, Bisiaux A, Li Z, O'Neill M, Mendoza-Revilla J, Merkling SH, Kerner G, Hasan M, Libri V, Bondet V, Smith N, de Cevins C, Ménager M, Luca F, Pique-Regi R, Barba-Spaeth G, Pietropaoli S, Schwartz O, Leroux-Roels G, Lee CK, Leung K, Wu JT, Peiris M, Bruzzone R, Abel L, Casanova JL, Valkenburg SA, Duffy D, Patin E, Rotival M, Quintana-Murci L. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature 2023; 621:120-128. [PMID: 37558883 PMCID: PMC10482701 DOI: 10.1038/s41586-023-06422-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.
Collapse
Affiliation(s)
- Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Aurélie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Zhi Li
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Mary O'Neill
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Javier Mendoza-Revilla
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Sarah Hélène Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Camille de Cevins
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
| | - Mickaël Ménager
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR1163, Paris, France
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Giovanna Barba-Spaeth
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Stefano Pietropaoli
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong SAR, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Malik Peiris
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
- Chair Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
22
|
Chang J, Nakamura K, Chao C, Luo M, Liao P. Ghost introgression facilitates genomic divergence of a sympatric cryptic lineage in Cycas revoluta. Ecol Evol 2023; 13:e10435. [PMID: 37600490 PMCID: PMC10439367 DOI: 10.1002/ece3.10435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
A cryptic lineage is a genetically diverged but morphologically unrecognized variant of a known species. Clarifying cryptic lineage evolution is essential for quantifying species diversity. In sympatric cryptic lineage divergence compared with allopatric divergence, the forces of divergent selection and mating patterns override geographical isolation. Introgression, by supplying preadapted or neutral standing genetic variations, can promote sympatric cryptic lineage divergence via selection. However, most studies concentrated on extant species introgression, ignoring the genetic legacy of introgression from extinct or unsampled lineages ("ghost introgression"). Cycads are an ideal plant for studying the influence of ghost introgression because of their common interspecific gene flow and past high extinction rate. Here, we utilized reference-based ddRADseq to clarify the role of ghost introgression in the evolution of a previously identified sympatric cryptic lineage in Cycas revoluta. After re-evaluating the evolutionary independency of cryptic lineages, the group-wise diverged single-nucleotide polymorphisms among sympatric and allopatric lineages were compared and functionally annotated. Next, we employed an approximate Bayesian computation method for hypothesis testing to clarify the cryptic lineage evolution and ghost introgression effect. SNPs with the genomic signatures of ghost introgression were further annotated. Our results reconfirmed the evolutionary independency of cryptic lineage among C. revoluta and demonstrated that ghost introgression to the noncryptic lineage facilitated their divergence. Gene function related to heat stress and disease resistance implied ecological adaptation of the main extant populations of C. revoluta.
Collapse
Affiliation(s)
- Jui‐Tse Chang
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chien‐Ti Chao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Min‐Xin Luo
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Pei‐Chun Liao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
23
|
Rong S, Neil CR, Welch A, Duan C, Maguire S, Meremikwu IC, Meyerson M, Evans BJ, Fairbrother WG. Large-scale functional screen identifies genetic variants with splicing effects in modern and archaic humans. Proc Natl Acad Sci U S A 2023; 120:e2218308120. [PMID: 37192163 PMCID: PMC10214146 DOI: 10.1073/pnas.2218308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.
Collapse
Affiliation(s)
- Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Christopher R. Neil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Samantha Maguire
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ijeoma C. Meremikwu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Malcolm Meyerson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
| | - Ben J. Evans
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, RI02912
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI02912
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI02912
| |
Collapse
|
24
|
Hamid I, Korunes KL, Schrider DR, Goldberg A. Localizing Post-Admixture Adaptive Variants with Object Detection on Ancestry-Painted Chromosomes. Mol Biol Evol 2023; 40:msad074. [PMID: 36947126 PMCID: PMC10116606 DOI: 10.1093/molbev/msad074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023] Open
Abstract
Gene flow between previously differentiated populations during the founding of an admixed or hybrid population has the potential to introduce adaptive alleles into the new population. If the adaptive allele is common in one source population, but not the other, then as the adaptive allele rises in frequency in the admixed population, genetic ancestry from the source containing the adaptive allele will increase nearby as well. Patterns of genetic ancestry have therefore been used to identify post-admixture positive selection in humans and other animals, including examples in immunity, metabolism, and animal coloration. A common method identifies regions of the genome that have local ancestry "outliers" compared with the distribution across the rest of the genome, considering each locus independently. However, we lack theoretical models for expected distributions of ancestry under various demographic scenarios, resulting in potential false positives and false negatives. Further, ancestry patterns between distant sites are often not independent. As a result, current methods tend to infer wide genomic regions containing many genes as under selection, limiting biological interpretation. Instead, we develop a deep learning object detection method applied to images generated from local ancestry-painted genomes. This approach preserves information from the surrounding genomic context and avoids potential pitfalls of user-defined summary statistics. We find the method is robust to a variety of demographic misspecifications using simulated data. Applied to human genotype data from Cabo Verde, we localize a known adaptive locus to a single narrow region compared with multiple or long windows obtained using two other ancestry-based methods.
Collapse
Affiliation(s)
- Iman Hamid
- Department of Evolutionary Anthropology, Duke University, Durham, NC
| | | | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke University, Durham, NC
| |
Collapse
|
25
|
Jagoda E, Marnetto D, Senevirathne G, Gonzalez V, Baid K, Montinaro F, Richard D, Falzarano D, LeBlanc EV, Colpitts CC, Banerjee A, Pagani L, Capellini TD. Regulatory dissection of the severe COVID-19 risk locus introgressed by Neanderthals. eLife 2023; 12:e71235. [PMID: 36763080 PMCID: PMC9917435 DOI: 10.7554/elife.71235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.
Collapse
Affiliation(s)
- Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
| | - Gayani Senevirathne
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Victoria Gonzalez
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of BariBariItaly
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Darryl Falzarano
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Emmanuelle V LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Arinjay Banerjee
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
- Department of Biology, University of WaterlooWaterlooCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of PadovaPadovaItaly
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
26
|
The impact of modern admixture on archaic human ancestry in human populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524232. [PMID: 36711776 PMCID: PMC9882123 DOI: 10.1101/2023.01.16.524232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Admixture, the genetic merging of parental populations resulting in mixed ancestry, has occurred frequently throughout the course of human history. Numerous admixture events have occurred between human populations across the world, as well as introgression between humans and archaic humans, Neanderthals and Denisovans. One example are genomes from populations in the Americas, as these are often mosaics of different ancestries due to recent admixture events as part of European colonization. In this study, we analyzed admixed populations from the Americas to assess whether the proportion and location of admixed segments due to recent admixture impact an individual’s archaic ancestry. We identified a positive correlation between non-African ancestry and archaic alleles, as well as a slight enrichment of Denisovan alleles in Indigenous American segments relative to European segments in admixed genomes. We also identify several genes as candidates for adaptive introgression, based on archaic alleles present at high frequency in admixed American populations but low frequency in East Asian populations. These results provide insights into how recent admixture events between modern humans redistributed archaic ancestry in admixed genomes.
Collapse
|
27
|
Zhang X, Kim B, Singh A, Sankararaman S, Durvasula A, Lohmueller KE. MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations. Mol Biol Evol 2023; 40:msad001. [PMID: 36617238 PMCID: PMC9887621 DOI: 10.1093/molbev/msad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Adaptive introgression (AI) facilitates local adaptation in a wide range of species. Many state-of-the-art methods detect AI with ad-hoc approaches that identify summary statistic outliers or intersect scans for positive selection with scans for introgressed genomic regions. Although widely used, approaches intersecting outliers are vulnerable to a high false-negative rate as the power of different methods varies, especially for complex introgression events. Moreover, population genetic processes unrelated to AI, such as background selection or heterosis, may create similar genomic signals to AI, compromising the reliability of methods that rely on neutral null distributions. In recent years, machine learning (ML) methods have been increasingly applied to population genetic questions. Here, we present a ML-based method called MaLAdapt for identifying AI loci from genome-wide sequencing data. Using an Extra-Trees Classifier algorithm, our method combines information from a large number of biologically meaningful summary statistics to capture a powerful composite signature of AI across the genome. In contrast to existing methods, MaLAdapt is especially well-powered to detect AI with mild beneficial effects, including selection on standing archaic variation, and is robust to non-AI selective sweeps, heterosis from deleterious mutations, and demographic misspecification. Furthermore, MaLAdapt outperforms existing methods for detecting AI based on the analysis of simulated data and the validation of empirical signals through visual inspection of haplotype patterns. We apply MaLAdapt to the 1000 Genomes Project human genomic data and discover novel AI candidate regions in non-African populations, including genes that are enriched in functionally important biological pathways regulating metabolism and immune responses.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA
| | - Armaan Singh
- Department of Computer Science, UCLA, Los Angeles, CA
| | - Sriram Sankararaman
- Department of Computer Science, UCLA, Los Angeles, CA
- Department of Computational Medicine, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Arun Durvasula
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
28
|
Yusuf LH, Tyukmaeva V, Hoikkala A, Ritchie MG. Divergence and introgression among the virilis group of Drosophila. Evol Lett 2022; 6:537-551. [PMID: 36579165 PMCID: PMC9783487 DOI: 10.1002/evl3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.
Collapse
Affiliation(s)
- Leeban H. Yusuf
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| | - Venera Tyukmaeva
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Anneli Hoikkala
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
29
|
Li C, Wu Y, Chen B, Cai Y, Guo J, Leonard AS, Kalds P, Zhou S, Zhang J, Zhou P, Gan S, Jia T, Pu T, Suo L, Li Y, Zhang K, Li L, Purevdorj M, Wang X, Li M, Wang Y, Liu Y, Huang S, Sonstegard T, Wang MS, Kemp S, Pausch H, Chen Y, Han JL, Jiang Y, Wang X. Markhor-derived Introgression of a Genomic Region Encompassing PAPSS2 Confers High-altitude Adaptability in Tibetan Goats. Mol Biol Evol 2022; 39:6830663. [PMID: 36382357 PMCID: PMC9728798 DOI: 10.1093/molbev/msac253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic mechanism of how animals adapt to extreme conditions is fundamental to determine the relationship between molecular evolution and changing environments. Goat is one of the first domesticated species and has evolved rapidly to adapt to diverse environments, including harsh high-altitude conditions with low temperature and poor oxygen supply but strong ultraviolet radiation. Here, we analyzed 331 genomes of domestic goats and wild caprid species living at varying altitudes (high > 3000 m above sea level and low < 1200 m), along with a reference-guided chromosome-scale assembly (contig-N50: 90.4 Mb) of a female Tibetan goat genome based on PacBio HiFi long reads, to dissect the genetic determinants underlying their adaptation to harsh conditions on the Qinghai-Tibetan Plateau (QTP). Population genomic analyses combined with genome-wide association studies (GWAS) revealed a genomic region harboring the 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) gene showing strong association with high-altitude adaptability (PGWAS = 3.62 × 10-25) in Tibetan goats. Transcriptomic data from 13 tissues revealed that PAPSS2 was implicated in hypoxia-related pathways in Tibetan goats. We further verified potential functional role of PAPSS2 in response to hypoxia in PAPSS2-deficient cells. Introgression analyses suggested that the PAPSS2 haplotype conferring the high-altitude adaptability in Tibetan goats originated from a recent hybridization between goats and a wild caprid species, the markhor (Capra falconeri). In conclusion, our results uncover a hitherto unknown contribution of PAPSS2 to high-altitude adaptability in Tibetan goats on QTP, following interspecific introgression and natural selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China,College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jingchen Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Shangqu Gan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Tianchun Pu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Yan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Myagmarsuren Purevdorj
- Lab of Animal Genetics and Animal Reproductive Technology, Research Institute of Animal Husbandry, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Xihong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yao Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 94720
| | - Stephen Kemp
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 30709-00100, Kenya
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, 8092 Zürich, Switzerland
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Yu Jiang
- Corresponding authors: E-mails: ; ;
| | | |
Collapse
|
30
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Sharma V, Varshney R, Sethy NK. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum Genomics 2022; 16:21. [PMID: 35841113 PMCID: PMC9287971 DOI: 10.1186/s40246-022-00395-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Both genomics- and proteomics-based investigations have identified several essential genes, proteins, and pathways that may facilitate human adaptive genotype/phenotype in a population-specific manner. This comprehensive review provides an up-to-date list of genes and proteins identified for human adaptive responses to high altitudes. Genomics studies for indigenous high-altitude populations like Tibetans, Andeans, Ethiopians, and Sherpas have identified 169 genes under positive natural selection. Similarly, global proteomics studies have identified 258 proteins (± 1.2-fold or more) for Tibetan, Sherpa, and Ladakhi highlanders. The primary biological processes identified for genetic signatures include hypoxia-inducible factor (HIF)-mediated oxygen sensing, angiogenesis, and erythropoiesis. In contrast, major biological processes identified for proteomics signatures include 14–3-3 mediated sirtuin signaling, integrin-linked kinase (ILK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and integrin signaling. Comparing genetic and protein signatures, we identified 7 common genes/proteins (HBB/hemoglobin subunit beta, TF/serotransferrin, ANGPTL4/angiopoietin-related protein 4, CDC42/cell division control protein 42 homolog, GC/vitamin D-binding protein, IGFBP1/insulin-like growth factor-binding protein 1, and IGFBP2/insulin-like growth factor-binding protein 2) involved in crucial molecular functions like IGF-1 signaling, LXR/RXR activation, ferroptosis signaling, iron homeostasis signaling and regulation of cell cycle. Our combined multi-omics analysis identifies common molecular targets and pathways for human adaptation to high altitude. These observations further corroborate convergent positive selection of hypoxia-responsive molecular pathways in humans and advocate using multi-omics techniques for deciphering human adaptive responses to high altitude.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
32
|
Mendoza-Revilla J, Chacón-Duque JC, Fuentes-Guajardo M, Ormond L, Wang K, Hurtado M, Villegas V, Granja V, Acuña-Alonzo V, Jaramillo C, Arias W, Barquera R, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Badillo Rivera KM, Nieves-Colón MA, Gignoux CR, Wojcik GL, Moreno-Estrada A, Hünemeier T, Ramallo V, Schuler-Faccini L, Gonzalez-José R, Bortolini MC, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Fumagalli M, Adhikari K, Ruiz-Linares A, Hellenthal G. Disentangling Signatures of Selection Before and After European Colonization in Latin Americans. Mol Biol Evol 2022; 39:6565306. [PMID: 35460423 PMCID: PMC9034689 DOI: 10.1093/molbev/msac076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas.
Collapse
Affiliation(s)
- Javier Mendoza-Revilla
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Louise Ormond
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom
| | - Ke Wang
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,National School of Anthropology and History, Mexico City, Mexico
| | | | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | | | - Maria A Nieves-Colón
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Christopher R Gignoux
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Genevieve L Wojcik
- Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Tábita Hünemeier
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | | | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, Colombia
| | | | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, Australia
| | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom.,Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
33
|
Villanea FA, Witt KE. Underrepresented Populations at the Archaic Introgression Frontier. Front Genet 2022; 13:821170. [PMID: 35281795 PMCID: PMC8914065 DOI: 10.3389/fgene.2022.821170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fernando A Villanea
- Department of Anthropology, College of Arts and Sciences, University of Colorado Boulder, Boulder, CO, United States
- *Correspondence: Fernando A Villanea,
| | - Kelsey E. Witt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| |
Collapse
|
34
|
Quiver MH, Lachance J. Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. HGG ADVANCES 2022; 3:100083. [PMID: 35047867 PMCID: PMC8756519 DOI: 10.1016/j.xhgg.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Large numbers of expression quantitative trait loci (eQTLs) have recently been identified in humans, and many of these regulatory variants have large allele frequency differences between populations. Here, we conducted genome-wide scans of selection to identify adaptive eQTLs (i.e., eQTLs with large population branch statistics). We then tested if tissue pleiotropy affects whether eQTLs are more or less likely to be adaptive and identified tissues that have been key targets of positive selection during the last 100,000 years. Top adaptive eQTL outliers include rs1043809, rs66899053, and rs2814778 (a SNP that is associated with malaria resistance). We found that effect sizes of eQTLs were negatively correlated with population branch statistics and that adaptive eQTLs affect two-thirds as many tissues as do non-adaptive eQTLs. Because the tissue breadth of an eQTL can be viewed as a measure of pleiotropy, these results imply that pleiotropy inhibits adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we found that eQTLs that regulate expression in testis, thyroid, blood, or sun-exposed skin are enriched for signatures of positive selection. By contrast, eQTLs that regulate expression in the cerebrum or female-specific tissues have a relative lack of adaptive outliers. Scans of selections also reveal that many adaptive eQTLs are closely linked to disease-associated loci. Taken together, our results indicate that eQTLs have played an important role in recent human evolution.
Collapse
Affiliation(s)
- Melanie H Quiver
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
35
|
Pilot M, Moura AE, Okhlopkov IM, Mamaev NV, Manaseryan NH, Hayrapetyan V, Kopaliani N, Tsingarska E, Alagaili AN, Mohammed OB, Ostrander EA, Bogdanowicz W. Human-modified canids in human-modified landscapes: The evolutionary consequences of hybridization for grey wolves and free-ranging domestic dogs. Evol Appl 2021; 14:2433-2456. [PMID: 34745336 PMCID: PMC8549620 DOI: 10.1111/eva.13257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Andre E. Moura
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Innokentiy M. Okhlopkov
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Nikolay V. Mamaev
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Ninna H. Manaseryan
- Scientific Center of Zoology and HydroecologyNational Academy of SciencesYerevanArmenia
| | | | | | | | - Abdulaziz N. Alagaili
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Osama B. Mohammed
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
36
|
Lo YH, Cheng HC, Hsiung CN, Yang SL, Wang HY, Peng CW, Chen CY, Lin KP, Kang ML, Chen CH, Chu HW, Lin CF, Lee MH, Liu Q, Satta Y, Lin CJ, Lin M, Chaw SM, Loo JH, Shen CY, Ko WY. Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Mol Biol Evol 2021; 38:4149-4165. [PMID: 33170928 PMCID: PMC8476137 DOI: 10.1093/molbev/msaa276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.
Collapse
Affiliation(s)
- Yun-Hua Lo
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Chien Cheng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Han-Yu Wang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Peng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kung-Ping Lin
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Ling Kang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | | | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Cheng-Jui Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Wen-Ya Ko
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
37
|
Findley AS, Zhang X, Boye C, Lin YL, Kalita CA, Barreiro L, Lohmueller KE, Pique-Regi R, Luca F. A signature of Neanderthal introgression on molecular mechanisms of environmental responses. PLoS Genet 2021; 17:e1009493. [PMID: 34570765 PMCID: PMC8509894 DOI: 10.1371/journal.pgen.1009493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/12/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Ancient human migrations led to the settlement of population groups in varied environmental contexts worldwide. The extent to which adaptation to local environments has shaped human genetic diversity is a longstanding question in human evolution. Recent studies have suggested that introgression of archaic alleles in the genome of modern humans may have contributed to adaptation to environmental pressures such as pathogen exposure. Functional genomic studies have demonstrated that variation in gene expression across individuals and in response to environmental perturbations is a main mechanism underlying complex trait variation. We considered gene expression response to in vitro treatments as a molecular phenotype to identify genes and regulatory variants that may have played an important role in adaptations to local environments. We investigated if Neanderthal introgression in the human genome may contribute to the transcriptional response to environmental perturbations. To this end we used eQTLs for genes differentially expressed in a panel of 52 cellular environments, resulting from 5 cell types and 26 treatments, including hormones, vitamins, drugs, and environmental contaminants. We found that SNPs with introgressed Neanderthal alleles (N-SNPs) disrupt binding of transcription factors important for environmental responses, including ionizing radiation and hypoxia, and for glucose metabolism. We identified an enrichment for N-SNPs among eQTLs for genes differentially expressed in response to 8 treatments, including glucocorticoids, caffeine, and vitamin D. Using Massively Parallel Reporter Assays (MPRA) data, we validated the regulatory function of 21 introgressed Neanderthal variants in the human genome, corresponding to 8 eQTLs regulating 15 genes that respond to environmental perturbations. These findings expand the set of environments where archaic introgression may have contributed to adaptations to local environments in modern humans and provide experimental validation for the regulatory function of introgressed variants.
Collapse
Affiliation(s)
- Anthony S. Findley
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Yen Lung Lin
- Genetics Section, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia A. Kalita
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Luis Barreiro
- Genetics Section, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
38
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun 2021; 12:4481. [PMID: 34294692 PMCID: PMC8298587 DOI: 10.1038/s41467-021-24582-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Eurasians have ~2% Neanderthal ancestry, but we lack a comprehensive understanding of the genome-wide influence of Neanderthal introgression on modern human diseases and traits. Here, we quantify the contribution of introgressed alleles to the heritability of more than 400 diverse traits. We show that genomic regions in which detectable Neanderthal ancestry remains are depleted of heritability for all traits considered, except those related to skin and hair. Introgressed variants themselves are also depleted for contributions to the heritability of most traits. However, introgressed variants shared across multiple Neanderthal populations are enriched for heritability and have consistent directions of effect on several traits with potential relevance to human adaptation to non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung capacity, and menopause age. Integrating our results, we propose a model in which selection against introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or bi-directional (e.g., modulating immune response) effects.
Collapse
Affiliation(s)
- Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, 94107, USA.
| |
Collapse
|
40
|
Storz JF, Signore AV. Introgressive Hybridization and Hypoxia Adaptation in High-Altitude Vertebrates. Front Genet 2021; 12:696484. [PMID: 34239546 PMCID: PMC8258166 DOI: 10.3389/fgene.2021.696484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
In natural populations of animals, a growing body of evidence suggests that introgressive hybridization may often serve as an important source of adaptive genetic variation. Population genomic studies of high-altitude vertebrates have provided strong evidence of positive selection on introgressed allelic variants, typically involving a long-term highland species as the donor and a more recently arrived colonizing species as the recipient. In high-altitude humans and canids from the Tibetan Plateau, case studies of adaptive introgression involving the HIF transcription factor, EPAS1, have provided insights into complex histories of ancient introgression, including examples of admixture from now-extinct source populations. In Tibetan canids and Andean waterfowl, directed mutagenesis experiments involving introgressed hemoglobin variants successfully identified causative amino acid mutations and characterized their phenotypic effects, thereby providing insights into the functional properties of selectively introgressed alleles. We review case studies of adaptive introgression in high-altitude vertebrates and we highlight findings that may be of general significance for understanding mechanisms of environmental adaptation involving different sources of genetic variation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Anthony V Signore
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
41
|
Abstract
The detection of introgression from genomic data is transforming our view of species and the origins of adaptive variation. Among the most widely used approaches to detect introgression is the so-called ABBA-BABA test or D-statistic, which identifies excess allele sharing between nonsister taxa. Part of the appeal of D is its simplicity, but this also limits its informativeness, particularly about the timing and direction of introgression. Here we present a simple extension, D frequency spectrum or DFS, in which D is partitioned according to the frequencies of derived alleles. We use simulations over a large parameter space to show how DFS carries information about various factors. In particular, recent introgression reliably leads to a peak in DFS among low-frequency derived alleles, whereas violation of model assumptions can lead to a lack of signal at low frequencies. We also reanalyze published empirical data from six different animal and plant taxa, and interpret the results in the light of our simulations, showing how DFS provides novel insights. We currently see DFS as a descriptive tool that will augment both simple and sophisticated tests for introgression, but in the future it may be usefully incorporated into probabilistic inference frameworks.
Collapse
Affiliation(s)
- Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Abstract
Recent studies suggest that admixture with archaic hominins played an important role in facilitating biological adaptations to new environments. For example, interbreeding with Denisovans facilitated the adaptation to high-altitude environments on the Tibetan Plateau. Specifically, the EPAS1 gene, a transcription factor that regulates the response to hypoxia, exhibits strong signatures of both positive selection and introgression from Denisovans in Tibetan individuals. Interestingly, despite being geographically closer to the Denisova Cave, East Asian populations do not harbor as much Denisovan ancestry as populations from Melanesia. Recently, two studies have suggested two independent waves of Denisovan admixture into East Asians, one of which is shared with South Asians and Oceanians. Here, we leverage data from EPAS1 in 78 Tibetan individuals to interrogate which of these two introgression events introduced the EPAS1 beneficial sequence into the ancestral population of Tibetans, and we use the distribution of introgressed segment lengths at this locus to infer the timing of the introgression and selection event. We find that the introgression event unique to East Asians most likely introduced the beneficial haplotype into the ancestral population of Tibetans around 48,700 (16,000-59,500) y ago, and selection started around 9,000 (2,500-42,000) y ago. Our estimates suggest that one of the most convincing examples of adaptive introgression is in fact selection acting on standing archaic variation.
Collapse
|
43
|
Gower G, Picazo PI, Fumagalli M, Racimo F. Detecting adaptive introgression in human evolution using convolutional neural networks. eLife 2021; 10:64669. [PMID: 34032215 PMCID: PMC8192126 DOI: 10.7554/elife.64669] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
Studies in a variety of species have shown evidence for positively selected variants introduced into a population via introgression from another, distantly related population—a process known as adaptive introgression. However, there are few explicit frameworks for jointly modelling introgression and positive selection, in order to detect these variants using genomic sequence data. Here, we develop an approach based on convolutional neural networks (CNNs). CNNs do not require the specification of an analytical model of allele frequency dynamics and have outperformed alternative methods for classification and parameter estimation tasks in various areas of population genetics. Thus, they are potentially well suited to the identification of adaptive introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes sampled from the donor population, the recipient population and a related non-introgressed population, in order to distinguish regions of the genome evolving under adaptive introgression from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits 95% accuracy on simulated data, even when the genomes are unphased, and accuracy decreases only moderately in the presence of heterosis. As a proof of concept, we applied our trained CNNs to human genomic datasets—both phased and unphased—to detect candidates for adaptive introgression that shaped our evolutionary history.
Collapse
Affiliation(s)
- Graham Gower
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Iáñez Picazo
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, United Kingdom
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Yair S, Lee KM, Coop G. The timing of human adaptation from Neanderthal introgression. Genetics 2021; 218:iyab052. [PMID: 33787889 PMCID: PMC8128397 DOI: 10.1093/genetics/iyab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic history of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci. Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression. From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to modern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Kristin M Lee
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
45
|
Gopalan S, Atkinson EG, Buck LT, Weaver TD, Henn BM. Inferring archaic introgression from hominin genetic data. Evol Anthropol 2021; 30:199-220. [PMID: 33951239 PMCID: PMC8360192 DOI: 10.1002/evan.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Elizabeth G Atkinson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts, USA
| | - Laura T Buck
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, California, USA
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, University of California, Davis, California, USA.,UC Davis Genome Center, University of California, Davis, California, USA
| |
Collapse
|
46
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Villanea FA, Huerta-Sanchez E, Fox K. ABO Genetic Variation in Neanderthals and Denisovans. Mol Biol Evol 2021; 38:3373-3382. [PMID: 33892510 PMCID: PMC8321519 DOI: 10.1093/molbev/msab109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Variation at the ABO locus was one of the earliest sources of data in the study of human population identity and history, and to this day remains widely genotyped due to its importance in blood and tissue transfusions. Here, we look at ABO blood type variants in our archaic relatives: Neanderthals and Denisovans. Our goal is to understand the genetic landscape of the ABO gene in archaic humans, and how it relates to modern human ABO variation. We found two Neanderthal variants of the O allele in the Siberian Neanderthals (O1 and O2), one of these variants is shared with an European Neanderthal, who is a heterozygote for this O1 variant and a rare cis-AB variant. The Denisovan individual is heterozygous for two variants of the O1 allele, functionally similar to variants found widely in modern humans. Perhaps more surprisingly, the O2 allele variant found in Siberian Neanderthals can be found at low frequencies in modern Europeans and Southeast Asians, and the O1 allele variant found in Siberian and European Neanderthal is also found at very low frequency in modern East Asians. Our genetic distance analyses suggest both alleles survive in modern humans due to inbreeding with Neanderthals. We find that the sequence backgrounds of the surviving Neanderthal-like O alleles in modern humans retain a higher sequence divergence than other surviving Neanderthal genome fragments, supporting a view of balancing selection operating in the Neanderthal ABO alleles by retaining highly diverse haplotypes compared with portions of the genome evolving neutrally.
Collapse
Affiliation(s)
- Fernando A Villanea
- Anthropology, University of Colorado Boulder, Boulder, CO, USA.,Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | | - Keolu Fox
- Anthropology and Global Health, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
48
|
Choin J, Mendoza-Revilla J, Arauna LR, Cuadros-Espinoza S, Cassar O, Larena M, Ko AMS, Harmant C, Laurent R, Verdu P, Laval G, Boland A, Olaso R, Deleuze JF, Valentin F, Ko YC, Jakobsson M, Gessain A, Excoffier L, Stoneking M, Patin E, Quintana-Murci L. Genomic insights into population history and biological adaptation in Oceania. Nature 2021; 592:583-589. [PMID: 33854233 DOI: 10.1038/s41586-021-03236-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.
Collapse
Affiliation(s)
- Jeremy Choin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Lara R Arauna
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Sebastian Cuadros-Espinoza
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Olivier Cassar
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Christine Harmant
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Romain Laurent
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Paul Verdu
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Frédérique Valentin
- Maison de l'Archéologie et de l'Ethnologie, UMR 7041, CNRS, Nanterre, France
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University and Hospital, Taichung, Taiwan
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Antoine Gessain
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
- Collège de France, Paris, France.
| |
Collapse
|
49
|
Ávila-Arcos MC, McManus KF, Sandoval K, Rodríguez-Rodríguez JE, Villa-Islas V, Martin AR, Luisi P, Peñaloza-Espinosa RI, Eng C, Huntsman S, Burchard EG, Gignoux CR, Bustamante CD, Moreno-Estrada A. Population History and Gene Divergence in Native Mexicans Inferred from 76 Human Exomes. Mol Biol Evol 2021; 37:994-1006. [PMID: 31848607 PMCID: PMC7086176 DOI: 10.1093/molbev/msz282] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Native American genetic variation remains underrepresented in most catalogs of human genome sequencing data. Previous genotyping efforts have revealed that Mexico’s Indigenous population is highly differentiated and substructured, thus potentially harboring higher proportions of private genetic variants of functional and biomedical relevance. Here we have targeted the coding fraction of the genome and characterized its full site frequency spectrum by sequencing 76 exomes from five Indigenous populations across Mexico. Using diffusion approximations, we modeled the demographic history of Indigenous populations from Mexico with northern and southern ethnic groups splitting 7.2 KYA and subsequently diverging locally 6.5 and 5.7 KYA, respectively. Selection scans for positive selection revealed BCL2L13 and KBTBD8 genes as potential candidates for adaptive evolution in Rarámuris and Triquis, respectively. BCL2L13 is highly expressed in skeletal muscle and could be related to physical endurance, a well-known phenotype of the northern Mexico Rarámuri. The KBTBD8 gene has been associated with idiopathic short stature and we found it to be highly differentiated in Triqui, a southern Indigenous group from Oaxaca whose height is extremely low compared to other Native populations.
Collapse
Affiliation(s)
- María C Ávila-Arcos
- International Laboratory for Human Genome Research (LIIGH), UNAM Juriquilla, Queretaro, Mexico.,Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Kimberly F McManus
- Department of Biology, Stanford University, Stanford, CA.,Department of Biomedical Informatics, Stanford School of Medicine, Stanford, CA
| | - Karla Sandoval
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | | | - Viridiana Villa-Islas
- International Laboratory for Human Genome Research (LIIGH), UNAM Juriquilla, Queretaro, Mexico
| | - Alicia R Martin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Pierre Luisi
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rosenda I Peñaloza-Espinosa
- Division of Biological and Health Sciences, Department of Biological Systems, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Celeste Eng
- Department Bioengineering & Therapeutic Sciences and Medicine, University of California San Francisco, San Francisco, CA
| | - Scott Huntsman
- Department Bioengineering & Therapeutic Sciences and Medicine, University of California San Francisco, San Francisco, CA
| | - Esteban G Burchard
- Department Bioengineering & Therapeutic Sciences and Medicine, University of California San Francisco, San Francisco, CA
| | - Christopher R Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO
| | - Carlos D Bustamante
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), UGA, CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| |
Collapse
|
50
|
Teixeira JC, Huber CD. The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci U S A 2021; 118:e2015096118. [PMID: 33608481 PMCID: PMC7958437 DOI: 10.1073/pnas.2015096118] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The current rate of species extinction is rapidly approaching unprecedented highs, and life on Earth presently faces a sixth mass extinction event driven by anthropogenic activity, climate change, and ecological collapse. The field of conservation genetics aims at preserving species by using their levels of genetic diversity, usually measured as neutral genome-wide diversity, as a barometer for evaluating population health and extinction risk. A fundamental assumption is that higher levels of genetic diversity lead to an increase in fitness and long-term survival of a species. Here, we argue against the perceived importance of neutral genetic diversity for the conservation of wild populations and species. We demonstrate that no simple general relationship exists between neutral genetic diversity and the risk of species extinction. Instead, a better understanding of the properties of functional genetic diversity, demographic history, and ecological relationships is necessary for developing and implementing effective conservation genetic strategies.
Collapse
Affiliation(s)
- João C Teixeira
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christian D Huber
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
| |
Collapse
|