1
|
Coluzzi C, Rocha EPC. The Spread of Antibiotic Resistance Is Driven by Plasmids Among the Fastest Evolving and of Broadest Host Range. Mol Biol Evol 2025; 42:msaf060. [PMID: 40098486 PMCID: PMC11952959 DOI: 10.1093/molbev/msaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Microorganisms endure novel challenges for which other microorganisms in other biomes may have already evolved solutions. This is the case of nosocomial bacteria under antibiotic therapy because antibiotics are of ancient natural origin and resistances to them have previously emerged in environmental bacteria. In such cases, the rate of adaptation crucially depends on the acquisition of genes by horizontal transfer of plasmids from distantly related bacteria in different biomes. We hypothesized that such processes should be driven by plasmids among the most mobile and evolvable. We confirmed these predictions by showing that plasmid species encoding antibiotic resistance are very mobile, have broad host ranges, while showing higher rates of homologous recombination and faster turnover of gene repertoires than the other plasmids. These characteristics remain outstanding when we remove resistance plasmids from our dataset, suggesting that antibiotic resistance genes are preferentially acquired and carried by plasmid species that are intrinsically very mobile and plastic. Evolvability and mobility facilitate the transfer of antibiotic resistance, and presumably of other phenotypes, across distant taxonomic groups and biomes. Hence, plasmid species, and possibly those of other mobile genetic elements, have differentiated and predictable roles in the spread of novel traits.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université Paris Cité, Microbial Evolutionary Genomics, CNRS UMR3525, 75724 Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, Microbial Evolutionary Genomics, CNRS UMR3525, 75724 Paris, France
| |
Collapse
|
2
|
Le VVH, Gong Z, Maccario L, Bousquet E, Parra B, Dechesne A, Sørensen SJ, Nesme J. Birmingham-group IncP-1 α plasmids revisited: RP4, RP1 and RK2 are identical and their remnants can be detected in environmental isolates. Microb Genom 2025; 11:001381. [PMID: 40152918 PMCID: PMC11952213 DOI: 10.1099/mgen.0.001381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
RP4, RP1, RK2 and R68 were isolated from the multidrug-resistant bacterial wound isolates in 1969 in the Birmingham Accident Hospital, Birmingham, England, and collectively called Birmingham-group IncP-1α plasmids. These plasmids have been widely used as models to study different aspects of plasmid biology, develop genetic delivery systems and design plasmid vectors. Early studies showed that these plasmids conferred the same antibiotic resistance profile, had a similar size and were undistinguishable from each other using DNA heteroduplex electron microscopy and restriction endonuclease analyses. These observations have led to the widely held assumption that they are identical, although there has been no conclusive supporting evidence. In this work, we sequenced the plasmids RP1 and RP4 from our laboratory strain collection and compared these new sequences with the plasmids RP4 and RK2 assembled from a publicly available sequencing database, showing that the RP1, RP4 and RK2 plasmids are 60 095 bp in length and identical at the nucleotide resolution. Noteworthily, the plasmid sequence is highly conserved despite having been distributed to different labs over 50 years and propagated in different bacterial hosts, strengthening the previous observation that the bacterial host adapts to the RP4/RP1/RK2 plasmid rather than the opposite. In the updated RP4/RP1/RK2 sequence, we found a fusion gene, called pecM-orf2, that was formed putatively by a genetic deletion event. By searching for pecM-orf2 in the National Center for Biotechnology Information database, we detected remnants of the RP4/RP1/RK2 plasmid that carry features of laboratory-engineered vectors in bacterial environmental isolates, either in their chromosome or as a plasmid. This suggests a leak of these plasmids from the laboratory into the environment, which may subsequently impact bacterial evolution and raises concerns about the biocontainment of engineered plasmids when being handled in laboratory settings.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- Living Systems Institute, University of Exeter, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emma Bousquet
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Parra
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Rossine F, Sanchez C, Eaton D, Paulsson J, Baym M. Intracellular competition shapes plasmid population dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639193. [PMID: 40027608 PMCID: PMC11870584 DOI: 10.1101/2025.02.19.639193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Conflicts between levels of biological organization are central to evolution, from populations of multicellular organisms to selfish genetic elements in microbes. Plasmids are extrachromosomal, self-replicating genetic elements that underlie much of the evolutionary flexibility of bacteria. Evolving plasmids face selective pressures on their hosts, but also compete within the cell for replication, making them an ideal system for studying the joint dynamics of multilevel selection. While theory indicates that within-cell selection should matter for plasmid evolution, experimental measurement of within-cell plasmid fitness and its consequences has remained elusive. Here we measure the within-cell fitness of competing plasmids and characterize drift and selective dynamics. We achieve this by the controlled splitting of synthetic plasmid dimers to create balanced competition experiments. We find that incompatible plasmids co-occur for longer than expected due to methylation-based plasmid eclipsing. During this period of co-occurrence, less transcriptionally active plasmids display a within-cell selective advantage over their competing plasmids, leading to preferential fixation of silent plasmids. When the transcribed gene is beneficial to the cell, for example an antibiotic resistance gene, there is a cell-plasmid fitness tradeoff mediated by the dominance of the beneficial trait. Surprisingly, more dominant plasmid-encoded traits are less likely to fix but more likely to initially invade than less dominant traits. Taken together, our results show that plasmid evolution is driven by dynamics at two levels, with a transient, but critical, contribution of within-cell fitness.
Collapse
Affiliation(s)
- Fernando Rossine
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Carlos Sanchez
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Eaton
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Dewan I, Uecker H. Evolutionary rescue of bacterial populations by heterozygosity on multicopy plasmids. J Math Biol 2025; 90:26. [PMID: 39909926 PMCID: PMC11799102 DOI: 10.1007/s00285-025-02182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025]
Abstract
Bacterial plasmids and other extrachromosomal DNA elements frequently carry genes with important fitness effects for their hosts. Multicopy plasmids can additionally carry distinct alleles of host-fitness-relevant genes on different plasmid copies, allowing for heterozygosity not possible for loci on haploid chromosomes. Plasmid-mediated heterozygosity may increase the fitness of bacterial cells in circumstances where there is an advantage to having multiple distinct alleles (heterozyogote advantage); however, plasmid-mediated heterozygosity is also subject to constant loss due to random segregation of plasmid copies on cell division. We analyze a multitype branching process model to study the evolution and maintenance of plasmid-mediated heterozygosity under a heterozygote advantage. We focus on an evolutionary rescue scenario in which a novel mutant allele on a plasmid must be maintained together with the wild-type allele to allow population persistance (although our results apply more generally to the maintenance of heterozygosity due to heterozygote advantage). We determine the probability of rescue and derive an analytical expression for the threshold on the fitness of heterozygotes required to overcome segregation and make rescue possible; this threshold decreases with increasing plasmids copy number. We further show that the formation of cointegrates from the fusion of plasmid copies increases the probability of rescue. Overall, our results provide a rigorous quantitative assessment of the conditions under which bacterial populations can adapt to multiple stressors through plasmid-mediated heterozygosity. Many of the results are furthermore applicable to the related problem of the maintenance of incompatible plasmids in the same cell under selection for both.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|
5
|
Wang A, Cordova M, Navarre WW. Evolutionary and functional divergence of Sfx, a plasmid-encoded H-NS homolog, underlies the regulation of IncX plasmid conjugation. mBio 2025; 16:e0208924. [PMID: 39714162 PMCID: PMC11796372 DOI: 10.1128/mbio.02089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS). Recent bioinformatic analyses have revealed that plasmid-encoded H-NS homologs are widespread and exhibit high sequence diversity. However, the functional roles of most of these homologs and the selective forces driving their phylogenetic diversification remain unclear. In this study, we characterized the functionality and evolution of Sfx, a H-NS homolog encoded by the model IncX2 plasmid R6K. We demonstrate that Sfx, but not chromosomal H-NS, can repress R6K conjugation. Notably, we find evidence of positive selection acting on the ancestral Sfx lineage. Positively selected sites are located in the dimerization, oligomerization, and DNA-binding interfaces, many of which contribute to R6K repression activity-indicating that adaptive evolution drove the functional divergence of Sfx. We additionally show that Sfx can physically interact with various chromosomally encoded proteins, including H-NS, StpA, and Hha. Hha enhances the ability of Sfx to regulate R6K conjugation, suggesting that Sfx retained functionally important interactions with chromosomal silencing proteins. Surprisingly, the loss of Sfx does not negatively affect the stability or dissemination of R6K in laboratory conditions, reflecting the complexity of selective pressures favoring conjugation repression. Overall, our study sheds light on the functional and evolutionary divergence of a plasmid-borne H-NS-like protein, highlighting how these loosely specific DNA-binding proteins evolved to specifically regulate different plasmid functions.IMPORTANCEConjugative plasmids play a crucial role in spreading antimicrobial resistance and virulence genes. Most natural conjugative plasmids conjugate only under specific conditions. Therefore, studying the molecular mechanisms underlying conjugation regulation is essential for understanding antimicrobial resistance and pathogen evolution. In this study, we characterized the conjugation regulation of the model IncX plasmid R6K. We discovered that Sfx, a H-NS homolog carried by the plasmid, represses conjugation. Molecular evolutionary analyses combined with gain-of-function experiments indicate that positive selection underlies the conjugation repression activity of Sfx. Additionally, we demonstrate that the loss of Sfx does not adversely affect R6K maintenance under laboratory conditions, suggesting additional selective forces favoring Sfx carriage. Overall, this work underscores the impact of protein diversification on plasmid biology, enhancing our understanding of how molecular evolution affects broader plasmid ecology.
Collapse
Affiliation(s)
- Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martha Cordova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Almeida L, Schöllkopf A, Edelmann H, Ehrenreich A, Liebl W. Markerless deletion of the putative type I and III restriction-modification systems in the cellulolytic bacterium Clostridium cellulovorans using a codBA-based counterselection technique. J Biotechnol 2025; 397:22-31. [PMID: 39522731 DOI: 10.1016/j.jbiotec.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Cellulose from lignocellulosic biomass (LB) is of increasing interest for the production of commodity chemicals. However, its use as substrate for fermentations is a challenge due to its structural complexity. In this context, the highly cellulolytic Clostridium cellulovorans has been considered an interesting microorganism for the breakdown of LB. C. cellulovorans does not naturally produce solvents in useful concentrations, but this could be achieved by metabolic engineering. Unfortunately, this is hampered by the lack of tools for genetic engineering. We describe a genetic system that allows strain engineering by the allelic-coupled exchange method. First, the Gram-positive origin of pUB110 was identified as a suitable clostridial 'pseudo-suicide' origin of replication for the construction of deletion vectors. Second, an efficient counterselection strategy based on a codBA cassette and the use of 5-fluorocytosine as the counterselective compound was employed. Third, since the prevention of DNA transfer by host restriction-modification (RM) systems is a critical barrier to genome engineering, deletion plasmids containing flanking regions for the putative type I (Clocel_1114) and III (Clocel_2651) RM systems were constructed and transferred into C. cellulovorans. The restriction-less strains C. cellulovorans ΔClocel_1114 and C. cellulovorans ΔClocel_2651 exhibit high conjugation efficiency and can be easily used for further metabolic engineering.
Collapse
Affiliation(s)
- Luciana Almeida
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Aline Schöllkopf
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Holger Edelmann
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University of Munich, Freising, Germany.
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
O'Connor MR, Thoma CJ, Dodge AG, Wackett LP. Phenotypic Plasticity During Organofluorine Degradation Revealed by Adaptive Evolution. Microb Biotechnol 2024; 17:e70066. [PMID: 39724398 PMCID: PMC11670473 DOI: 10.1111/1751-7915.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
A major factor limiting the biodegradation of organofluorine compounds has been highlighted as fluoride anion toxicity produced by defluorinating enzymes. Here, two highly active defluorinases with different activities were constitutively expressed in Pseudomonas putida ATCC 12633 to examine adaption to fluoride stress. Each strain was grown on α-fluorophenylacetic acid as the sole carbon source via defluorination to mandelic acid, and each showed immediate fluoride release and delayed growth. Adaptive evolution was performed for each recombinant strain by serial transfer. Both strains adapted to show a much shorter lag and a higher growth yield. The observed adaptation occurred rapidly and reproducibly, within 50 generations each time. After adaption, growth with 50-70 mM α-fluorophenylacetic acid was significantly faster with more fluoride release than a preadapted culture due to larger cell populations. Genomic sequencing of both pre- and postadapted strain pairs revealed decreases in the defluorinase gene content. With both defluorinases, adaption produced a 56%-57% decrease in the plasmid copy number. Additionally, during adaption of the strain expressing the faster defluorinase, two plasmids were present: the original and a derivative in which the defluorinase gene was deleted. An examination of the enzyme rates in the pathway suggested that the defluorinase rate was concurrently optimised for pathway flux and minimising fluoride toxicity. The rapid alteration of plasmid copy number and mutation was consistent with other studies on microbial responses to stresses such as antibiotics. The data presented here support the idea that fluoride stress is significant during the biodegradation of organofluorine compounds and suggest engineered strains will be under strong selective pressure to decrease fluoride stress.
Collapse
Affiliation(s)
- Madeline R. O'Connor
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaTwin CitiesUSA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaTwin CitiesUSA
| | - Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaTwin CitiesUSA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaTwin CitiesUSA
| |
Collapse
|
8
|
Frolova D, Lima L, Roberts LW, Bohnenkämper L, Wittler R, Stoye J, Iqbal Z. Applying rearrangement distances to enable plasmid epidemiology with pling. Microb Genom 2024; 10:001300. [PMID: 39401066 PMCID: PMC11472880 DOI: 10.1099/mgen.0.001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Plasmids are a key vector of antibiotic resistance, but the current bioinformatics toolkit is not well suited to tracking them. The rapid structural changes seen in plasmid genomes present considerable challenges to evolutionary and epidemiological analysis. Typical approaches are either low resolution (replicon typing) or use shared k-mer content to define a genetic distance. However, this distance can both overestimate plasmid relatedness by ignoring rearrangements, and underestimate by over-penalizing gene gain/loss. Therefore a model is needed which captures the key components of how plasmid genomes evolve structurally - through gene/block gain or loss, and rearrangement. A secondary requirement is to prevent promiscuous transposable elements (TEs) leading to over-clustering of unrelated plasmids. We choose the 'Double Cut and Join Indel' (DCJ-Indel) model, in which plasmids are studied at a coarse level, as a sequence of signed integers (representing genes or aligned blocks), and the distance between two plasmids is the minimum number of rearrangement events or indels needed to transform one into the other. We show how this gives much more meaningful distances between plasmids. We introduce a software workflow pling (https://github.com/iqbal-lab-org/pling), which uses the DCJ-Indel model, to calculate distances between plasmids and then cluster them. In our approach, we combine containment distances and DCJ-Indel distances to build a TE-aware plasmid network. We demonstrate superior performance and interpretability to other plasmid clustering tools on the 'Russian Doll' dataset and a hospital transmission dataset.
Collapse
Affiliation(s)
- Daria Frolova
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leandro Lima
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leah Wendy Roberts
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Leonard Bohnenkämper
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Graduate School "Digital Infrastructure for the Life Sciences" (DILS), Bielefeld University, Bielefeld, Germany
| | - Roland Wittler
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Zamin Iqbal
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
9
|
Khachaturyan M, Santer M, Reusch TBH, Dagan T. Heteroplasmy Is Rare in Plant Mitochondria Compared with Plastids despite Similar Mutation Rates. Mol Biol Evol 2024; 41:msae135. [PMID: 38934796 PMCID: PMC11245704 DOI: 10.1093/molbev/msae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Eerlings R, Gupta P, Lee XY, Nguyen T, El Kharraz S, Handle F, Smeets E, Moris L, Devlies W, Vandewinkel B, Thiry I, Ta DT, Gorkovskiy A, Voordeckers K, Henckaerts E, Pinheiro VB, Claessens F, Verstrepen KJ, Voet A, Helsen C. Rational evolution for altering the ligand preference of estrogen receptor alpha. Protein Sci 2024; 33:e4940. [PMID: 38511482 PMCID: PMC10955623 DOI: 10.1002/pro.4940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.
Collapse
Affiliation(s)
- Roy Eerlings
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Purvi Gupta
- Laboratory of Biomolecular Modelling and Design, Department of ChemistryKU LeuvenHeverleeBelgium
| | - Xiao Yin Lee
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Tien Nguyen
- Laboratory of Biomolecular Modelling and Design, Department of ChemistryKU LeuvenHeverleeBelgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Florian Handle
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Lisa Moris
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Department of UrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wout Devlies
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Department of UrologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Bram Vandewinkel
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Irina Thiry
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Duy Tien Ta
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Anton Gorkovskiy
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Karin Voordeckers
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Els Henckaerts
- Laboratory of Viral Cell Biology and Therapeutics, Department of Cellular and Molecular Medicine, Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Vitor B. Pinheiro
- KU Leuven, Department of Pharmaceutical and Pharmacological SciencesRega Institute for Medical ResearchLeuvenBelgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Kevin J. Verstrepen
- Laboratory of Systems BiologyVIB‐KU Leuven Center for MicrobiologyLeuvenBelgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2SKU LeuvenHeverleeBelgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of ChemistryKU LeuvenHeverleeBelgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| |
Collapse
|
11
|
Russo I, Fischer J, Uelze L, Napoleoni M, Schiavano GF, Andreoni F, Brandi G, Amagliani G. From farm to fork: Spread of a multidrug resistant Salmonella Infantis clone encoding bla CTX-M-1 on pESI-like plasmids in Central Italy. Int J Food Microbiol 2024; 410:110490. [PMID: 37992554 DOI: 10.1016/j.ijfoodmicro.2023.110490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) is one of the "top five Salmonella serovars" of clinical significance in the European Union (EU). Antimicrobial resistant and extended spectrum β-lactamase (ESBL) AmpC-producing S. Infantis have been described in food production systems and human clinical samples in Italy. Recently, an increase of MDR S. Infantis carrying blaCTX-M genes involved in 3rd generation cephalosporin resistance was noticed in the EU, including Italy, mainly due to the spread of S. Infantis harboring a pESI-like plasmid. The aim of this study was to investigate the occurrence of the S. Infantis pESI-like plasmid among antibiotic resistant S. Infantis strains isolated at different points of the food chain, and to provide a phylogenetic analysis to gain further insight on their transmission pathways from 'farm to fork'. MDR S. Infantis strains (n. 35) isolated from 2016 to 2021 at different stages of the food chain (animals, food, food-related environments, and humans) were investigated with in depth molecular characterization using real-time PCR, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and whole genome sequencing (WGS). Our study reported the occurrence of S. Infantis strains harboring pESI-like plasmids, carrying blaCTX-M-1 genes, in Central Italy, at different sampling points along the food chain. Results confirmed the presence of a plasmid with a molecular size around 224-310 kb, thus consistent with the pESI-like, in 97 % of the 35 samples investigated. Two variants of S. Infantis pESI-like IncFIB(K)_1_Kpn3 were detected, one associated with the European clone carrying blaCTX-M-1 (21 isolates) and the other associated with U.S. isolates carrying blaCTX-M-65 (2 isolates, pESI-like U.S. variant). The majority was resistant to 3rd generation cephalosporins but none of the strains tested positive for the carbapenemase encoding genes. A total of 118 virulence genes were identified in isolates harboring the pESI-like plasmid. cgMLST and SNP-based analysis revealed the presence of one main cluster, composed by strains isolated from the environment, animals, food and humans. The results of this investigation underline the importance of phylogenetic studies to monitor and understand pathogen and AMR spread in a One Health approach.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jennie Fischer
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Laura Uelze
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maira Napoleoni
- Regional Reference Center for Enteric Pathogens Marche, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | | | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Clinical Pathology, Urbino Hospital, AST Pesaro-Urbino, Marche, Urbino, Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
12
|
Garoña A, Santer M, Hülter NF, Uecker H, Dagan T. Segregational drift hinders the evolution of antibiotic resistance on polyploid replicons. PLoS Genet 2023; 19:e1010829. [PMID: 37535631 PMCID: PMC10399855 DOI: 10.1371/journal.pgen.1010829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
The emergence of antibiotic resistance under treatment depends on the availability of resistance alleles and their establishment in the population. Novel resistance alleles are encoded either in chromosomal or extrachromosomal genetic elements; both types may be present in multiple copies within the cell. However, the effect of polyploidy on the emergence of antibiotic resistance remains understudied. Here we show that the establishment of resistance alleles in microbial populations depends on the ploidy level. Evolving bacterial populations under selection for antibiotic resistance, we demonstrate that resistance alleles in polyploid elements are lost frequently in comparison to alleles in monoploid elements due to segregational drift. Integrating the experiments with a mathematical model, we find a remarkable agreement between the theoretical and empirical results, confirming our understanding of the allele segregation process. Using the mathematical model, we further show that the effect of polyploidy on the establishment probability of beneficial alleles is strongest for low replicon copy numbers and plateaus for high replicon copy numbers. Our results suggest that the distribution of fitness effects for mutations that are eventually fixed in a population depends on the replicon ploidy level. Our study indicates that the emergence of antibiotic resistance in bacterial pathogens depends on the pathogen ploidy level.
Collapse
Affiliation(s)
- Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, Kiel University, Kiel, Germany
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Nils F. Hülter
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Hildegard Uecker
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
13
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
14
|
Shan X, Szabo RE, Cordero OX. Mutation-induced infections of phage-plasmids. Nat Commun 2023; 14:2049. [PMID: 37041135 PMCID: PMC10090143 DOI: 10.1038/s41467-023-37512-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Phage-plasmids are extra-chromosomal elements that act both as plasmids and as phages, whose eco-evolutionary dynamics remain poorly constrained. Here, we show that segregational drift and loss-of-function mutations play key roles in the infection dynamics of a cosmopolitan phage-plasmid, allowing it to create continuous productive infections in a population of marine Roseobacter. Recurrent loss-of-function mutations in the phage repressor that controls prophage induction leads to constitutively lytic phage-plasmids that spread rapidly throughout the population. The entire phage-plasmid genome is packaged into virions, which were horizontally transferred by re-infecting lysogenized cells, leading to an increase in phage-plasmid copy number and to heterozygosity in a phage repressor locus in re-infected cells. However, the uneven distribution of phage-plasmids after cell division (i.e., segregational drift) leads to the production of offspring carrying only the constitutively lytic phage-plasmid, thus restarting the lysis-reinfection-segregation life cycle. Mathematical models and experiments show that these dynamics lead to a continuous productive infection of the bacterial population, in which lytic and lysogenic phage-plasmids coexist. Furthermore, analyses of marine bacterial genome sequences indicate that the plasmid backbone here can carry different phages and disseminates trans-continentally. Our study highlights how the interplay between phage infection and plasmid genetics provides a unique eco-evolutionary strategy for phage-plasmids.
Collapse
Affiliation(s)
- Xiaoyu Shan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachel E Szabo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Genomics, Transcriptomics, and Metabolomics Reveal That Minimal Modifications in the Host Are Crucial for the Compensatory Evolution of ColE1-Like Plasmids. mSphere 2022; 7:e0018422. [PMID: 36416553 PMCID: PMC9769657 DOI: 10.1128/msphere.00184-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmid-mediated antimicrobial resistance is one of the major threats to public health worldwide. The mechanisms involved in the plasmid/host coadaptation are still poorly characterized, and their understanding is crucial to comprehend the genesis and evolution of multidrug-resistant bacteria. With this purpose, we designed an experimental evolution using Haemophilus influenzae RdKW20 as the model strain carrying the ColE1-like plasmid pB1000. Five H. influenzae populations adapted previously to the culture conditions were transformed with pB1000 and subsequently evolved to compensate for the plasmid-associated fitness cost. Afterward, we performed an integrative multiomic analysis combining genomics, transcriptomics, and metabolomics to explore the molecular mechanisms involved in the compensatory evolution of the plasmid. Our results demonstrate that minimal modifications in the host are responsible for plasmid adaptation. Among all of them, the most enriched process was amino acid metabolism, especially those pathways related to serine, tryptophan, and arginine, eventually related to the genesis and resolution of plasmid dimers. Additional rearrangements occurred during the plasmid adaptation, such as an overexpression of the ribonucleotide reductases and metabolic modifications within specific membrane phospholipids. All these findings demonstrate that the plasmid compensation occurs through the combination of diverse host-mediated mechanisms, of which some are beyond genomic and transcriptomic modifications. IMPORTANCE The ability of bacteria to horizontally transfer genetic material has turned antimicrobial resistance into one of the major sanitary crises of the 21st century. Plasmid conjugation is considered the main mechanism responsible for the mobilization of resistance genes, and its understanding is crucial to tackle this crisis. It is generally accepted that the acquisition and maintenance of mobile genetic elements entail a fitness cost to its host, which is susceptible to be alleviated through a coadaptation process or compensatory evolution. Notwithstanding, despite recent major efforts, the underlying mechanisms involved in this adaptation remain poorly characterized. Analyzing the plasmid/host coadaptation from a multiomic perspective sheds light on the physiological processes involved in the compensation, providing a new understanding on the genesis and evolution of plasmid-mediated antimicrobial-resistant bacteria.
Collapse
|
16
|
Hernandez‐Beltran JCR, Miró Pina V, Siri‐Jégousse A, Palau S, Peña‐Miller R, González Casanova A. Segregational instability of multicopy plasmids: A population genetics approach. Ecol Evol 2022; 12:e9469. [PMID: 36479025 PMCID: PMC9720003 DOI: 10.1002/ece3.9469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/11/2022] Open
Abstract
Plasmids are extra-chromosomal genetic elements that encode a wide variety of phenotypes and can be maintained in bacterial populations through vertical and horizontal transmission, thus increasing bacterial adaptation to hostile environmental conditions like those imposed by antimicrobial substances. To circumvent the segregational instability resulting from randomly distributing plasmids between daughter cells upon division, nontransmissible plasmids tend to be carried in multiple copies per cell, with the added benefit of exhibiting increased gene dosage and resistance levels. But carrying multiple copies also results in a high metabolic burden to the bacterial host, therefore reducing the overall fitness of the population. This trade-off poses an existential question for plasmids: What is the optimal plasmid copy number? In this manuscript, we address this question by postulating and analyzing a population genetics model to evaluate the interaction between selective pressure, the number of plasmid copies carried by each cell, and the metabolic burden associated with plasmid bearing in the absence of selection for plasmid-encoded traits. Parameter values of the model were estimated experimentally using Escherichia coli K12 carrying a multicopy plasmid encoding for a fluorescent protein and bla TEM-1, a gene conferring resistance to β-lactam antibiotics. By numerically determining the optimal plasmid copy number for constant and fluctuating selection regimes, we show that plasmid copy number is a highly optimized evolutionary trait that depends on the rate of environmental fluctuation and balances the benefit between increased stability in the absence of selection with the burden associated with carrying multiple copies of the plasmid.
Collapse
Affiliation(s)
- J. Carlos R. Hernandez‐Beltran
- Systems Biology Program, Center for Genomic SciencesUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Verónica Miró Pina
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Departamento de Probabilidad y Estadística, Instituto de Investigación en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Arno Siri‐Jégousse
- Departamento de Probabilidad y Estadística, Instituto de Investigación en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Sandra Palau
- Departamento de Probabilidad y Estadística, Instituto de Investigación en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Rafael Peña‐Miller
- Systems Biology Program, Center for Genomic SciencesUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | | |
Collapse
|
17
|
Santer M, Kupczok A, Dagan T, Uecker H. Fixation dynamics of beneficial alleles in prokaryotic polyploid chromosomes and plasmids. Genetics 2022; 222:6663764. [PMID: 35959975 PMCID: PMC9526072 DOI: 10.1093/genetics/iyac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Theoretical population genetics has been mostly developed for sexually reproducing diploid and for monoploid (haploid) organisms, focusing on eukaryotes. The evolution of bacteria and archaea is often studied by models for the allele dynamics in monoploid populations. However, many prokaryotic organisms harbor multicopy replicons—chromosomes and plasmids—and theory for the allele dynamics in populations of polyploid prokaryotes remains lacking. Here, we present a population genetics model for replicons with multiple copies in the cell. Using this model, we characterize the fixation process of a dominant beneficial mutation at 2 levels: the phenotype and the genotype. Our results show that depending on the mode of replication and segregation, the fixation of the mutant phenotype may precede genotypic fixation by many generations; we term this time interval the heterozygosity window. We furthermore derive concise analytical expressions for the occurrence and length of the heterozygosity window, showing that it emerges if the copy number is high and selection strong. Within the heterozygosity window, the population is phenotypically adapted, while both alleles persist in the population. Replicon ploidy thus allows for the maintenance of genetic variation following phenotypic adaptation and consequently for reversibility in adaptation to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mario Santer
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anne Kupczok
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany.,Bioinformatics group, Department of Plant Sciences, Wageningen University & Research, 6708PB Wageningen, Netherlands
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Hildegard Uecker
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
18
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
19
|
Abstract
Plasmids are one of the most commonly used platforms for genetic engineering and recombinant gene expression in bacteria. The range of available copy numbers for cloning vectors is largely restricted to the handful of Origins of Replication (ORIs) that have been isolated from plasmids found in nature. Here, we introduce two systems that allow for the continuous, finely-tuned control of plasmid copy number between 1 and 800 copies per cell: a plasmid with an anhydrotetracycline-controlled copy number, and a parallelized assay that is used to generate a continuous spectrum of 1194 ColE1-based copy number variants. Using these systems, we investigate the effects of plasmid copy number on cellular growth rates, gene expression, biosynthesis, and genetic circuit performance. We perform single-cell timelapse measurements to characterize plasmid loss, runaway plasmid replication, and quantify the impact of plasmid copy number on the variability of gene expression. Using our assay, we find that each plasmid imposes a 0.063% linear metabolic burden on their hosts, hinting at a simple relationship between metabolic burdens and plasmid DNA synthesis. Our systems enable the precise control of gene expression, and our results highlight the importance of tuning plasmid copy number as a powerful tool for the optimization of synthetic biological systems.
Collapse
|
20
|
Chen H, Li N, Wang F, Wang L, Liang W. Carbapenem antibiotic stress increases bla KPC -2 gene relative copy number and bacterial resistance levels of Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24519. [PMID: 35718993 PMCID: PMC9280016 DOI: 10.1002/jcla.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background The clinical isolation rates of carbapenem‐resistant Klebsiella pneumoniae (CR‐KP) continue to increase. In China, clinical CR‐KP isolates are mainly attributed to the blaKPC‐2 gene carried on plasmids, and the blaKPC‐2 copy number correlates with the expression of KPC enzymes, which can cause elevated carbapenem MICs. Methods Thirty‐seven CR‐KP isolates were collected at the Second People’s Hospital of Lianyungang City between January 2020 and March 2021, with no duplicate isolates, and were screened for the blaKPC‐2 gene with PCR. Analysis of current CRKP resistance to clinically relevant antimicrobials using the bioMérieux VITEK® 2 bacterial identification card. The multilocus sequence types of the strains were confirmed with PCR and DNA sequencing. Recombinant plasmids pET20b‐blaKPC‐2 and pET20b‐CpsG were constructed, and the copy numbers of the recombinant plasmids per unit volume was calculated based on the molecular weight of the plasmids. After the genomes DNA of clinical isolates of K. pneumoniae carrying the blaKPC‐2 gene were purified, the blaKPC‐2 gene relative copy number in individual K. pneumoniae strains was indicated by the double standard curve method. Detection of MIC values changes of K. pneumoniae under imipenem selection pressure by broth microdilution method. Results Among the 37 CR‐KP strains isolated, only the blaKPC‐2 gene was detected in 30 strains, three strains were positive for the blaNDM‐1 gene, two strains carried both the blaKPC‐2 and blaNDM‐1 genes, and two strains without detectable carbapenem resistance genes. The ST11 clone was predominant among the 37 carbapenem‐resistant K. pneumoniae isolates. Drug sensitivity testing showed that except for polymyxins (100% susceptible) and tigecycline (75.7% intermediate), the 37 CR‐KP strains were resistant to almost all antimicrobial drugs. The blaKPC‐2 relative copy number in nine ST11 clinical isolates of K. pneumoniae was 7.64 ± 2.51 when grown on LB plates but 27.67 ± 13.04 when grown on LB plates containing imipenem. Among these nine isolates, five CRKP strains exhibited elevated MICs to imipenem, while the remaining four strains showed unchanged MIC values to imipenem. Conclusion Carbapenem‐resistant Klebsiella pneumoniae isolates may have multiple pathways to achieve high levels of carbapenem resistance, and moderate carbapenem pressure can increase the copy number of KPC enzyme genes in CRKP strains and enhance the degree of carbapenem resistance in the strains.
Collapse
Affiliation(s)
- Huimin Chen
- Lianyungang Second People's Hospital affiliated to Jiangsu University, Lianyungang, China
| | - Na Li
- Lianyungang Second People's Hospital Affiliated to Bengbu Medical College, Lianyungang, China
| | - Fang Wang
- Lianyungang Second People Hospital, Lianyungang, China
| | - Lei Wang
- Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wei Liang
- Lianyungang Second People's Hospital affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
21
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
22
|
Garoña A, Hülter NF, Romero Picazo D, Dagan T. Segregational drift constrains the evolutionary rate of prokaryotic plasmids. Mol Biol Evol 2021; 38:5610-5624. [PMID: 34550379 PMCID: PMC8662611 DOI: 10.1093/molbev/msab283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plasmids are extrachromosomal genetic elements in prokaryotes that have been recognized as important drivers of microbial ecology and evolution. Plasmids are found in multiple copies inside their host cell where independent emergence of mutations may lead to intracellular genetic heterogeneity. The intracellular plasmid diversity is thus subject to changes upon cell division. However, the effect of plasmid segregation on plasmid evolution remains understudied. Here, we show that genetic drift during cell division—segregational drift—leads to the rapid extinction of novel plasmid alleles. We established a novel experimental approach to control plasmid allele frequency at the levels of a single cell and the whole population. Following the dynamics of plasmid alleles in an evolution experiment, we find that the mode of plasmid inheritance—random or clustered—is an important determinant of plasmid allele dynamics. Phylogenetic reconstruction of our model plasmid in clinical isolates furthermore reveals a slow evolutionary rate of plasmid-encoded genes in comparison to chromosomal genes. Our study provides empirical evidence that genetic drift in plasmid evolution occurs at multiple levels: the host cell and the population of hosts. Segregational drift has implications for the evolutionary rate heterogeneity of extrachromosomal genetic elements.
Collapse
Affiliation(s)
- Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| | - Nils F Hülter
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| |
Collapse
|
23
|
Dimitriu T, Matthews AC, Buckling A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc Natl Acad Sci U S A 2021; 118:e2107818118. [PMID: 34326267 PMCID: PMC8346908 DOI: 10.1073/pnas.2107818118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conjugative plasmids are mobile elements that spread horizontally between bacterial hosts and often confer adaptive phenotypes, including antimicrobial resistance (AMR). Theory suggests that opportunities for horizontal transmission favor plasmids with higher transfer rates, whereas selection for plasmid carriage favors less-mobile plasmids. However, little is known about the mechanisms leading to variation in transmission rates in natural plasmids or the resultant effects on their bacterial host. We investigated the evolution of AMR plasmids confronted with different immigration rates of susceptible hosts. Plasmid RP4 did not evolve in response to the manipulations, but plasmid R1 rapidly evolved up to 1,000-fold increased transfer rates in the presence of susceptible hosts. Most evolved plasmids also conferred on their hosts the ability to grow at high concentrations of antibiotics. This was because plasmids evolved greater copy numbers as a function of mutations in the copA gene controlling plasmid replication, causing both higher transfer rates and AMR. Reciprocally, plasmids with increased conjugation rates also evolved when selecting for high levels of AMR, despite the absence of susceptible hosts. Such correlated selection between plasmid transfer and AMR could increase the spread of AMR within populations and communities.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Department of Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Andrew C Matthews
- Department of Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
24
|
Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front Microbiol 2021; 12:606409. [PMID: 33967971 PMCID: PMC8098119 DOI: 10.3389/fmicb.2021.606409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
Collapse
Affiliation(s)
- Aaron Law
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Olubunmi Solano
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Samuel S. Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
- UC-Davis Genome Center, Davis, CA, United States
| | - Matt Fagnan
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
25
|
Garoña A, Dagan T. Darwinian individuality of extrachromosomal genetic elements calls for population genetics tinkering. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:22-26. [PMID: 33034073 DOI: 10.1111/1758-2229.12894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Plasmids are extrachromosomal genetic elements commonly found in prokaryotic (and sometime eukaryotic) cells. Small plasmids are often considered cryptic and their effect on the host is elusive, while large plasmids may encode functions that are essential for the host lifestyle and attain a secondary chromosome status. Plasmids are thus an important source of raw material for microbial genome evolution outside the mainstream of bacterial chromosomes. The discovery of plasmid-mediated antibiotic resistance led to extensive research on the contribution of plasmids to the environmental dimensions of antibiotic resistance and the evolution of plasmid-host interactions following the acquisition of plasmids encoding for antibiotic resistance. Recent experimental studies revealed the importance of intracellular plasmid diversity for plasmid-host interactions. Here we describe the evolutionary forces at play during plasmid evolution in a top-down approach: this includes the effect of processes at the level of the host population and the consideration of plasmids as Darwinian individuals within the host cell.
Collapse
Affiliation(s)
- Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
26
|
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347-359. [PMID: 33469168 DOI: 10.1038/s41579-020-00497-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.
Collapse
|
27
|
Chen BR, You CX, Shu CC. The common misuse of noise decomposition as applied to genetic systems. Biosystems 2020; 198:104269. [PMID: 33038463 DOI: 10.1016/j.biosystems.2020.104269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
The noise-decomposition technique is applied in several fields, including genetic systems, optical images, recording, and navigation. In genetic systems, noise decomposition is usually achieved by using two reporters [Elowitz M.B., Levine A.J., Siggia E.D., Swain P·S., 2002. Stochastic gene expression in a single cell. Science 297, 1183-6.]. A reporter is a protein with fluorescence, an RNA hybridized with a fluorescent probe, or any other detectable intracellular component. If a reporter is constructed in addition to the original reporter, the system's stochasticity may change. Such phenomena became severe for genes in plasmids with a high copy number. By SSA (stochastic simulation algorithm), we observed an approximately 50% increment in the coefficient of variation while introducing additional reporters. Besides, if two reporters respond to the upstream element at a different time, the trunk noise (or extrinsic noise) cannot be accurately determined. This is because the "calculative trunk noise" changes along with the delay, though the real trunk noise does not. For RNA reporters, a 5-min transcriptional delay caused a calculative trunk noise that was 90% less than the real trunk noise. Fortunately, this problem is negligible when the degradation rate constant is low, and it is usually true in the case of the protein reporters. One can check the lifespan of the reporter before applying the noise-decomposition technique.
Collapse
Affiliation(s)
- Bo-Ren Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan
| | - Chao-Xuan You
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan
| | - Che-Chi Shu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan.
| |
Collapse
|
28
|
Abstract
Plasmids are genetic elements that colonize and replicate in prokaryotic cells (Box 1). They are considered a major driving force of prokaryote evolution, as they can migrate between populations, making them potent agents of lateral DNA transfer and microbial warfare. The importance of plasmids goes beyond microbial evolution, as they are widely used as vectors for genetic engineering in basic research (e.g., random mutagenesis) as well as applications in biotechnology (e.g., insulin production), synthetic biology, agriculture (e.g., genetic engineering of crops) and medicine (e.g., biopharmaceuticals).
Collapse
Affiliation(s)
- Tanita Wein
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany.
| | - Tal Dagan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
29
|
Wein T, Wang Y, Hülter NF, Hammerschmidt K, Dagan T. Antibiotics Interfere with the Evolution of Plasmid Stability. Curr Biol 2020; 30:3841-3847.e4. [DOI: 10.1016/j.cub.2020.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
|
30
|
Hülter NF, Wein T, Effe J, Garoña A, Dagan T. Intracellular Competitions Reveal Determinants of Plasmid Evolutionary Success. Front Microbiol 2020; 11:2062. [PMID: 33013753 PMCID: PMC7500096 DOI: 10.3389/fmicb.2020.02062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Plasmids are autonomously replicating genetic elements that are ubiquitous in all taxa and habitats where they constitute an integral part of microbial genomes. The stable inheritance of plasmids depends on their segregation during cell division and their long-term persistence in a host population is thought to largely depend on their impact on the host fitness. Nonetheless, many plasmids found in nature are lacking a clear trait that is advantageous to their host; the determinants of plasmid evolutionary success in the absence of plasmid benefit to the host remain understudied. Here we show that stable plasmid inheritance is an important determinant of plasmid evolutionary success. Borrowing terminology from evolutionary biology of cellular living forms, we hypothesize that Darwinian fitness is key for the plasmid evolutionary success. Performing intracellular plasmid competitions between non-mobile plasmids enables us to compare the evolutionary success of plasmid genotypes within the host, i.e., the plasmid fitness. Intracellular head-to-head competitions between stable and unstable variants of the same model plasmid revealed that the stable plasmid variant has a higher fitness in comparison to the unstable plasmid. Preemptive plasmid competitions reveal that plasmid fitness may depend on the order of plasmid arrival in the host. Competitions between plasmids characterized by similar stability of inheritance reveal plasmid fitness differences depending on the plasmid-encoded trait. Our results further reveal that competing plasmids can be maintained in coexistence following plasmid fusions that maintain unstable plasmid variants over time. Plasmids are not only useful accessory genetic elements to their host but they are also evolving and replicating entities, similarly to cellular living forms. There is a clear link between plasmid genetics and plasmid evolutionary success – hence plasmids are evolving entities whose fitness is quantifiable.
Collapse
Affiliation(s)
- Nils F Hülter
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Johannes Effe
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
31
|
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol 2020; 29:8-18. [PMID: 32536522 DOI: 10.1016/j.tim.2020.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Mobile genetic elements (MGEs), such as plasmids and integrative and conjugative elements (ICEs), are main drivers for the spread of antibiotic resistance (AR). Coevolution between bacteria and plasmids shapes the transfer and stability of plasmids across bacteria. Although ICEs outnumber conjugative plasmids, the dynamics of ICE-bacterium coevolution, ICE transfer rates, and fitness costs are as yet largely unexplored. Conjugative plasmids and ICEs are both transferred by type IV secretion systems, but ICEs are typically immune to segregational loss, suggesting that the evolution of ICE-bacterium associations varies from that of plasmid-bacterium associations. Considering the high abundance of ICEs among bacteria, ICE-bacterium dynamics represent a promising challenge for future research that will enhance our understanding of AR spread in human pathogens.
Collapse
Affiliation(s)
- João Botelho
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
32
|
Hernandez-Beltran JCR, Rodríguez-Beltrán J, Millán AS, Peña-Miller R, Fuentes-Hernández A. Quantifying plasmid dynamics using single-cell microfluidics and image bioinformatics. Plasmid 2020; 113:102517. [PMID: 32535165 DOI: 10.1016/j.plasmid.2020.102517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/22/2023]
Abstract
Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and experimentally. In recent years, technological advances in fluorescence microscopy and microfluidics have allowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup, and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy plasmid dynamics, we will use an experimental model system consisting on Escherichia coli K12 carrying non-conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and β-lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid segregation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that emerge in response to a range of selective pressures.
Collapse
Affiliation(s)
- J C R Hernandez-Beltran
- Laboratorio de Biología Sintética y de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - J Rodríguez-Beltrán
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
| | - A San Millán
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
| | - R Peña-Miller
- Laboratorio de Biología Sintética y de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| | - A Fuentes-Hernández
- Laboratorio de Biología Sintética y de Sistemas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| |
Collapse
|
33
|
Evolutionary Rescue and Drug Resistance on Multicopy Plasmids. Genetics 2020; 215:847-868. [PMID: 32461266 DOI: 10.1534/genetics.119.303012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria often carry "extra DNA" in the form of plasmids in addition to their chromosome. Many plasmids have a copy number greater than one such that the genes encoded on these plasmids are present in multiple copies per cell. This has evolutionary consequences by increasing the mutational target size, by prompting the (transitory) co-occurrence of mutant and wild-type alleles within the same cell, and by allowing for gene dosage effects. We develop and analyze a mathematical model for bacterial adaptation to harsh environmental change if adaptation is driven by beneficial alleles on multicopy plasmids. Successful adaptation depends on the availability of advantageous alleles and on their establishment probability. The establishment process involves the segregation of mutant and wild-type plasmids to the two daughter cells, allowing for the emergence of mutant homozygous cells over the course of several generations. To model this process, we use the theory of multitype branching processes, where a type is defined by the genetic composition of the cell. Both factors-the availability of advantageous alleles and their establishment probability-depend on the plasmid copy number, and they often do so antagonistically. We find that in the interplay of various effects, a lower or higher copy number may maximize the probability of evolutionary rescue. The decisive factor is the dominance relationship between mutant and wild-type plasmids and potential gene dosage effects. Results from a simple model of antibiotic degradation indicate that the optimal plasmid copy number may depend on the specific environment encountered by the population.
Collapse
|
34
|
Mei H, Arbeithuber B, Cremona MA, DeGiorgio M, Nekrutenko A. A High-Resolution View of Adaptive Event Dynamics in a Plasmid. Genome Biol Evol 2020; 11:3022-3034. [PMID: 31539047 PMCID: PMC6827461 DOI: 10.1093/gbe/evz197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 11/30/2022] Open
Abstract
Coadaptation between bacterial hosts and plasmids frequently results in adaptive changes restricted exclusively to host genome leaving plasmids unchanged. To better understand this remarkable stability, we transformed naïve Escherichia coli cells with a plasmid carrying an antibiotic-resistance gene and forced them to adapt in a turbidostat environment. We then drew population samples at regular intervals and subjected them to duplex sequencing—a technique specifically designed for identification of low-frequency mutations. Variants at ten sites implicated in plasmid copy number control emerged almost immediately, tracked consistently across the experiment’s time points, and faded below detectable frequencies toward the end. This variation crash coincided with the emergence of mutations on the host chromosome. Mathematical modeling of trajectories for adaptive changes affecting plasmid copy number showed that such mutations cannot readily fix or even reach appreciable frequencies. We conclude that there is a strong selection against alterations of copy number even if it can provide a degree of growth advantage. This incentive is likely rooted in the complex interplay between mutated and wild-type plasmids constrained within a single cell and underscores the importance of understanding of intracellular plasmid variability.
Collapse
Affiliation(s)
- Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University
| | | | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University.,Department of Operations and Decision Systems, Université Laval
| | - Michael DeGiorgio
- Department of Biology, The Pennsylvania State University.,Department of Statistics, The Pennsylvania State University.,Institute for CyberScience, The Pennsylvania State University
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University
| |
Collapse
|
35
|
Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat Commun 2019; 10:5809. [PMID: 31863068 PMCID: PMC6925257 DOI: 10.1038/s41467-019-13709-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve 'satellite plasmids' with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature.
Collapse
|
36
|
Morgenthaler AB, Kinney WR, Ebmeier CC, Walsh CM, Snyder DJ, Cooper VS, Old WM, Copley SD. Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome. eLife 2019; 8:53535. [PMID: 31815667 PMCID: PMC6941894 DOI: 10.7554/elife.53535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
New enzymes often evolve by gene amplification and divergence. Previous experimental studies have followed the evolutionary trajectory of an amplified gene, but have not considered mutations elsewhere in the genome when fitness is limited by an evolving gene. We have evolved a strain of Escherichia coli in which a secondary promiscuous activity has been recruited to serve an essential function. The gene encoding the ‘weak-link’ enzyme amplified in all eight populations, but mutations improving the newly needed activity occurred in only one. Most adaptive mutations occurred elsewhere in the genome. Some mutations increase expression of the enzyme upstream of the weak-link enzyme, pushing material through the dysfunctional metabolic pathway. Others enhance production of a co-substrate for a downstream enzyme, thereby pulling material through the pathway. Most of these latter mutations are detrimental in wild-type E. coli, and thus would require reversion or compensation once a sufficient new activity has evolved.
Collapse
Affiliation(s)
- Andrew B Morgenthaler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| | - Wallis R Kinney
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| | - Christopher C Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Corinne M Walsh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, United States
| | - Daniel J Snyder
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Vaughn S Cooper
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
| | - William M Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Shelley D Copley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
37
|
Implications of Mobile Genetic Elements for Salmonella enterica Single-Nucleotide Polymorphism Subtyping and Source Tracking Investigations. Appl Environ Microbiol 2019; 85:AEM.01985-19. [PMID: 31585993 DOI: 10.1128/aem.01985-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are widely used for whole-genome sequencing (WGS)-based subtyping of foodborne pathogens in outbreak and source tracking investigations. Mobile genetic elements (MGEs) are commonly present in bacterial genomes and may affect SNP subtyping results if their evolutionary history and dynamics differ from that of the bacterial chromosomes. Using Salmonella enterica as a model organism, we surveyed major categories of MGEs, including plasmids, phages, insertion sequences, integrons, and integrative and conjugative elements (ICEs), in 990 genomes representing 21 major serotypes of S. enterica We evaluated whether plasmids and chromosomal MGEs affect SNP subtyping with 9 outbreak clusters of different serotypes found in the United States in 2018. The median total length of chromosomal MGEs accounted for 2.5% of a typical S. enterica chromosome. Of the 990 analyzed S. enterica isolates, 68.9% contained at least one assembled plasmid sequence. The median total length of assembled plasmids in these isolates was 93,671 bp. Plasmids that carry high densities of SNPs were found to substantially affect both SNP phylogenies and SNP distances among closely related isolates if they were present in the reference genome for SNP subtyping. In comparison, chromosomal MGEs were found to have limited impact on SNP subtyping. We recommend the identification of plasmid sequences in the reference genome and the exclusion of plasmid-borne SNPs from SNP subtyping analysis.IMPORTANCE Despite increasingly routine use of WGS and SNP subtyping in outbreak and source tracking investigations, whether and how MGEs affect SNP subtyping has not been thoroughly investigated. Besides chromosomal MGEs, plasmids are frequently entangled in draft genome assemblies and yet to be assessed for their impact on SNP subtyping. This study provides evidence-based guidance on the treatment of MGEs in SNP analysis for Salmonella to infer phylogenetic relationship and SNP distance between isolates.
Collapse
|
38
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
39
|
Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun 2019; 10:2595. [PMID: 31197163 PMCID: PMC6565834 DOI: 10.1038/s41467-019-10600-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/21/2019] [Indexed: 01/21/2023] Open
Abstract
Plasmid acquisition is an important mechanism of rapid adaptation and niche expansion in prokaryotes. Positive selection for plasmid-coded functions is a major driver of plasmid evolution, while plasmids that do not confer a selective advantage are considered costly and expected to go extinct. Yet, plasmids are ubiquitous in nature, and their persistence remains an evolutionary paradox. Here, we demonstrate that non-mobile plasmids persist over evolutionary timescales without selection for the plasmid function. Evolving a minimal plasmid encoding for antibiotics resistance in Escherichia coli, we discover that plasmid stability emerges in the absence of antibiotics and that plasmid loss is determined by transcription-replication conflicts. We further find that environmental conditions modulate these conflicts and plasmid persistence. Silencing the transcription of the resistance gene results in stable plasmids that become fixed in the population. Evolution of plasmid stability under non-selective conditions provides an evolutionary explanation for the ubiquity of plasmids in nature. It is expected that plasmids are costly and therefore that selection is required to maintain them within bacterial populations. Here, Wein et al. show that plasmid stability can emerge even in the absence of positive selection and that loss may be determined by transcription-replication conflict.
Collapse
|