1
|
Sandamal S, Tennakoon A, Wijerathna P, Zhang HX, Yu WH, Qiang CG, Han JD, Zhang FM, Ratnasekera D, Ge S. Phenological and morphological variations of Oryza rufipogon and O. nivara in Sri Lanka and their evolutionary implications. Sci Rep 2024; 14:31126. [PMID: 39730894 DOI: 10.1038/s41598-024-82383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O. nivara populations in Sri Lanka by incorporating the in situ observation in natural habitats and manipulative experiments in the common gardens. First, we observed varying degrees of phenological variation under different temporal and spatial conditions, suggesting that flowering phenology of two Oryza species varied depending on both environments and management practices. Particularly, the Sri Lankan O. nivara exhibits high plasticity in flowering phenology, implying that O. nivara might not be an annual in the strict sense. Second, the observation that flowering time of the two species overlapped suggests that the primary factor to maintain the species divergence in Sri Lanka may not be flowering time but rather environments. Third, our selection analysis suggests that interspecific divergence in the traits related to reproduction and habitat preference is adaptive and most likely driven by natural selection. Together, our case study on the Sri Lankan O. rufipogon and O. nivara enhances the understanding of the roles of phenotypic plasticity and environmental factors in the processes of adaptation and speciation.
Collapse
Affiliation(s)
- Salinda Sandamal
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Asanka Tennakoon
- Department of Agricultural Biology Faculty of Agriculture, Eastern University, 30350, Chenkaladi, Sri Lanka
| | - Parakkrama Wijerathna
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka
- Sea Institute of Oceanology, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Hong-Xiang Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Hao Yu
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cheng-Gen Qiang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing-Dan Han
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Fu-Min Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Disna Ratnasekera
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka.
| | - Song Ge
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
3
|
Grant ML, Bond AL, Reichman SM, Lavers JL. Seabird transported contaminants are dispersed in island ecosystems. CHEMOSPHERE 2024; 361:142483. [PMID: 38825246 DOI: 10.1016/j.chemosphere.2024.142483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Seabirds are long-range transporters of nutrients and contaminants, linking marine feeding areas with terrestrial breeding and roosting sites. By depositing nutrient-rich guano, which acts as a fertiliser, seabirds can substantially influence the terrestrial environment in which they reside. However, increasing pollution of the marine environment has resulted in guano becoming similarly polluted. Here, we determined metal and metalloid concentrations (As, Cd, Cr, Cu, Hg, Pb) in Flesh-footed Shearwater (Ardenna carneipes) guano, soil, terrestrial flora, and primary consumers and used an ecological approach to assess whether the trace elements in guano were bioaccumulating and contaminating the surrounding environment. Concentrations in guano were higher than those of other Procellariiformes documented in the literature, which may be influenced by the high amounts of plastics that this species of shearwater ingests. Soil samples from shearwater colonies had significantly higher concentrations of all metals, except for Pb, than soils from control sites and formerly occupied areas. Concentrations in terrestrial primary producers and primary consumers were not as marked, and for many contaminants there was no significant difference observed across levels of ornithogenic input. We conclude that Flesh-footed Shearwaters are transporters of marine derived contaminants to the Lord Howe Island terrestrial environment.
Collapse
Affiliation(s)
- Megan L Grant
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania, 7248, Australia.
| | - Alexander L Bond
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania, 7248, Australia; Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire, HP23 6AP, United Kingdom
| | - Suzie M Reichman
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire, HP23 6AP, United Kingdom; Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
| |
Collapse
|
4
|
Bacon CD, Hill A. Hybridization in palms (Arecaceae). Ecol Evol 2024; 14:e70014. [PMID: 39011137 PMCID: PMC11246834 DOI: 10.1002/ece3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Hybridization has significant evolutionary consequences across the Tree of Life. The process of hybridization has played a major role in plant evolution and has contributed to species richness and trait variation. Since morphological traits are partially a product of their environment, there may be a link between hybridization and ecology. Plant hybrid species richness is noted to be higher in harsh environments, and we explore this hypothesis with a keystone tropical plant lineage, palms (Arecaceae). Leveraging a recent literature review of naturally occurring palm hybrids, we developed a method to calculate hybrid frequency, and then tested if there is phylogenetic signal of hybrids using a phylogeny of all palms. Further, we used phylogenetic comparative methods to examine the interaction between hybrid frequency and presence in dry environments, on islands, and the species richness of genera. Phylogenetic generalized least squares models had stronger support than models of random association, indicating phylogenetic signal for the presence of hybrids in dry and island environments. However, all p-values were >.05 and therefore the correlation was poor between hybridization and the trait frequencies examined. Presence in particular environments are not strongly correlated to hybrid frequency, but phylogenetic signal suggests a role in its distribution in different habitats. Hybridization in palms is not evenly distributed across subfamilies, tribes, subtribes yet plays an important role in palm diversity, nonetheless. Increasing our understanding hybridization in this economically and culturally important plant family is essential, particularly since rates are projected to increase with climate change, reconfiguring the dynamics and distribution of biodiversity.
Collapse
Affiliation(s)
- Christine D. Bacon
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | - Adrian Hill
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| |
Collapse
|
5
|
Yao G, Zhang YQ, Barrett C, Xue B, Bellot S, Baker WJ, Ge XJ. A plastid phylogenomic framework for the palm family (Arecaceae). BMC Biol 2023; 21:50. [PMID: 36882831 PMCID: PMC9993706 DOI: 10.1186/s12915-023-01544-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Over the past decade, phylogenomics has greatly advanced our knowledge of angiosperm evolution. However, phylogenomic studies of large angiosperm families with complete species or genus-level sampling are still lacking. The palms, Arecaceae, are a large family with ca. 181 genera and 2600 species and are important components of tropical rainforests bearing great cultural and economic significance. Taxonomy and phylogeny of the family have been extensively investigated by a series of molecular phylogenetic studies in the last two decades. Nevertheless, some phylogenetic relationships within the family are not yet well-resolved, especially at the tribal and generic levels, with consequent impacts for downstream research. RESULTS Plastomes of 182 palm species representing 111 genera were newly sequenced. Combining these with previously published plastid DNA data, we were able to sample 98% of palm genera and conduct a plastid phylogenomic investigation of the family. Maximum likelihood analyses yielded a robustly supported phylogenetic hypothesis. Phylogenetic relationships among all five palm subfamilies and 28 tribes were well-resolved, and most inter-generic phylogenetic relationships were also resolved with strong support. CONCLUSIONS The inclusion of nearly complete generic-level sampling coupled with nearly complete plastid genomes strengthened our understanding of plastid-based relationships of the palms. This comprehensive plastid genome dataset complements a growing body of nuclear genomic data. Together, these datasets form a novel phylogenomic baseline for the palms and an increasingly robust framework for future comparative biological studies of this exceptionally important plant family.
Collapse
Affiliation(s)
- Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Qu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Present Address: College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Craig Barrett
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | | | | | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Sun N, Yang L, Tian F, Zeng H, He Z, Zhao K, Wang C, Meng M, Feng C, Fang C, Lv W, Bo J, Tang Y, Gan X, Peng Z, Chen Y, He S. Sympatric or micro-allopatric speciation in a glacial lake? Genomic islands support neither. Natl Sci Rev 2022; 9:nwac291. [PMID: 36778108 PMCID: PMC9905650 DOI: 10.1093/nsr/nwac291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric speciation. One way to distinguish between these models is to examine the existence and nature of genomic islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments. Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial, and ancient lakes. Two morphologically distinct cyprinid fishes, Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE), in a small glacial lake on the Qinghai-Tibet Plateau, Lake Sunmcuo, match the biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46 individuals from these two groups. The divergence time between the GS and GE lineages was estimated to be 20-60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4% of the total length of all genomic islands. These islands harboured divergent genes related to olfactory receptors and olfaction signals that may play important roles in food selection and assortative mating in fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation. Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to many small genomic islands (as small as a few kilobases in size). Thus, the observed pattern is consistent with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of sympatric speciation are likely to be micro-parapatric speciation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenguang Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400700, China
| | | | | |
Collapse
|
7
|
Ke F, Vasseur L, Yi H, Yang L, Wei X, Wang B, Kang M. Gene flow, linked selection, and divergent sorting of ancient polymorphism shape genomic divergence landscape in a group of edaphic specialists. Mol Ecol 2021; 31:104-118. [PMID: 34664755 DOI: 10.1111/mec.16226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Interpreting the formation of genomic variation landscape, especially genomic regions with elevated differentiation (i.e. islands), is fundamental to a better understanding of the genomic consequences of adaptation and speciation. Edaphic islands provide excellent systems for understanding the interplay of gene flow and selection in driving population divergence and speciation. However, discerning the relative contribution of these factors that modify patterns of genomic variation remains difficult. We analysed 132 genomes from five recently divergent species in Primulina genus, with four species distributed in Karst limestone habitats and the fifth one growing in Danxia habitats. We demonstrated that both gene flow and linked selection have contributed to genome-wide variation landscape, where genomic regions with elevated differentiation (i.e., islands) were largely derived by divergent sorting of ancient polymorphism. Specifically, we identified several lineage-specific genomic islands that might have facilitated adaptation of P. suichuanensis to Danxia habitats. Our study is amongst the first cases disentangling evolutionary processes that shape genomic variation of plant specialists, and demonstrates the important role of ancient polymorphism in the formation of genomic islands that potentially mediate adaptation and speciation of endemic plants in special soil habitats.
Collapse
Affiliation(s)
- Fushi Ke
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Cotoras DD, Suenaga M, Mikheyev AS. Intraspecific niche partition without speciation: individual level web polymorphism within a single island spider population. Proc Biol Sci 2021; 288:20203138. [PMID: 33593195 PMCID: PMC7934906 DOI: 10.1098/rspb.2020.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Early in the process of adaptive radiation, allopatric disruption of gene flow followed by ecological specialization is key for speciation; but, do adaptive radiations occur on small islands without internal geographical barriers? Island populations sometimes harbour polymorphism in ecological specializations, but its significance remains unclear. On one hand, morphs may correspond to ‘cryptic’ species. Alternatively, they could result from population, developmental or behavioural plasticity. The spider Wendilgarda galapagensis (Araneae, Theridiosomatidae) is endemic to the small Isla del Coco and unique in spinning three different web types, each corresponding to a different microhabitat. We tested whether this variation is associated with ‘cryptic’ species or intraspecific behavioural plasticity. Despite analysing 36 803 loci across 142 individuals, we found no relationship between web type and population structure, which was only weakly geographically differentiated. The same pattern holds when looking within a sampling site or considering only Fst outliers. In line with genetic data, translocation experiments showed that web architecture is plastic within an individual. However, not all transitions between web types are equally probable, indicating the existence of individual preferences. Our data supports the idea that diversification on small islands might occur mainly at the behavioural level producing an intraspecific niche partition without speciation.
Collapse
Affiliation(s)
- Darko D Cotoras
- Entomology Department, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA.,Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495 Japan
| | - Miyuki Suenaga
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495 Japan
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495 Japan.,Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
9
|
Schneider K, White TJ, Mitchell S, Adams CE, Reeve R, Elmer KR. The pitfalls and virtues of population genetic summary statistics: Detecting selective sweeps in recent divergences. J Evol Biol 2020; 34:893-909. [DOI: 10.1111/jeb.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Tom J. White
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Sonia Mitchell
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Scottish Centre for Ecology and the Natural Environment Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Richard Reeve
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
10
|
Osborne OG, Kafle T, Brewer T, Dobreva MP, Hutton I, Savolainen V. Sympatric speciation in mountain roses ( Metrosideros) on an oceanic island. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190542. [PMID: 32654651 DOI: 10.1098/rstb.2019.0542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Shifts in flowering time have the potential to act as strong prezygotic reproductive barriers in plants. We investigate the role of flowering time divergence in two species of mountain rose (Metrosideros) endemic to Lord Howe Island, Australia, a minute and isolated island in the Tasman Sea. Metrosideros nervulosa and M. sclerocarpa are sister species and have divergent ecological niches on the island but grow sympatrically for much of their range, and likely speciated in situ on the island. We used flowering time and population genomic analyses of population structure and selection, to investigate their evolution, with a particular focus on the role of flowering time in their speciation. Population structure analyses showed the species are highly differentiated and appear to be in the very late stages of speciation. We found flowering times of the species to be significantly displaced, with M. sclerocarpa flowering 53 days later than M. nervulosa. Furthermore, the analyses of selection showed that flowering time genes are under selection between the species. Thus, prezygotic reproductive isolation is mediated by flowering time shifts in the species, and likely evolved under selection, to drive the completion of speciation within a small geographical area. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Owen G Osborne
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Tane Kafle
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Tom Brewer
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Mariya P Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW 2898, Australia
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
11
|
Meier JI, Stelkens RB, Joyce DA, Mwaiko S, Phiri N, Schliewen UK, Selz OM, Wagner CE, Katongo C, Seehausen O. The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nat Commun 2019; 10:5391. [PMID: 31796733 PMCID: PMC6890737 DOI: 10.1038/s41467-019-13278-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023] Open
Abstract
The process of adaptive radiation was classically hypothesized to require isolation of a lineage from its source (no gene flow) and from related species (no competition). Alternatively, hybridization between species may generate genetic variation that facilitates adaptive radiation. Here we study haplochromine cichlid assemblages in two African Great Lakes to test these hypotheses. Greater biotic isolation (fewer lineages) predicts fewer constraints by competition and hence more ecological opportunity in Lake Bangweulu, whereas opportunity for hybridization predicts increased genetic potential in Lake Mweru. In Lake Bangweulu, we find no evidence for hybridization but also no adaptive radiation. We show that the Bangweulu lineages also colonized Lake Mweru, where they hybridized with Congolese lineages and then underwent multiple adaptive radiations that are strikingly complementary in ecology and morphology. Our data suggest that the presence of several related lineages does not necessarily prevent adaptive radiation, although it constrains the trajectories of morphological diversification. It might instead facilitate adaptive radiation when hybridization generates genetic variation, without which radiation may start much later, progress more slowly or never occur.
Collapse
Affiliation(s)
- Joana I Meier
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- St John's College, University of Cambridge, St John's Street, Cambridge, CB2 1TP, UK
| | - Rike B Stelkens
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Division of Population Genetics, Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 106 91, Stockholm, Sweden
| | - Domino A Joyce
- Evolutionary and Ecological Genomics Group, Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Salome Mwaiko
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Numel Phiri
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Ulrich K Schliewen
- SNSB-Bavarian State Collection of Zoology, Münchhausenstrasse 21, 81247, Munich, Germany
| | - Oliver M Selz
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Catherine E Wagner
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Biodiversity Institute and Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland.
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.
| |
Collapse
|
12
|
Coathup MJ, Osborne OG, Savolainen V. How predictable is genome evolution? eLife 2019; 8:50784. [PMID: 31517601 PMCID: PMC6744270 DOI: 10.7554/elife.50784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/24/2022] Open
Abstract
Similar patterns of genomic divergence have been observed in the evolution of plant species separated by oceans.
Collapse
Affiliation(s)
- Matthew J Coathup
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| | - Owen G Osborne
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| |
Collapse
|