1
|
Zutautas KB, Sisnett DJ, Miller JE, Lingegowda H, Childs T, Bougie O, Lessey BA, Tayade C. The dysregulation of leukemia inhibitory factor and its implications for endometriosis pathophysiology. Front Immunol 2023; 14:1089098. [PMID: 37033980 PMCID: PMC10076726 DOI: 10.3389/fimmu.2023.1089098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Endometriosis is an estrogen dominant, chronic inflammatory disease characterized by the growth of endometrial-like tissue outside of the uterus. The most common symptoms experienced by patients include manifestations of chronic pelvic pain- such as pain with urination, menstruation, or defecation, and infertility. Alterations to Leukemia Inhibitory Factor (LIF), a cytokine produced by the luminal and glandular epithelium of the endometrium that is imperative for successful pregnancy, have been postulated to contribute to infertility. Conditions such as recurrent implantation failure, unexplained infertility, and infertility associated diseases such as adenomyosis and endometriosis, have demonstrated reduced LIF production in the endometrium of infertile patients compared to fertile counterparts. While this highlights the potential involvement of LIF in infertility, LIF is a multifaceted cytokine which plays additional roles in the maintenance of cell stemness and immunomodulation. Thus, we sought to explore the implications of LIF production within ectopic lesions on endometriosis pathophysiology. Through immunohistochemistry of an endometrioma tissue microarray and ELISA of tissue protein extract and peritoneal fluid samples, we identify LIF protein expression in the ectopic lesion microenvironment. Targeted RT qPCR for LIF and associated signaling transcripts, identify LIF to be significantly downregulated in the ectopic tissue compared to eutopic and control while its receptor, LIFR, is upregulated, highlighting a discordance in ectopic protein and mRNA LIF expression. In vitro treatment of endometriosis representative cell lines (12Z and hESC) with LIF increased production of immune-recruiting cytokines (MCP-1, MCP-3) and the angiogenic factor, VEGF, as well as stimulated tube formation in human umbilical vein endothelial cells (HUVECs). Finally, LIF treatment in a syngeneic mouse model of endometriosis induced both local and peripheral alterations to immune cell phenotypes, ultimately reducing immunoregulatory CD206+ small peritoneal macrophages and T regulatory cells. These findings suggest that LIF is present in the ectopic lesions of endometriosis patients and could be contributing to lesion vascularization and immunomodulation.
Collapse
Affiliation(s)
- Katherine B. Zutautas
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Danielle J. Sisnett
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Jessica E. Miller
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | | | - Timothy Childs
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Olga Bougie
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Obstetrics and Gynaecology, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Bruce A. Lessey
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
2
|
Guo C, Zeng F, Liu H, Wang J, Huang X, Luo J. Establish immune-related gene prognostic index for esophageal cancer. Front Genet 2022; 13:956915. [PMID: 36035171 PMCID: PMC9401516 DOI: 10.3389/fgene.2022.956915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Esophageal cancer is a tumor type with high invasiveness and low prognosis. As immunotherapy has been shown to improve the prognosis of esophageal cancer patients, we were interested in the establishment of an immune-associated gene prognostic index to effectively predict the prognosis of patients. Methods: To establish the immune-related gene prognostic index of esophageal cancer (EC), we screened 363 upregulated and 83 downregulated immune-related genes that were differentially expressed in EC compared to normal tissues. By multivariate Cox regression and weighted gene coexpression network analysis (WGCNA), we built a prognostic model based on eight immune-related genes (IRGs). We confirmed the prognostic model in both TCGA and GEO cohorts and found that the low-risk group had better overall survival than the high-risk group. Results: In this study, we identified 363 upregulated IRGs and 83 downregulated IRGs. Next, we found a prognostic model that was constructed with eight IRGs (OSM, CEACAM8, HSPA6, HSP90AB1, PCSK2, PLXNA1, TRIB2, and HMGB3) by multivariate Cox regression analysis and WGCNA. According to the Kaplan–Meier survival analysis results, the model we constructed can predict the prognosis of patients with esophageal cancer. This result can be verified by the Gene Expression Omnibus (GEO). Patients were divided into two groups with different outcomes. IRGPI-low patients had better overall survival than IRGPI-high patients.Conclusion: Our findings indicated the potential value of the IRGPI risk model for predicting the prognosis of EC patients.
Collapse
Affiliation(s)
- Caiyu Guo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Graduate School of Dalian Medical University, Dalian, China
| | - Fanye Zeng
- Second Department of Medical Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| | - Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xue Huang
- Department of Radiotherapy, Changzhou Tumor Hospital, Changzhou, China
- *Correspondence: Xue Huang, ; Judong Luo,
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
- *Correspondence: Xue Huang, ; Judong Luo,
| |
Collapse
|
3
|
Cheng F, Zhao S, Li J, Niu Y, Huang H, Yang J, Ma S, Liu J, Sun P. Enhanced effect of recombinant adenoviruses co‐expression of
ING4
and
OSM
on anti‐tumour activity of laryngeal cancer. J Cell Mol Med 2022; 26:1556-1566. [PMID: 35075768 PMCID: PMC8899183 DOI: 10.1111/jcmm.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 11/29/2022] Open
Abstract
The inhibitor of growth family member 4 (ING4) is one of the ING family genes, serves as a repressor of angiogenesis or tumour growth and suppresses loss of contact inhibition. Oncostatin M (OSM) is a multifunctional cytokine that belongs to the interleukin (IL)‐6 subfamily with several biological activities. However, the role of recombinant adenoviruses co‐expressing ING4 and OSM (Ad‐ING4‐OSM) in anti‐tumour activity of laryngeal cancer has not yet been identified. Recombinant Ad‐ING4‐OSM was used to evaluate their combined effect on enhanced anti‐tumour activity in Hep‐2 cells of laryngeal cancer in vivo. Moreover, in vitro function assays of co‐expression of Ad‐ING4‐OSM were performed to explore impact of co‐expression of Ad‐ING4‐OSM on biological phenotype of laryngeal cancer cell line, that is Hep‐2 cells. In vitro, Ad‐ING4‐OSM significantly inhibited the growth, enhanced apoptosis, altered cell cycle with G1 and G2/M phase arrest, and upregulated the expression of P21, P27, P53 and downregulated survivin in laryngeal cancer Hep‐2 cells. Furthermore, in vivo functional experiments of co‐expressing of Ad‐ING4‐OSM demonstrated that solid tumours in the nude mouse model were significantly suppressed, and the co‐expressing Ad‐ING4‐OSM showed a significant upregulation expression of P21, P53, Bax and Caspase‐3 and a downregulation of Cox‐2, Bcl‐2 and CD34. This study for the first time demonstrated the clinical value and the role of co‐expressing Ad‐ING4‐OSM in biological function of laryngeal cancer. This work suggested that co‐expressing Ad‐ING4‐OSM might serve as a potential therapeutic target for laryngeal cancer patients.
Collapse
Affiliation(s)
- Fuwei Cheng
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| | - Shuangping Zhao
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| | - Jiachen Li
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| | - Yuyu Niu
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| | - Haiping Huang
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| | - Jicheng Yang
- Cell and Molecular Biology Institute College of Medicine Soochow University Suzhou China
| | - Shiyin Ma
- Department of Otolaryngology The First Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Jisheng Liu
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| | - Peng Sun
- Department of Otolaryngology The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
4
|
Peng Z, Liu XY, Cheng Z, Kai W, Song Z. Comprehensive analysis of a new immune-related prognostic signature for esophageal cancer and its correlation with infiltrating immune cells and target genes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1576. [PMID: 34790782 PMCID: PMC8576727 DOI: 10.21037/atm-21-4756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Background The incidence of esophageal cancer (ESCA) is increasing rapidly, and the 5-year survival rate is less than 20%. This study provides new ideas for clinical treatment by establishing a prognostic signature composed of immune-related genes (IRGs), and fully analyzing its relationship with target genes and the tumor microenvironment (TME). Methods We downloaded the ESCA expression matrix and clinical information from The Cancer Genome Atlas (TCGA) database. Differential expression genes (DEGs) were identified with the edgeR package and crossed with the IRGs we obtained from the ImmPort database to obtain differential IRGs (DEIRGs). The prognostic signature was then obtained through univariate Cox, LASSO-Cox, and multivariate Cox analyses. The receiver operating characteristic (ROC) curve was used to evaluate the prediction effect of the model. The immune cell infiltration abundance obtained by ssGSEA and therapeutic target genes was used to perform sufficient correlation analysis with the obtained prognostic signature and related genes. Results A total of 173 samples were obtained from TCGA database, including 162 tumor and 11 normal samples. The 3,033 differential genes were used to obtain 254 DEIRGs by intersections with 2,483 IRGs (IRGs) obtained from the ImmPort Database. Finally, multivariate Cox regression analysis identified eight prognostic DEIRGs and established a new prognostic signature (HR: 2.49, 95% CI: 1.68–3.67; P<0.001). Based on the expression of the eight genes, the cohort was then divided into high and low risk groups and Kaplan-Meier (K-M) curves were plotted with the log-rank test P<0.0001 and 1-, 3-year area under the curve (AUC) >0.7. The K-M curves grouped according to high and low risks performed well in the two subgroup validation cohorts, with log-rank test P<0.05. There were differences in the degree of infiltration of 16 kinds of immune cells in tumor and normal samples, and the infiltration abundance of 12 kinds of immune cells was different in the high and low-risk groups. Conclusions An effective and validated prognostic signature composed of IRGs was established and had a strong correlation with immune cells and target genes of drug therapy.
Collapse
Affiliation(s)
- Zhang Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Yuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zeng Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wu Kai
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhao Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang Z, Chen C, Fang Y, Li S, Wang X, Sun L, Zhou G, Ye J. Development of a prognostic signature for esophageal cancer based on nine immune related genes. BMC Cancer 2021; 21:113. [PMID: 33541291 PMCID: PMC7860013 DOI: 10.1186/s12885-021-07813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Function of the immune system is correlated with the prognosis of the tumor. The effect of immune microenvironment on esophageal cancer (EC) development has not been fully investigated. Methods This study aimed to explore a prognostic model based on immune-related genes (IRGs) for EC. We obtained the RNA-seq dataset and clinical information of EC from the Cancer Genome Atlas (TCGA). Results We identified 247 upregulated IRGs and 56 downregulated IRGs. Pathway analysis revealed that the most differentially expressed IRGs were enriched in Cytokine-cytokine receptor interaction. We further screened 13 survival-related IRGs and constructed regulatory networks involving related transcription factors (TFs). Finally, a prognostic model was constructed with 9 IRGs (HSPA6, S100A12, CACYBP, NOS2, DKK1, OSM, STC2, NGPTL3 and NR2F2) by multivariate Cox regression analysis. The patients were classified into two subgroups with different outcomes. When adjusted with clinical factors, this model was verified as an independent predictor, which performed accurately in prognostic prediction. Next, M0 and M2 macrophages and activated mast cells were significantly enriched in high-risk group, while CD8 T cells and regulatory T cells (Tregs) were significantly enriched in low-risk group. Conclusions Prognosis related IRGs were identified and a prognostic signature for esophageal cancer based on nine IRGs was developed. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07813-9.
Collapse
Affiliation(s)
- Zhi Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Cheng Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Ying Fang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Sheng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Xiaohua Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Lei Sun
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China.
| | - Jinjun Ye
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
6
|
Singh MP, Rai S, Suyal S, Singh SK, Singh NK, Agarwal A, Srivastava S. Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert Rev Mol Diagn 2017; 17:665-685. [PMID: 28562109 DOI: 10.1080/14737159.2017.1337511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.
Collapse
Affiliation(s)
- Manish Pratap Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sandhya Rai
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Shradha Suyal
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sunil Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Nand Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Akash Agarwal
- b Department of Surgical Oncology , Dr. Ram Manohar Lohia Institute of Medical Sciences (DRMLIMS) , Lucknow , India
| | - Sameer Srivastava
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| |
Collapse
|
7
|
Overexpression of a splice variant of oncostatin M receptor beta in human esophageal squamous carcinoma. Cell Oncol (Dordr) 2011; 34:177-87. [DOI: 10.1007/s13402-011-0011-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 10/18/2022] Open
|
8
|
Kim MS, Louwagie J, Carvalho B, Terhaar sive Droste JS, Park HL, Chae YK, Yamashita K, Liu J, Ostrow KL, Ling S, Guerrero-Preston R, Demokan S, Yalniz Z, Dalay N, Meijer GA, Van Criekinge W, Sidransky D. Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS One 2009; 4:e6555. [PMID: 19662090 PMCID: PMC2717211 DOI: 10.1371/journal.pone.0006555] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/30/2009] [Indexed: 12/16/2022] Open
Abstract
In addition to genetic changes, the occurrence of epigenetic alterations is associated with accumulation of both genetic and epigenetic events that promote the development and progression of human cancer. Previously, we reported a set of candidate genes that comprise part of the emerging “cancer methylome”. In the present study, we first tested 23 candidate genes for promoter methylation in a small number of primary colon tumor tissues and controls. Based on these results, we then examined the methylation frequency of Oncostatin M receptor-β (OSMR) in a larger number of tissue and stool DNA samples collected from colon cancer patients and controls. We found that OSMR was frequently methylated in primary colon cancer tissues (80%, 80/100), but not in normal tissues (4%, 4/100). Methylation of OSMR was also detected in stool DNA from colorectal cancer patients (38%, 26/69) (cut-off in TaqMan-MSP, 4). Detection of other methylated markers in stool DNA improved sensitivity with little effect on specificity. Promoter methylation mediated silencing of OSMR in cell lines, and CRC cells with low OSMR expression were resistant to growth inhibition by Oncostatin M. Our data provide a biologic rationale for silencing of OSMR in colon cancer progression and highlight a new therapeutic target in this disease. Moreover, detection and quantification of OSMR promoter methylation in fecal DNA is a highly specific diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joost Louwagie
- OncoMethylome Sciences S.A, CHU Niveau +4Tour 4 dePharmacie (bâtiment 36), Liege, Belgium
| | - Beatriz Carvalho
- Department of Pathology, Free University of Amsterdam, Amsterdam, The Netherlands
| | | | - Hannah Lui Park
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Young Kwang Chae
- Department of Medicine, Albert Einstein Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Keishi Yamashita
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Junwei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Kimberly Laskie Ostrow
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Shizhang Ling
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Semra Demokan
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Zubeyde Yalniz
- Oncology institute, Istanbul University, Istanbul, Turkey
| | - Nejat Dalay
- Oncology institute, Istanbul University, Istanbul, Turkey
| | - Gerrit A. Meijer
- Department of Pathology, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Van Criekinge
- OncoMethylome Sciences S.A, CHU Niveau +4Tour 4 dePharmacie (bâtiment 36), Liege, Belgium
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Underhill-Day N, Heath JK. Oncostatin M (OSM) cytostasis of breast tumor cells: characterization of an OSM receptor beta-specific kernel. Cancer Res 2006; 66:10891-901. [PMID: 17108126 DOI: 10.1158/0008-5472.can-06-1766] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interleukin-6 cytokine oncostatin M (OSM) induces potent growth-inhibitory and morphogenic responses in several different tumor cell types, highlighting the importance of OSM signaling mechanisms as targets for therapeutic intervention. The specific molecular pathways involved are not well understood, as OSM can signal through two separate heterodimeric receptor complexes, glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR) alpha and gp130/OSM receptor beta (OSMRbeta). In this investigation, we used a LIFR antagonist to help resolve signaling responses and identify patterns of gene expression elicited by the different receptor complexes. OSM-induced biological effects on breast tumor-derived cell lines were specifically mediated through the gp130/OSMRbeta complex. Each cytokine tested exhibited differential signaling capability and manifested both shared and unique patterns of gene activation, emphasizing compositional differences in activator protein-1 transcription factor activity and expression. In particular, OSM strongly activated the c-Jun NH(2)-terminal kinase (JNK) serine/threonine kinase and downstream components, including activating transcription factor (ATF)/cyclic AMP-responsive element binding protein family member, ATF3. JNK/stress-activated protein kinase kinase inhibition abrogated cell morphogenesis induced by OSM, indicating an important role for this pathway in OSM specificity. These findings identify a core signaling/transcriptional mechanism specific to the OSMRbeta in breast tumor cells.
Collapse
Affiliation(s)
- Nicholas Underhill-Day
- Cancer Research UK Growth Factor Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | |
Collapse
|
10
|
Campbell EA, O'Hara L, Catalano RD, Sharkey AM, Freeman TC, Johnson MH. Temporal expression profiling of the uterine luminal epithelium of the pseudo-pregnant mouse suggests receptivity to the fertilized egg is associated with complex transcriptional changes. Hum Reprod 2006; 21:2495-513. [PMID: 16790611 DOI: 10.1093/humrep/del195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The molecular basis of changes underlying the altered sensitivity of the uterine luminal epithelium (LE) to the embryo over the peri-implantation period is not fully understood. METHODS Microarray analysis was performed on purified LE isolated from the pseudo-pregnant mouse uterus at 12-h intervals from pre-receptivity through the implantation window to refractoriness. The aim was to identify genes whose expression changes in the LE during this period. RESULTS A total of 447 transcripts were identified whose abundance changed more than 2-fold in the LE but which did not change in the underlying stroma (S) and glands. Six major patterns of changing expression were noted. Of the 447 genes, 140 were expressed in LE at least 15-fold higher than in S and glandular epithelium (GE) (101 of these more than 20-fold). Detailed spatiotemporal expression profiles were derived for several genes previously implicated in implantation (including Edg7, Ptgs1, Pla2g4a and Alox15). CONCLUSIONS Functional changes in LE receptivity are characterized by changing constellations of gene expression. Pre-receptivity has a different molecular footprint to refractoriness. Because we have used the pseudo-pregnant mouse model, these changes are driven solely by endocrine signals rather than events downstream of embryo attachment. Some of these genes have been described in previous microarray studies on endometrium, but for the majority, this is the first time they have been implicated in implantation. The 140 genes enriched in the LE greatly expand the list of epithelial markers and provide many novel candidates for further studies to identify genes playing important roles in receptivity and embryo attachment.
Collapse
Affiliation(s)
- E A Campbell
- Department of Anatomy, MRC Rosalind Franklin Centre for Genomics Research, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
11
|
Mitsunari M, Yoshida S, Shoji T, Tsukihara S, Iwabe T, Harada T, Terakawa N. Macrophage-activating lipopeptide-2 induces cyclooxygenase-2 and prostaglandin E(2) via toll-like receptor 2 in human placental trophoblast cells. J Reprod Immunol 2006; 72:46-59. [PMID: 16600383 DOI: 10.1016/j.jri.2006.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/24/2006] [Accepted: 02/28/2006] [Indexed: 01/14/2023]
Abstract
We have examined whether toll-like receptor (TLR)2-mediated stimulation by macrophage-activating lipopeptide-2 (MALP-2), originally purified from Mycoplasma fermentans, induces cyclooxygenase (COX)-2 and prostaglandin (PG)E(2) in human placental trophoblast cells. The signaling mechanism by which MALP-2 exerts its effect has also been examined. Human placental trophoblast cells isolated from term placenta were used. TLR expression in trophoblast cells was confirmed by multiplex PCR and immunocytochemistry, and examined whether MALP-2 induces COX-2 and PGE(2) by Northern blotting, RT-PCR, Western blotting and ELISA, respectively. The activation of NF-kappaB and MAP kinases (ERK1/2 and p38) was examined by Western blotting. The effects of inhibitors of NF-kappaB, MEK1/2 and p38 on MALP-2-induced PGE(2) production were also evaluated. TLR2, TLR6 and TLR4 were expressed in human placental trophoblast cells. MALP-2 significantly induced COX-2 expression and enhanced PGE(2) production in a dose-dependent manner. MALP-2 induced the activation of NF-kappaB, ERK1/2 and p38 MAPK. Inhibitors of NF-kappaB, MEK1/2 and p38 blocked MALP-2-inducible PGE(2) production. TLR2-mediated stimulation by MALP-2 induces COX-2 and PGE(2) in human placental trophoblast cells via NF-kappaB and MAP kinases pathways.
Collapse
Affiliation(s)
- Masahiro Mitsunari
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishimachi, Yonago 683-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Leukaemia inhibitory factor (LIF) is one of the most important cytokines in the reproductive tract. Without expression of LIF in the uterus, implantation of a blastocyst cannot begin. Yet, 13 years after publication of the phenotype of the LIF knockout mouse we are only just beginning to understand how LIF functions in the uterus. This review addresses our knowledge of the role of LIF in regulating implantation through its influence on the luminal epithelium and stromal decidualization, but also its influence on reproductive tract cells such as leukocytes and glandular epithelium, during the pre-implantation phase of pregnancy.
Collapse
Affiliation(s)
- Susan J Kimber
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
13
|
Fouladi-Nashta AA, Jones CJP, Nijjar N, Mohamet L, Smith A, Chambers I, Kimber SJ. Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice. Dev Biol 2005; 281:1-21. [PMID: 15848385 DOI: 10.1016/j.ydbio.2005.01.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/18/2022]
Abstract
Leukemia inhibitory factor plays a major role in the uterus and in its absence embryos fail to implant. Our knowledge of the targets for LIF and the consequences of its absence is still very incomplete. In this study, we have examined the ultrastructure of the potential implantation site in LIF-null MF1 female mice compared to that of wild type animals. We also compared expression of proteins associated with implantation in luminal epithelium and stroma. Luminal epithelial cells (LE) of null animals failed to develop apical pinopods, had increased glycocalyx, and retained a columnar shape during the peri-implantation period. Stromal cells of LIF-null animals showed no evidence of decidual giant cell formation even by day 6 of pregnancy. A number of proteins normally expressed in decidualizing stroma did not increase in abundance in the LIF-null animals including desmin, tenascin, Cox-2, bone morphogenetic protein (BMP)-2 and -7, and Hoxa-10. In wild type animals, the IL-6 family member Oncostatin M (OSM) was found to be transiently expressed in the luminal epithelium on late day 4 and then in the stroma at the attachment site on days 5-6 of pregnancy, with a similar but not identical pattern to that of Cox-2. In the LIF-null animals, no OSM protein was detected in either LE or stroma adjacent to the embryo, indicating that expression requires uterine LIF in addition to a blastocyst signal. Fucosylated epitopes: the H-type-1 antigen and those recognized by lectins from Ulex europaeus-1 and Tetragonolobus purpureus were enhanced on apical LE on day 4 of pregnancy. H-type-1 antigen remained higher on day 5, and was not reduced even by day 6 in contrast to wild type uterus. These data point to a profound disturbance of normal luminal epithelial and stromal differentiation during early pregnancy in LIF-nulls. On this background, we also obtained less than a Mendelian ratio of null offspring suggesting developmental failure.
Collapse
Affiliation(s)
- A A Fouladi-Nashta
- Faculty of Life Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|