1
|
McGowan J, Richards TA, Hall N, Swarbreck D. Multiple independent genetic code reassignments of the UAG stop codon in phyllopharyngean ciliates. PLoS Genet 2024; 20:e1011512. [PMID: 39689125 DOI: 10.1371/journal.pgen.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/31/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
The translation of nucleotide sequences into amino acid sequences, governed by the genetic code, is one of the most conserved features of molecular biology. The standard genetic code, which uses 61 sense codons to encode one of the 20 standard amino acids and 3 stop codons (UAA, UAG, and UGA) to terminate translation, is used by most extant organisms. The protistan phylum Ciliophora (the 'ciliates') are the most prominent exception to this norm, exhibiting the grfeatest diversity of nuclear genetic code variants and evidence of repeated changes in the code. In this study, we report the discovery of multiple independent genetic code changes within the Phyllopharyngea class of ciliates. By mining publicly available ciliate genome datasets, we discovered that three ciliate species from the TARA Oceans eukaryotic metagenome dataset use the UAG codon to putatively encode leucine. We identified novel suppressor tRNA genes in two of these genomes which are predicted to decode the reassigned UAG codon to leucine. Phylogenomics analysis revealed that these three uncultivated taxa form a monophyletic lineage within the Phyllopharyngea class. Expanding our analysis by reassembling published phyllopharyngean genome datasets led to the discovery that the UAG codon had also been reassigned to putatively code for glutamine in Hartmannula sinica and Trochilia petrani. Phylogenomics analysis suggests that this occurred via two independent genetic code change events. These data demonstrate that the reassigned UAG codons have widespread usage as sense codons within the phyllopharyngean ciliates. Furthermore, we show that the function of UAA is firmly fixed as the preferred stop codon. These findings shed light on the evolvability of the genetic code in understudied microbial eukaryotes.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Hulatt CJ, Suzuki H, Détain A, Wijffels RH, Leya T, Posewitz MC. The genome of the Arctic snow alga Limnomonas spitsbergensis (Chlamydomonadales). G3 (BETHESDA, MD.) 2024; 14:jkae086. [PMID: 38662665 PMCID: PMC11228838 DOI: 10.1093/g3journal/jkae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024]
Abstract
Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight. Here, we assembled and annotated the genome of Limnomonas spitsbergensis, a cryophilic biciliate green alga originally isolated from melting snow on Svalbard, in the Arctic. The L. spitsbergensis genome assembly is based primarily on the use of PacBio long reads and secondly Illumina short reads, with an assembly size of 260.248 Mb in 124 contigs. A combination of 3 alternative annotation strategies was used including protein homology, RNA-seq evidence, and PacBio full-length transcript isoforms. The best merged set of annotations identified 18,277 protein-coding genes, which were 95.2% complete based on Benchmarking Universal Single-Copy Orthologs analysis. We also provide the annotated mitogenome, which is a relatively large 77.942 kb circular mapping sequence containing extensive repeats. The L. spitsbergensis genome will provide a new resource for research on snow algae adaptation, behavior, and natural selection in unique, low-temperature terrestrial environments that are under threat from climate change.
Collapse
Affiliation(s)
- Chris J Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Hirono Suzuki
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
| | - Alexandre Détain
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
| | - René H Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station, 8020 Bodø, Norway
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research and Biobank CCCryo, 14476 Potsdam-Golm, Germany
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
3
|
Li X, Li M, Li W, Zhou J, Han Q, Lu W, Luo Q, Zhu S, Xiong A, Tan G, Zheng Y. Comparative Analysis of the Complete Mitochondrial Genomes of Apium graveolens and Apium leptophyllum Provide Insights into Evolution and Phylogeny Relationships. Int J Mol Sci 2023; 24:14615. [PMID: 37834070 PMCID: PMC10572446 DOI: 10.3390/ijms241914615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Weilong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Qiuju Han
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| | - Qin Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Shunhua Zhu
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing 611130, China;
| | - Guofei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Q.L.); (S.Z.)
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (M.L.); (W.L.); (J.Z.); (Q.H.); (W.L.)
| |
Collapse
|
4
|
Structure and Phylogeny of Chloroplast and Mitochondrial Genomes of a Chlorophycean Algae Pectinodesmus pectinatus (Scenedesmaceae, Sphaeropleales). LIFE (BASEL, SWITZERLAND) 2022; 12:life12111912. [PMID: 36431047 PMCID: PMC9698225 DOI: 10.3390/life12111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Pectinodesmus pectinatus is a green alga of commercial interest in sewage purification. Clarification of its organelle genomes is helpful for genetic manipulation, taxonomic revisions and evolutionary research. Here, de novo sequencing was used to determine chloroplast genome and mitochondrial genome of P. pectinatus strain F34. The chloroplast genome was composed of a large single-copy (LSC) region of 99,156 bp, a small single-copy (SSC) region of 70,665 bp, and a pair of inverted repeats (IRs) with a length of 13,494 bp each separated by LSC and SSC. The chloroplast genome contained 69 protein-coding genes, 25 transfer-RNA (tRNA) genes, 3 ribosomal RNA (rRNA) genes. The mitochondrial genome was 32,195 bp in length and consisted of 46 unique genes, including 16 protein-coding genes, 27 tRNA genes and 3 rRNA genes. The predominant mutations in organelle genomes were T/A to G/C transitions. Phylogenic analysis indicated P. pectinatus was a sister species to Tetradesmus obliquus and Hariotina sp. within the Pectinodesmus genus. In analysis with CGView Comparison Tool, P. pectinatus organelle genomes displayed the highest sequence similarity with that of T. obliquus. These findings advanced research on the taxonomy and phylogeny of Chlorophyceae algae and particularly revealed the role of P. pectinatus in microalgae evolution.
Collapse
|
5
|
Abstract
Codon usage bias is the preferential or non-random use of synonymous codons, a ubiquitous phenomenon observed in bacteria, plants and animals. Different species have consistent and characteristic codon biases. Codon bias varies not only with species, family or group within kingdom, but also between the genes within an organism. Codon usage bias has evolved through mutation, natural selection, and genetic drift in various organisms. Genome composition, GC content, expression level and length of genes, position and context of codons in the genes, recombination rates, mRNA folding, and tRNA abundance and interactions are some factors influencing codon bias. The factors shaping codon bias may also be involved in evolution of the universal genetic code. Codon-usage bias is critical factor determining gene expression and cellular function by influencing diverse processes such as RNA processing, protein translation and protein folding. Codon usage bias reflects the origin, mutation patterns and evolution of the species or genes. Investigations of codon bias patterns in genomes can reveal phylogenetic relationships between organisms, horizontal gene transfers, molecular evolution of genes and identify selective forces that drive their evolution. Most important application of codon bias analysis is in the design of transgenes, to increase gene expression levels through codon optimization, for development of transgenic crops. The review gives an overview of deviations of genetic code, factors influencing codon usage or bias, codon usage bias of nuclear and organellar genes, computational methods to determine codon usage and the significance as well as applications of codon usage analysis in biological research, with emphasis on plants.
Collapse
Affiliation(s)
| | - Varatharajalu Udayasuriyan
- Department of Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Vijaipal Bhadana
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| |
Collapse
|
6
|
Shulgina Y, Eddy SR. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 2021; 10:71402. [PMID: 34751130 PMCID: PMC8629427 DOI: 10.7554/elife.71402] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic code has been proposed to be a ‘frozen accident,’ but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force that likely helped drive these codons to low frequency and enable their reassignment. All life forms rely on a ‘code’ to translate their genetic information into proteins. This code relies on limited permutations of three nucleotides – the building blocks that form DNA and other types of genetic information. Each ‘triplet’ of nucleotides – or codon – encodes a specific amino acid, the basic component of proteins. Reading the sequence of codons in the right order will let the cell know which amino acid to assemble next on a growing protein. For instance, the codon CGG – formed of the nucleotides guanine (G) and cytosine (C) – codes for the amino acid arginine. From bacteria to humans, most life forms rely on the same genetic code. Yet certain organisms have evolved to use slightly different codes, where one or several codons have an altered meaning. To better understand how alternative genetic codes have evolved, Shulgina and Eddy set out to find more organisms featuring these altered codons, creating a new software called Codetta that can analyze the genome of a microorganism and predict the genetic code it uses. Codetta was then used to sift through the genetic information of 250,000 microorganisms. This was made possible by the sequencing, in recent years, of the genomes of hundreds of thousands of bacteria and other microorganisms – including many never studied before. These analyses revealed five groups of bacteria with alternative genetic codes, all of which had changes in the codons that code for arginine. Amongst these, four had genomes with a low proportion of guanine and cytosine nucleotides. This may have made some guanine and cytosine-rich arginine codons very rare in these organisms and, therefore, easier to be reassigned to encode another amino acid. The work by Shulgina and Eddy demonstrates that Codetta is a new, useful tool that scientists can use to understand how genetic codes evolve. In addition, it can also help to ensure the accuracy of widely used protein databases, which assume which genetic code organisms use to predict protein sequences from their genomes.
Collapse
Affiliation(s)
| | - Sean R Eddy
- Molecular & Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
7
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
8
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
9
|
Krahn N, Fischer JT, Söll D. Naturally Occurring tRNAs With Non-canonical Structures. Front Microbiol 2020; 11:596914. [PMID: 33193279 PMCID: PMC7609411 DOI: 10.3389/fmicb.2020.596914] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Transfer RNA (tRNA) is the central molecule in genetically encoded protein synthesis. Most tRNA species were found to be very similar in structure: the well-known cloverleaf secondary structure and L-shaped tertiary structure. Furthermore, the length of the acceptor arm, T-arm, and anticodon arm were found to be closely conserved. Later research discovered naturally occurring, active tRNAs that did not fit the established 'canonical' tRNA structure. This review discusses the non-canonical structures of some well-characterized natural tRNA species and describes how these structures relate to their role in translation. Additionally, we highlight some newly discovered tRNAs in which the structure-function relationship is not yet fully understood.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Jonathan T Fischer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Žihala D, Salamonová J, Eliáš M. Evolution of the genetic code in the mitochondria of Labyrinthulea (Stramenopiles). Mol Phylogenet Evol 2020; 152:106908. [PMID: 32702525 DOI: 10.1016/j.ympev.2020.106908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Mitochondrial translation often exhibits departures from the standard genetic code, but the full spectrum of these changes has certainly not yet been described and the molecular mechanisms behind the changes in codon meaning are rarely studied. Here we report a detailed analysis of the mitochondrial genetic code in the stramenopile group Labyrinthulea (Labyrinthulomycetes) and their relatives. In the genus Aplanochytrium, UAG is not a termination codon but encodes tyrosine, in contrast to the unaffected meaning of the UAA codon. This change is evolutionarily independent of the reassignment of both UAG and UAA as tyrosine codons recently reported from two uncultivated labyrinthuleans (S2 and S4), which we show are not thraustochytrids as proposed before, but represent the clade LAB14 previously recognised in environmental 18S rRNA gene surveys. We provide rigorous evidence that the UUA codon in the mitochondria of all labyrinthuleans serves as a termination codon instead of encoding leucine, and propose that a sense-to-stop reassignment has also affected the AGG and AGA codons in the LAB14 clade. The distribution of the different forms of sense-to-stop and stop-to-sense reassignments correlates with specific modifications of the mitochondrial release factor mtRF2a in different subsets of labyrinthuleans, and with the unprecedented loss of mtRF1a in Aplanochytrium and perhaps also in the LAB14 clade, pointing towards a possible mechanistic basis of the code changes observed. Curiously, we show that labyrinthulean mitochondria also exhibit a sense-to-sense codon reassignment, manifested as AUA encoding methionine instead of isoleucine. Furthermore, we show that this change evolved independently in the uncultivated stramenopile lineage MAST8b, together with the reassignment of the AGR codons from arginine to serine. Altogether, our study has uncovered novel variants of the mitochondrial genetic code and previously unknown modifications of the mitochondrial translation machinery, further enriching our understanding of the rules governing the evolution of one of the central molecular process in the cell.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Jana Salamonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
11
|
Turmel M, Otis C, Vincent AT, Lemieux C. The complete mitogenomes of the green algae Jenufa minuta and Jenufa perforata (Chlorophyceae, incertae sedis) reveal a variant genetic code previously unrecognized in the Chlorophyceae. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1742229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Antony T. Vincent
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| |
Collapse
|
12
|
Turmel M, Vincent AT, Otis C, Lemieux C. The complete plastome of the coccoid green alga Jenufa minuta (Chlorophyceae, incertae sedis) unveils a noncanonical genetic code and a previously unrecognized trans-spliced group II intron in the rpl32 gene. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1749165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Antony T. Vincent
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Canada
| |
Collapse
|
13
|
Žihala D, Eliáš M. Evolution and Unprecedented Variants of the Mitochondrial Genetic Code in a Lineage of Green Algae. Genome Biol Evol 2020; 11:2992-3007. [PMID: 31617565 PMCID: PMC6821328 DOI: 10.1093/gbe/evz210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria of diverse eukaryotes have evolved various departures from the standard genetic code, but the breadth of possible modifications and their phylogenetic distribution are known only incompletely. Furthermore, it is possible that some codon reassignments in previously sequenced mitogenomes have been missed, resulting in inaccurate protein sequences in databases. Here we show, considering the distribution of codons at conserved amino acid positions in mitogenome-encoded proteins, that mitochondria of the green algal order Sphaeropleales exhibit a diversity of codon reassignments, including previously missed ones and some that are unprecedented in any translation system examined so far, necessitating redefinition of existing translation tables and creating at least seven new ones. We resolve a previous controversy concerning the meaning the UAG codon in Hydrodictyaceae, which beyond any doubt encodes alanine. We further demonstrate that AGG, sometimes together with AGA, encodes alanine instead of arginine in diverse sphaeroplealeans. Further newly detected changes include Arg-to-Met reassignment of the AGG codon and Arg-to-Leu reassignment of the CGG codon in particular species. Analysis of tRNAs specified by sphaeroplealean mitogenomes provides direct support for and molecular underpinning of the proposed reassignments. Furthermore, we point to unique mutations in the mitochondrial release factor mtRF1a that correlate with changes in the use of termination codons in Sphaeropleales, including the two independent stop-to-sense UAG reassignments, the reintroduction of UGA in some Scenedesmaceae, and the sense-to-stop reassignment of UCA widespread in the group. Codon disappearance seems to be the main drive of the dynamic evolution of the mitochondrial genetic code in Sphaeropleales.
Collapse
Affiliation(s)
- David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
14
|
Warren JM, Sloan DB. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 2020; 52:144-156. [PMID: 32184120 DOI: 10.1016/j.mito.2020.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
Transfer RNAs (tRNAs) remain one of the very few classes of genes still encoded in the mitochondrial genome. These key components of the protein translation system must interact with a large enzymatic network of nuclear-encoded gene products to maintain mitochondrial function. Plants have an evolutionarily dynamic mitochondrial tRNA population, including ongoing tRNA gene loss and replacement by both horizontal gene transfer from diverse sources and import of nuclear-expressed tRNAs from the cytosol. Thus, plant mitochondria represent an excellent model for understanding how anciently divergent genes can act as "interchangeable parts" during the evolution of complex molecular systems. In particular, understanding the integration of the mitochondrial translation system with elements of the corresponding machinery used in cytosolic protein synthesis is a key area for eukaryotic cellular evolution. Here, we review the increasingly detailed phylogenetic data about the evolutionary history of mitochondrial tRNA gene loss, transfer, and functional replacement that has created extreme variation in mitochondrial tRNA populations across plant species. We describe emerging tRNA-seq methods with promise for refining our understanding of the expression and subcellular localization of tRNAs. Finally, we summarize current evidence and identify open questions related to coevolutionary changes in nuclear-encoded enzymes that have accompanied turnover in mitochondrial tRNA populations.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Capt C, Bouvet K, Guerra D, Robicheau BM, Stewart DT, Pante E, Breton S. Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Sci Rep 2020; 10:1087. [PMID: 31974502 PMCID: PMC6978325 DOI: 10.1038/s41598-020-57975-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
In animals, strictly maternal inheritance (SMI) of mitochondria is the rule, but one exception (doubly uniparental inheritance or DUI), marked by the transmission of sex-specific mitogenomes, has been reported in bivalves. Associated with DUI is a frequent modification of the mitochondrial cox2 gene, as well as additional sex-specific mitochondrial genes not involved in oxidative phosphorylation. With the exception of freshwater mussels (for 3 families of the order Unionida), these DUI-associated features have only been shown in few species [within Mytilidae (order Mytilida) and Veneridae (order Venerida)] because of the few complete sex-specific mitogenomes published for these orders. Here, we present the complete sex-specific mtDNAs of two recently-discovered DUI species in two families of the order Venerida, Scrobicularia plana (Semelidae) and Limecola balthica (Tellinidae). These species display the largest differences in genome size between sex-specific mitotypes in DUI species (>10 kb), as well as the highest mtDNA divergences (sometimes reaching >50%). An important in-frame insertion (>3.5 kb) in the male cox2 gene is partly responsible for the differences in genome size. The S. plana cox2 gene is the largest reported so far in the Kingdom Animalia. The mitogenomes may be carrying sex-specific genes, indicating that general mitochondrial features are shared among DUI species.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| | - Karim Bouvet
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Davide Guerra
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | | | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Turmel M, Bélanger AS, Otis C, Lemieux C. Complete mitogenomes of the chlorophycean green algae Bulbochaete rectangularis var. hiloensis (Oedogoniales) and Stigeoclonium helveticum (Chaetophorales) provide insight into the sequence of events that led to the acquisition of a reduced-derived pattern of evolution in the Chlamydomonadales and Sphaeropleales. Mitochondrial DNA B Resour 2020; 5:611-613. [PMID: 33366670 PMCID: PMC7748496 DOI: 10.1080/23802359.2019.1710607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitogenome evolution in the Chlorophyceae is characterized by the acquisition of a reduced-derived pattern by the Chlamydomonadales + Sphaeropleales clade. Because no mitogenomes are available for the sister clade Oedogoniales + Chaetophorales + Chaetopeltidales, it remains unclear whether the common ancestor of chlorophycean green algae harbored a reduced-derived or ancestral-type mitogenome. The 70,191 and 46,765-bp mitogenomes reported here for Bulbochaete rectangularis var. hiloensis (Oedogoniales) and Stigeoclonium helveticum (Chaetophorales), respectively, shed light on this question. Both contain the same set of 41 conserved genes, a repertoire lacking numerous protein-coding genes but featuring all 27 tRNA genes typically found in ancestral-type mitogenomes.
Collapse
Affiliation(s)
- Monique Turmel
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Anne-Sophie Bélanger
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Christian Otis
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
17
|
Turmel M, Otis C, Lemieux C. Complete mitogenome of the chlorophyte green alga Marsupiomonas sp. NIES 1824 (Pedinophyceae). Mitochondrial DNA B Resour 2020; 5:548-550. [PMID: 33366641 PMCID: PMC7748506 DOI: 10.1080/23802359.2019.1710283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 25,137-bp mitogenome of the green alga Pedinomonas minor (Pedinomonadales, Pedinophyceae), which belongs to a basal class of the core Chlorophyta, is unusual in displaying a reduced gene content as well as other derived traits. Here, we present the mitogenome of Marsupiomonas sp. NIES 1824 (Marsupiomonadales, Pedinophyceae). Despite its smaller size, this 24,252-bp genome encodes twice as many genes (39) as its P. minor homolog. Besides gradual gene erosion, our comparative analyses revealed that major changes in GC content and codon usage led to the gain of distinct, noncanonical genetic codes during evolution of the mitogenome in the Pedinophyceae.
Collapse
Affiliation(s)
- Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
18
|
McGrath C. Highlight: Recracking the Genetic Code. Genome Biol Evol 2019; 11:2990-2991. [PMID: 31665771 PMCID: PMC6821307 DOI: 10.1093/gbe/evz211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
|