1
|
Yin S, Zhou Y, Zhao C, Yang J, Yuan P, Zhao Y, Qi H, Wei Y. Association of Paternal Age Alone and Combined with Maternal Age with Perinatal Outcomes: A Prospective Multicenter Cohort Study in China. J Epidemiol Glob Health 2024; 14:120-130. [PMID: 38190051 PMCID: PMC11043302 DOI: 10.1007/s44197-023-00175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Maternal and paternal age at birth is increasing globally. Maternal age may affect perinatal outcomes, but the effect of paternal age and its joint effect with maternal age are not well established. This prospective, multicenter, cohort analysis used data from the University Hospital Advanced Age Pregnant Cohort Study in China from 2016 to 2021, to investigate the separate association of paternal age and joint association of paternal and maternal age with adverse perinatal outcomes. Of 16,114 singleton deliveries, mean paternal and maternal age (± SD) was 38.0 ± 5.3 years and 36.0 ± 4.1 years. In unadjusted analyses, older paternal age was associated with increased risks of gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy, preeclampsia, placenta accreta spectrum disorders, placenta previa, cesarean delivery (CD), and postpartum hemorrhage, preterm birth (PTB), large-for-gestational-age, macrosomia, and congenital anomaly, except for small-for-gestational-age. In multivariable analyses, the associations turned to null for most outcomes, and attenuated but still significant for GDM, CD, PTB, and macrosomia. As compare to paternal age of < 30 years, the risks in older paternal age groups increased by 31-45% for GDM, 17-33% for CD, 32-36% for PTB, and 28-31% for macrosomia. The predicted probabilities of GDM, placenta previa, and CD increased rapidly with paternal age up to thresholds of 36.4-40.3 years, and then plateaued or decelerated. The risks of GDM, CD, and PTB were much greater for pregnancies with younger paternal and older maternal age, despite no statistical interaction between the associations related to paternal and maternal age. Our findings support the advocation that paternal age, besides maternal age, should be considered during preconception counseling.Trial Registration NCT03220750, Registered July 18, 2017-Retrospectively registered, https://classic.clinicaltrials.gov/ct2/show/NCT03220750 .
Collapse
Affiliation(s)
- Shaohua Yin
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecology, National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Haidian District, 49 North Garden Rd., Beijing, 100191, China
- National Clinical Research Center for Obstetrical and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yubo Zhou
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University Health Science Center, Beijing, 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Cheng Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecology, National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Haidian District, 49 North Garden Rd., Beijing, 100191, China
- National Clinical Research Center for Obstetrical and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecology, National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Haidian District, 49 North Garden Rd., Beijing, 100191, China
- National Clinical Research Center for Obstetrical and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Pengbo Yuan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecology, National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Haidian District, 49 North Garden Rd., Beijing, 100191, China
- National Clinical Research Center for Obstetrical and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecology, National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Haidian District, 49 North Garden Rd., Beijing, 100191, China
- National Clinical Research Center for Obstetrical and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Hongbo Qi
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Yubei District, Chongqing, 400021, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecology, National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Haidian District, 49 North Garden Rd., Beijing, 100191, China.
- National Clinical Research Center for Obstetrical and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Bhadsavle SS, Golding MC. Paternal epigenetic influences on placental health and their impacts on offspring development and disease. Front Genet 2022; 13:1068408. [PMID: 36468017 PMCID: PMC9716072 DOI: 10.3389/fgene.2022.1068408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 07/25/2023] Open
Abstract
Our efforts to understand the developmental origins of birth defects and disease have primarily focused on maternal exposures and intrauterine stressors. Recently, research into non-genomic mechanisms of inheritance has led to the recognition that epigenetic factors carried in sperm also significantly impact the health of future generations. However, although researchers have described a range of potential epigenetic signals transmitted through sperm, we have yet to obtain a mechanistic understanding of how these paternally-inherited factors influence offspring development and modify life-long health. In this endeavor, the emerging influence of the paternal epigenetic program on placental development, patterning, and function may help explain how a diverse range of male exposures induce comparable intergenerational effects on offspring health. During pregnancy, the placenta serves as the dynamic interface between mother and fetus, regulating nutrient, oxygen, and waste exchange and coordinating fetal growth and maturation. Studies examining intrauterine maternal stressors routinely describe alterations in placental growth, histological organization, and glycogen content, which correlate with well-described influences on infant health and adult onset of disease. Significantly, the emergence of similar phenotypes in models examining preconception male exposures indicates that paternal stressors transmit an epigenetic memory to their offspring that also negatively impacts placental function. Like maternal models, paternally programmed placental dysfunction exerts life-long consequences on offspring health, particularly metabolic function. Here, focusing primarily on rodent models, we review the literature and discuss the influences of preconception male health and exposure history on placental growth and patterning. We emphasize the emergence of common placental phenotypes shared between models examining preconception male and intrauterine stressors but note that the direction of change frequently differs between maternal and paternal exposures. We posit that alterations in placental growth, histological organization, and glycogen content broadly serve as reliable markers of altered paternal developmental programming, predicting the emergence of structural and metabolic defects in the offspring. Finally, we suggest the existence of an unrecognized developmental axis between the male germline and the extraembryonic lineages that may have evolved to enhance fetal adaptation.
Collapse
Affiliation(s)
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Potoczak PS, Strassmann BI, Vincenz C. A new method for the sampling and preservation of placental specimens in low-resource settings for the identification of P. falciparum and analysis of nucleic acids. J Histotechnol 2022; 45:116-119. [PMID: 35766215 PMCID: PMC9437128 DOI: 10.1080/01478885.2022.2088191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Collection, preservation, and shipment of histological specimens in low-resource settings is challenging. We present a novel method that achieved excellent preservation of placental specimens from rural Mali by using formalin fixation, ethanol dehydration, and long-term storage in a solar-powered freezer. Sample preservation success was 92%, permitting evaluation of current and past malaria infection, anemia, placental maturity, and inflammation. Using RNAscope® hybridization we were able to visualize cell-specific gene expression patterns in the formalin-fixed paraffin-embedded (FFPE) specimens. Additionally, our method entailed mirrored sampling from the two cut faces of a cotyledon, one for the FFPE workflows and the other for storage in RNAlater™ and RNA-seq.
Collapse
Affiliation(s)
| | - Beverly I. Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Gonçalves BM, Graceli JB, da Rocha PB, Tilli HP, Vieira EM, de Sibio MT, Peghinelli VV, Deprá IC, Mathias LS, Olímpio RMC, Belik VC, Nogueira CR. Placental model as an important tool to study maternal-fetal interface. Reprod Toxicol 2022; 112:7-13. [PMID: 35714933 DOI: 10.1016/j.reprotox.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
The placenta is a temporary organ that plays critical roles at the maternal-fetal interface. Normal development and function of the placenta is dependent on hormonal signaling pathways that make the placenta a target of endocrine disrupting chemical (EDC) action. Studies showing association between prenatal exposure, hormone disruption, and reproductive damage indicate that EDCs are developmentally toxic and can impact future generations. In this context, new placental models (trophoblast-derived cell lines, organotypic or 3D cell models, and physiologically based kinetic models) have been developed in order to create new approach methodology (NAM) to assess and even prevent such disastrous toxic harm in future generations. With the widespread discouragement of conducting animal studies, it has become irrefutable to develop in vitro models that can serve as a substitute for in vivo models. The goal of this review is to discuss the newest in vitro models to understand the maternal-fetal interface and predict placental development, physiology, and dysfunction generated by failures in molecular hormone control mechanisms, which, consequently, may change epigenetic programming to increase susceptibility to metabolic and other disorders in the offspring. We summarize the latest placental models for developmental toxicology studies, focusing mainly on three-dimensional (3D) culture models.
Collapse
Affiliation(s)
- Bianca M Gonçalves
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitória, ES, Brazil
| | - Paula B da Rocha
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Helena P Tilli
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ester M Vieira
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria T de Sibio
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vinícius V Peghinelli
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Igor C Deprá
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucas S Mathias
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Regiane M C Olímpio
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Virgínia C Belik
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Célia R Nogueira
- Department of Clinical Medicine, Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Vincenz C, Dolo Z, Saye S, Lovett JL, Strassmann BI. Risk factors for placental malaria, sulfadoxine-pyrimethamine doses, and birth outcomes in a rural to urban prospective cohort study on the Bandiagara Escarpment and Bamako, Mali. Malar J 2022; 21:110. [PMID: 35361195 PMCID: PMC8974163 DOI: 10.1186/s12936-022-04125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria in Mali remains a primary cause of morbidity and mortality, with women at high risk during pregnancy for placental malaria (PM). Risk for PM and its association with birth outcomes was evaluated in a rural to urban longitudinal cohort on the Bandiagara Escarpment and the District of Bamako. METHODS Placental samples (N = 317) were collected from 249 mothers who were participants in a prospective cohort study directed by BIS in the years 2011 to 2019. A placental pathologist and research assistant evaluated the samples by histology in blinded fashion to assess PM infection stage and parasite density. Generalized estimating equations (GEE) were used to model the odds of PM infection. RESULTS In a multivariable model, pregnancies in Bamako, beyond secondary education, births in the rainy season (instead of the hot dry season), and births to women who had ≥ 3 doses of sulfadoxine-pyrimethamine (SP) instead of no doses were associated with reduced odds of experiencing PM (active and past infections combined). Births in later years of the study were strongly associated with reduced odds of PM. Maternal age, which was positively associated with offspring year of birth, was significant as a predictor of PM only if offspring year of birth was omitted from the model. Gravidity was positively associated with both maternal age and offspring year of birth such that if either variable was included in the model, then gravidity was no longer significant. However, if maternal age or year of offspring birth were not adjusted for, then the odds of PM were nearly two-fold higher in primigravida compared to multigravida. Birth outcomes improved (+ 285 g birth weight, + 2 cm birth length, + 75 g placental weight) for women who had ≥ 3 doses of SP compared to no doses, but no difference was detected in birth weight or length for women who had 2 instead of ≥ 3 SP doses. However, at 2 instead of ≥ 3 doses placentas were 36 g lighter and the odds of low birth weight (< 2500 g) were 14% higher. Severe parasite densities (> 10% erythrocytes infected) were significantly associated with decreases in birth weight, birth length, and placental weight, as were chronic PM infections. The women who received no SP during pregnancy (7% of the study total) were younger and lacked primary school education. The women who received ≥ 3 doses of SP came from more affluent families. CONCLUSIONS Women who received no doses of SP during pregnancy experienced the most disadvantageous birth outcomes in both Bamako and on the Bandiagara Escarpment. Such women tended to be younger and to have had no primary school education. Targeting such women for antenatal care, which is the setting in which SP is most commonly administered in Mali, will have a more positive impact on public health than focusing on the increment from two to three doses of SP, although that increment is also desirable.
Collapse
Affiliation(s)
- Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Zachary Dolo
- Independent Investigator, Bandiagara Cercle, Mali
| | - Serou Saye
- Independent Investigator, Bandiagara Cercle, Mali
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Beverly I Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA. .,Department of Anthropology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Zeng Y, Amador C, Gao C, Walker RM, Morris SW, Campbell A, Frkatović A, Madden RA, Adams MJ, He S, Bretherick AD, Hayward C, Porteous DJ, Wilson JF, Evans KL, McIntosh AM, Navarro P, Haley CS. Lifestyle and Genetic Factors Modify Parent-of-Origin Effects on the Human Methylome. EBioMedicine 2021; 74:103730. [PMID: 34883445 PMCID: PMC8654798 DOI: 10.1016/j.ebiom.2021.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND parent-of-origin effects (POE) play important roles in complex disease and thus understanding their regulation and associated molecular and phenotypic variation are warranted. Previous studies mainly focused on the detection of genomic regions or phenotypes regulated by POE. Understanding whether POE may be modified by environmental or genetic exposures is important for understanding of the source of POE-associated variation, but only a few case studies addressing modifiable POE exist. METHODS in order to understand this high order of POE regulation, we screened 101 genetic and environmental factors such as 'predicted mRNA expression levels' of DNA methylation/imprinting machinery genes and environmental exposures. POE-mQTL-modifier interaction models were proposed to test the potential of these factors to modify POE at DNA methylation using data from Generation Scotland: The Scottish Family Health Study(N=2315). FINDINGS a set of vulnerable/modifiable POE-CpGs were identified (modifiable-POE-regulated CpGs, N=3). Four factors, 'lifetime smoking status' and 'predicted mRNA expression levels' of TET2, SIRT1 and KDM1A, were found to significantly modify the POE on the three CpGs in both discovery and replication datasets. We further identified plasma protein and health-related phenotypes associated with the methylation level of one of the identified CpGs. INTERPRETATION the modifiable POE identified here revealed an important yet indirect path through which genetic background and environmental exposures introduce their effect on DNA methylation, motivating future comprehensive evaluation of the role of these modifiers in complex diseases. FUNDING NSFC (81971270),H2020-MSCA-ITN(721815), Wellcome (204979/Z/16/Z,104036/Z/14/Z), MRC (MC_UU_00007/10, MC_PC_U127592696), CSO (CZD/16/6,CZB/4/276, CZB/4/710), SFC (HR03006), EUROSPAN (LSHG-CT-2006-018947), BBSRC (BBS/E/D/30002276), SYSU, Arthritis Research UK, NHLBI, NIH.
Collapse
Affiliation(s)
- Yanni Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chenhao Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Azra Frkatović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Rebecca A Madden
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Chris S Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Wu W, Lovett JL, Shedden K, Strassmann BI, Vincenz C. Targeted RNA-seq improves efficiency, resolution, and accuracy of allele specific expression for human term placentas. G3 (BETHESDA, MD.) 2021; 11:jkab176. [PMID: 34009305 PMCID: PMC8496276 DOI: 10.1093/g3journal/jkab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 12/30/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in allele-specific expression (ASE) based on the parent of origin. It is known to play a role in the prenatal and postnatal allocation of maternal resources in mammals. ASE detected by whole transcriptome RNA-seq (wht-RNAseq) has been widely used to analyze imprinted genes using reciprocal crosses in mice to generate large numbers of informative SNPs. Studies in humans are more challenging due to the paucity of SNPs and the poor preservation of RNA in term placentas and other tissues. Targeted RNA-seq (tar-RNAseq) can potentially mitigate these challenges by focusing sequencing resources on the regions of interest in the transcriptome. Here, we compared tar-RNAseq and wht-RNAseq in a study of ASE in known imprinted genes in placental tissue collected from a healthy human cohort in Mali, West Africa. As expected, tar-RNAseq substantially improved the coverage of SNPs. Compared to wht-RNAseq, tar-RNAseq produced on average four times more SNPs in twice as many genes per sample and read depth at the SNPs increased fourfold. In previous research on humans, discordant ASE values for SNPs of the same gene have limited the ability to accurately quantify ASE. We show that tar-RNAseq reduces this limitation as it unexpectedly increased the concordance of ASE between SNPs of the same gene, even in cases of degraded RNA. Studies aimed at discovering associations between individual variation in ASE and phenotypes in mammals and flowering plants will benefit from the improved power and accuracy of tar-RNAseq.
Collapse
Affiliation(s)
- Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Beverly I Strassmann
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA
| | - Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, USA
| |
Collapse
|
8
|
Liang J, Zhang K, Yang J, Li X, Li Q, Wang Y, Cai W, Teng H, Sun Z. A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing. Brief Bioinform 2021; 22:6289882. [PMID: 34058751 PMCID: PMC8575003 DOI: 10.1093/bib/bbab201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic and epigenetic contributions to various diseases and biological processes have been well-recognized. However, simultaneous identification of single-nucleotide variants (SNVs) and DNA methylation levels from traditional bisulfite sequencing data is still challenging. Here, we develop double strand bisulfite sequencing (DSBS) for genome-wide accurate identification of SNVs and DNA methylation simultaneously at a single-base resolution by using one dataset. Locking Watson and Crick strand together by hairpin adapter followed by bisulfite treatment and massive parallel sequencing, DSBS simultaneously sequences the bisulfite-converted Watson and Crick strand in one paired-end read, eliminating the strand bias of bisulfite sequencing data. Mutual correction of read1 and read2 can estimate the amplification and sequencing errors, and enables our developed computational pipeline, DSBS Analyzer (https://github.com/tianguolangzi/DSBS), to accurately identify SNV and DNA methylation. Additionally, using DSBS, we provide a genome-wide hemimethylation landscape in the human cells, and reveal that the density of DNA hemimethylation sites in promoter region and CpG island is lower than that in other genomic regions. The cost-effective new approach, which decodes DNA methylome and genomic variants simultaneously, will facilitate more comprehensive studies on numerous diseases and biological processes driven by both genetic and epigenetic variations.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Beijing 100101, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huajing Teng
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| | - Zhongsheng Sun
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| |
Collapse
|
9
|
Real-time Assessment of the Development and Function of the Placenta Across Gestation to Support Therapeutics in Pregnancy. Clin Ther 2020; 43:279-286. [PMID: 33246660 DOI: 10.1016/j.clinthera.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
The placenta is vital to the health and development of the fetus, serving to deliver oxygen and nutrients, facilitate the removal of waste products, and provide a barrier to pathogens and other harmful substances present in the maternal circulation. When these processes fail to operate normally, they can lead to complications of pregnancy such as preeclampsia or fetal growth restriction. The development of novel therapeutics for the mother, fetus, or placenta requires a mechanistic understanding of the development and functions of the placenta. For the obstetric clinician, being able to monitor the placenta throughout the pregnancy and to measure the impact of any treatment modality on the mother and the developing fetus are essential for providing the best possible care. The Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health has been a longtime supporter of research on the placenta. In 2014, the Human Placenta Project was initiated to help to drive an understanding of the biology of the human placenta and to facilitate the development of novel tools and approaches to allow for safe, noninvasive, real-time assessment of the placenta across pregnancy. Those efforts, along with others from around the globe, are showing promise. Although not yet ready for clinical application, these advances are moving the field forward and are certain to have a tremendous impact on the development and assessment of therapeutics designed for treating conditions of pregnancy.
Collapse
|
10
|
O’Callaghan JL, Clifton VL, Prentis P, Ewing A, Miller YD, Pelzer ES. Modulation of Placental Gene Expression in Small-for-Gestational-Age Infants. Genes (Basel) 2020; 11:genes11010080. [PMID: 31936801 PMCID: PMC7017208 DOI: 10.3390/genes11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Small-for-gestational-age (SGA) infants are fetuses that have not reached their genetically programmed growth potential. Low birth weight predisposes these infants to an increased risk of developing cardiovascular, metabolic and neurodevelopmental conditions in later life. However, our understanding of how this pathology occurs is currently incomplete. Previous research has focused on understanding the transcriptome, epigenome and bacterial signatures separately. However, we hypothesise that interactions between moderators of gene expression are critical to understanding fetal growth restriction. Through a review of the current literature, we identify that there is evidence of modulated expression/methylation of the placental genome and the presence of bacterial DNA in the placental tissue of SGA infants. We also identify that despite limited evidence of the interactions between the above results, there are promising suggestions of a relationship between bacterial signatures and placental function. This review aims to summarise the current literature concerning fetal growth from multiple avenues and propose a novel relationship between the placental transcriptome, methylome and bacterial signature that, if characterised, may be able to improve our current understanding of the placental response to stress and the aetiology of growth restriction.
Collapse
Affiliation(s)
- Jessica L. O’Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
- Correspondence:
| | - Vicki L. Clifton
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
| | - Adam Ewing
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Yvette D. Miller
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia;
| | - Elise S. Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
| |
Collapse
|