1
|
Ji L, Jia Z, Bai X. Comparative Analysis of the Mitochondrial Genomes of Three Species of Yangiella (Hemiptera: Aradidae) and the Phylogenetic Implications of Aradidae. INSECTS 2024; 15:533. [PMID: 39057266 PMCID: PMC11276747 DOI: 10.3390/insects15070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The mitochondrial genomes of three species of Yangiella were sequenced, annotated, and analyzed. The genome length of the three species of the genus is 15,070-15,202 bp, with a typical gene number, including a control region, 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and 13 protein-coding genes (PCGs). It was found that the mitochondrial genome of Yangiella had AT bias. Except for the lack of a DHU arm of the trnS1 gene, the other tRNAs had a typical cloverleaf structure, and the codon usage preferences of the three species exhibited high similarity. In addition, tRNA gene rearrangements were observed among the three subfamilies of Aradidae (Mezirinae, Calisiinae, Aradinae), and it was found that codon usage preferences appeared to be less affected by base mutation and more by natural selection. The Pi and Ka/Ks values indicated that cox1 was the most conserved gene in the mitochondrial genome of Aradidae, while atp8 and nad6 were rapidly evolved genes. Substitution saturation level analysis showed that the nucleic acid sequence of mitochondrial protein-coding genes in Aradidae did not reach saturation, suggesting the rationality of the phylogenetic analysis data. Bayesian and maximum likelihood methods were used to analyze the phylogeny of 16 species of Hemiptera insects, which supported the monophyly of Aneurinae, Carventinae, and Mezirinae, as well as the monophyly of Yangiella. Based on fossils and previous studies, the differentiation time was inferred, indicating that Yangiella diverged about 57 million years ago.
Collapse
Affiliation(s)
| | | | - Xiaoshuan Bai
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (L.J.); (Z.J.)
| |
Collapse
|
2
|
Srivastava A, Pandey BK, Gupta S, Mishra S. Interaction of glucosamine with uracil and thymine: a computational study. J Mol Model 2022; 28:277. [PMID: 36018526 DOI: 10.1007/s00894-022-05291-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
The present study delves into the interaction of the monomer of glucosamine with uracil and thymine in vacuum and in different phases by density functional theory (DFT). Both the molecular geometries were optimized at B3LYP with a 6-31G(d,p) basis set. The binding energy, interaction energy, and solubility were calculated from the optimized molecular geometry. The dipole moment and the electronic energies were found of the optimized product in different solvents (water, ethanol, methanol, heptane, cyclohexane, and CCl4) which describes the solubility of the interactive molecule in polar and non-polar solvents. The electronic energies are nearly the same for all the solvents. Observed theoretical results are expected to guide future relevant experimental research on gene delivery by glucosamine. This will also help in enhancing pharmaceutical research as carrier drug delivery, tissue repair, gene delivery, spermicidal activity, anti-tumor, and anti-microbial resistance.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, India
| | - B K Pandey
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, India.
| | - Shivani Gupta
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, India
| | - Saurav Mishra
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, India
| |
Collapse
|
3
|
Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, Richards VP. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. MICROBIOME 2022; 10:104. [PMID: 35799218 PMCID: PMC9264627 DOI: 10.1186/s40168-022-01295-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The 16S rRNA gene is used extensively in bacterial phylogenetics, in species delineation, and now widely in microbiome studies. However, the gene suffers from intragenomic heterogeneity, and reports of recombination and an unreliable phylogenetic signal are accumulating. Here, we compare core gene phylogenies to phylogenies constructed using core gene concatenations to estimate the strength of signal for the 16S rRNA gene, its hypervariable regions, and all core genes at the intra- and inter-genus levels. Specifically, we perform four intra-genus analyses (Clostridium, n = 65; Legionella, n = 47; Staphylococcus, n = 36; and Campylobacter, n = 17) and one inter-genus analysis [41 core genera of the human gut microbiome (31 families, 17 orders, and 12 classes), n = 82]. RESULTS At both taxonomic levels, the 16S rRNA gene was recombinant and subject to horizontal gene transfer. At the intra-genus level, the gene showed one of the lowest levels of concordance with the core genome phylogeny (50.7% average). Concordance for hypervariable regions was lower still, with entropy masking providing little to no benefit. A major factor influencing concordance was SNP count, which showed a positive logarithmic association. Using this relationship, we determined that 690 ± 110 SNPs were required for 80% concordance (average 16S rRNA gene SNP count was 254). We also found a wide range in 16S-23S-5S rRNA operon copy number among genomes (1-27). At the inter-genus level, concordance for the whole 16S rRNA gene was markedly higher (73.8% - 10th out of 49 loci); however, the most concordant hypervariable regions (V4, V3-V4, and V1-V2) ranked in the third quartile (62.5 to 60.0%). CONCLUSIONS Ramifications of a poor phylogenetic performance for the 16S rRNA gene are far reaching. For example, in addition to incorrect species/strain delineation and phylogenetic inference, it has the potential to confound community diversity metrics if phylogenetic information is incorporated - for example, with popular approaches such as Faith's phylogenetic diversity and UniFrac. Our results highlight the problematic nature of these approaches and their use (along with entropy masking) is discouraged. Lastly, the wide range in 16S rRNA gene copy number among genomes also has a strong potential to confound diversity metrics. Video Abstract.
Collapse
Affiliation(s)
- Hayley B. Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Brett Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Carson Moore
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Elizabeth Lawson
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | | | - Brook T. Russell
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634 USA
| | - Vincent P. Richards
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
4
|
Zhao S, Cui H, Hu Z, Du L, Ran X, Wen X. Senecavirus A Enhances Its Adaptive Evolution via Synonymous Codon Bias Evolution. Viruses 2022; 14:v14051055. [PMID: 35632797 PMCID: PMC9146685 DOI: 10.3390/v14051055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Synonymous codon bias in the viral genome affects protein translation and gene expression, suggesting that the synonymous codon mutant plays an essential role in influencing virulence and evolution. However, how the recessive mutant form contributes to virus evolvability remains elusive. In this paper, we characterize how the Senecavirus A (SVA), a picornavirus, utilizes synonymous codon mutations to influence its evolution, resulting in the adaptive evolution of the virus to adverse environments. The phylogenetic tree and Median-joining (MJ)-Network of these SVA lineages worldwide were constructed to reveal SVA three-stage genetic development clusters. Furthermore, we analyzed the codon bias of the SVA genome of selected strains and found that SVA could increase the GC content of the third base of some amino acid synonymous codons to enhance the viral RNA adaptive evolution. Our results highlight the impact of recessive mutation of virus codon bias on the evolution of the SVA and uncover a previously underappreciated evolutionary strategy for SVA. They also underline the importance of understanding the genetic evolution of SVA and how SVA adapts to the adverse effects of external stress.
Collapse
Affiliation(s)
- Simiao Zhao
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Huiqi Cui
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenru Hu
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Li Du
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Xuhua Ran
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| |
Collapse
|
5
|
Magee AF, Hilton SK, DeWitt WS. Robustness of phylogenetic inference to model misspecification caused by pairwise epistasis. Mol Biol Evol 2021; 38:4603-4615. [PMID: 34043795 PMCID: PMC8476159 DOI: 10.1093/molbev/msab163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Likelihood-based phylogenetic inference posits a probabilistic model of character state change along branches of a phylogenetic tree. These models typically assume statistical independence of sites in the sequence alignment. This is a restrictive assumption that facilitates computational tractability, but ignores how epistasis, the effect of genetic background on mutational effects, influences the evolution of functional sequences. We consider the effect of using a misspecified site-independent model on the accuracy of Bayesian phylogenetic inference in the setting of pairwise-site epistasis. Previous work has shown that as alignment length increases, tree reconstruction accuracy also increases. Here, we present a simulation study demonstrating that accuracy increases with alignment size even if the additional sites are epistatically coupled. We introduce an alignment-based test statistic that is a diagnostic for pairwise epistasis and can be used in posterior predictive checks.
Collapse
Affiliation(s)
- Andrew F Magee
- Departments of Biology.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sarah K Hilton
- Departments of Genome Sciences, University of Washington, Seattle, USA.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - William S DeWitt
- Departments of Genome Sciences, University of Washington, Seattle, USA.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
6
|
Zhang W, Tian W, Gao Z, Wang G, Zhao H. Phylogenetic Utility of rRNA ITS2 Sequence-Structure under Functional Constraint. Int J Mol Sci 2020; 21:ijms21176395. [PMID: 32899108 PMCID: PMC7504139 DOI: 10.3390/ijms21176395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The crucial function of the internal transcribed spacer 2 (ITS2) region in ribosome biogenesis depends on its secondary and tertiary structures. Despite rapidly evolving, ITS2 is under evolutionary constraints to maintain the specific secondary structures that provide functionality. A link between function, structure and evolution could contribute an understanding to each other and recently has created a growing point of sequence-structure phylogeny of ITS2. Here we briefly review the current knowledge of ITS2 processing in ribosome biogenesis, focusing on the conservative characteristics of ITS2 secondary structure, including structure form, structural motifs, cleavage sites, and base-pair interactions. We then review the phylogenetic implications and applications of this structure information, including structure-guiding sequence alignment, base-pair mutation model, and species distinguishing. We give the rationale for why incorporating structure information into tree construction could improve reliability and accuracy, and some perspectives of bioinformatics coding that allow for a meaningful evolutionary character to be extracted. In sum, this review of the integration of function, structure and evolution of ITS2 will expand the traditional sequence-based ITS2 phylogeny and thus contributes to the tree of life. The generality of ITS2 characteristics may also inspire phylogenetic use of other similar structural regions.
Collapse
Affiliation(s)
- Wei Zhang
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
- Correspondence: ; Tel.: +86-631-5688-303
| | - Wen Tian
- State Key Laboratory of Ballast Water Research, Comprehensive Technical Service Center of Jiangyin Customs, Jiangyin 214440, China;
| | - Zhipeng Gao
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
| | - Guoli Wang
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
| | - Hong Zhao
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
| |
Collapse
|