1
|
Ruiz-Alonso M, Gómez C, Stankewicz T, Castellón JA, Díez-Juan A, Gómez E, Rubio C, Simón C, Valbuena D. Clinical outcomes following endometrial receptivity assessment-guided personalized euploid embryo transfer in patients with previous implantation failures. Sci Rep 2025; 15:16967. [PMID: 40374667 DOI: 10.1038/s41598-025-01056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
This study aimed to investigate potential improvements when implementing endometrial receptivity analysis (ERA)-guided personalized embryo transfer (pET) using euploid blastocyst in patients with one or more previous failed embryo transfers. A total of 270 patients with one or more previous failed embryo transfers were enrolled between 2017 and 2021 in this multicenter retrospective study. These patients were divided into two groups: study cases (ERA-guided pET) (n = 200) or controls (standard embryo transfer) (n = 70). Clinical outcomes compared were pregnancy rate (PR), implantation rate (IR), ongoing pregnancy rate (OPR), and live birth rate (LBR). Clinical results in terms of PR, OPR, and LBR were significantly higher when performing ERA-guided pET (PR: 65.0%; OPR: 49.0%; LBR: 48.2%) compared to standard embryo transfer (PR: 37.1%; OPR: 27.1%; LBR: 26.1%) (P < 0.01). Logistic regression was applied to examine the correlation between ERA and the primary outcome measured, OPR, including demographic variables as covariates. The effect of ERA was significantly associated with OPR (P = 0.002; aOR 2.8, 95% CI 1.5-5.5); furthermore, OPR decreased significantly when body mass index (BMI) values increased (P = 0.04; aOR 0.9, 95% CI 0.8-0.98). These findings support the potential of ERA-guided pET to improve clinical outcomes and address the challenges encountered by patients with previous implantation failures.
Collapse
Affiliation(s)
- María Ruiz-Alonso
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain.
| | - Carlos Gómez
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| | - Tiffany Stankewicz
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| | - José A Castellón
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| | - Antonio Díez-Juan
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| | - Eva Gómez
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| | - Carmen Rubio
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| | - Carlos Simón
- Department of Pediatrics, Obstetrics & Gynecology, University of Valencia, Valencia, 46010, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Carlos Simon Foundation, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11C, Paterna, Valencia, 46980, Spain
| | - Diana Valbuena
- Igenomix SL, Parque Tecnológico de Paterna, Ronda Narciso Monturiol Estarriol 11B, Paterna, Valencia, 46980, Spain
| |
Collapse
|
2
|
Giudice LC, Liu B, Irwin JC. Endometriosis and adenomyosis unveiled through single-cell glasses. Am J Obstet Gynecol 2025; 232:S105-S123. [PMID: 40253075 DOI: 10.1016/j.ajog.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 04/21/2025]
Abstract
Single-cell technologies are expanding our understanding of endometriosis and adenomyosis, which are sister disorders of the uterine endometrium that contain similar complements of lesion cell types but in different locations-outside and inside the uterus, respectively. Both diseases cause significant morbidity and impaired quality of life among those affected, and current therapies mitigate most of the symptoms although with highly variable efficacy, duration of effect, and frequent intolerable side effects. Thus, there is a pressing need for transformative approaches and to develop individualized therapies for the variety of presentations of endometriosis and adenomyosis symptoms and the heterogeneity of lesion types, both histologically and architecturally. Single-cell technologies are transforming the understanding of human physiology and pathophysiology in the reproductive system and beyond. This manuscript reviews the clinical characteristics of endometriosis and adenomyosis and the recent studies focused on eutopic endometrium and ectopic lesions at single-cell resolution, the myriad of cell types and subtypes, cell-cell communications, signaling pathways, applications for novel drug discovery and therapeutic approaches, and challenges and opportunities that accompany this type of research. Key take-home messages from the studies reviewed herein include the following: We conclude the review with an eye to the future-what Alice might see beyond the single-cell looking glass that connects endometrium and endometrial disorders with the trillions of cells of other tissues and organs in health and disease throughout the human body and the opportunities for novel diagnostic modalities and drug discovery for endometriosis, adenomyosis, and related uterine and inflammatory conditions.
Collapse
Affiliation(s)
- Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA.
| | - Binya Liu
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Juan C Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Grassi A, Rocca MS, Noventa M, Pozzato G, Pozzato A, Scioscia M, Andrisani A, Pontrelli G, Foresta C, De Toni L. In Vitro Gene Expression Profiling of Quantum Molecular Resonance Effects on Human Endometrium Models: A Preliminary Study. Genes (Basel) 2025; 16:290. [PMID: 40149442 PMCID: PMC11942151 DOI: 10.3390/genes16030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES The identification of methods to improve the endometrial receptivity (ER) is increasingly of interest. The effect of the electromagnetic field associated with Quantum Molecular Resonance (QMR) on ER was investigated here. METHODS Ishikawa cells were used to evaluate the effects of QMR both on the expression of a group of genes involved in ER, i.e., HOXA10, HOXA11, LIF, ITGB3, and ITGAV, and on cell toxicity. Endometrial samples were obtained from six patients during routine diagnostic procedures, four of which were subsequently used to assess the transcriptional response to QMR through microarray. RESULTS Compared to unexposed controls, a single exposure of Ishikawa cells to QMR for 20 min was associated with a significant and power-dependent up-regulation of all the selected ER-related genes up to 8 power units (PU). Repeated exposure to QMR, up to three consecutive days, showed a significant up-regulation of all the selected genes at power values of 4 PU, from day two onwards. Negligible cytotoxicity was observed. Gene set enrichment analysis, on microarray data of endometrial biopsies stimulated for three consecutive days at 4 PU, showed a significant enrichment of specific gene sets, related to the proteasome system, the cell adhesion, the glucocorticoid receptor, and cell cycle pathways. CONCLUSIONS Our results suggest a possible favorable impact of QMR on ER.
Collapse
Affiliation(s)
- Angela Grassi
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Santa Rocca
- Department of Medicine, University of Padova, 35128 Padova, Italy; (M.S.R.); (C.F.)
| | - Marco Noventa
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padova, 35100 Padova, Italy; (M.N.); (A.A.)
| | | | - Alessandro Pozzato
- Telea Electronic Engineering S.r.l., 36066 Sandrigo, Italy; (G.P.); (A.P.)
| | - Marco Scioscia
- Unit of Gynecological Surgery, Mater Dei Hospital, 70125 Bari, Italy;
| | - Alessandra Andrisani
- Unit of Gynecology and Obstetrics, Department of Women and Children’s Health, University of Padova, 35100 Padova, Italy; (M.N.); (A.A.)
| | - Giovanni Pontrelli
- Department of Obstetrics and Gynecology, Policlinico Hospital, 35031 Abano Terme, Italy;
| | - Carlo Foresta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (M.S.R.); (C.F.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (M.S.R.); (C.F.)
| |
Collapse
|
4
|
Chung J, Rogers PA. Improving Replication in Endometrial Omics: Understanding the Influence of the Menstrual Cycle. Int J Mol Sci 2025; 26:857. [PMID: 39859570 PMCID: PMC11766126 DOI: 10.3390/ijms26020857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
The dynamic nature of human endometrial tissue presents unique challenges in analysis. Despite extensive research into endometrial disorders such as endometriosis and infertility, recent systematic reviews have highlighted concerning issues with the reproducibility of omics studies attempting to identify biomarkers. This review examines factors contributing to poor reproducibility in endometrial omics research. Hormonal fluctuations in the menstrual cycle lead to widespread molecular changes in the endometrium, most notably in gene expression profiles. In this review, we examine the variability in omics data due to the menstrual cycle and highlight the importance of accurate menstrual cycle dating for effective statistical modelling. The current standards of endometrial dating lack precision and we make the case for using molecular-based modelling methods to estimate menstrual cycle time for endometrium tissue samples. Additionally, we discuss statistical considerations such as confounding and interaction effects, as well as the importance of recording the detailed and accurate clinical information of patients. By addressing these methodological challenges, we aim to establish more robust and reproducible research practises, increasing the reliability of endometrial omics research and biomarker discovery.
Collapse
Affiliation(s)
- Jessica Chung
- Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Adrian Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| |
Collapse
|
5
|
Opuchlik K, Pankiewicz K, Pierzyński P, Sierdziński J, Aleksejeva E, Salumets A, Issat T, Laudański P. Factors influencing endometrial receptivity in women with recurrent implantation failure. BMC Womens Health 2025; 25:15. [PMID: 39789542 PMCID: PMC11715555 DOI: 10.1186/s12905-024-03531-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Embryo implantation involves two key elements: a good quality embryo and receptive endometrium. Endometrial receptivity abnormalities are known as one of the possible causes of recurrent implantation failure (RIF), especially when the embryo is euploid. This study was aimed to evaluate the impact of age and other clinical factors on endometrial receptivity in women with RIF. METHODS 68 women with RIF (defined as at least three unsuccessful transfers of good quality embryo of at least 1BB category of blastocysts) and 49 controls (women undergoing IVF treatment because of idiopathic infertility or male factor) were included to the study. After preparation of the endometrium by the hormone replacement therapy endometrial biopsies were taken from each patient and sequenced with beREADY test TAC targeting 67 biomarker genes for endometrial receptivity. Depending on the test result patients were classified into one of four different groups: pre-receptive (n = 16), early-receptive (n = 54), receptive (n = 44) and late-receptive (n = 3). RESULTS In women with RIF pre-receptive endometrium has been detected substantially more often than in controls - 13 (19,1%) vs. 3 (6,1%) patients (p = 0,043). Early-receptive endometrium was diagnosed in the majority of patients with idiopathic infertility - 12 (66.7%) vs. 6 (33.3%) women (p = 0.042) and with polycystic ovary syndrome (PCOS) - 12 (70,6%) vs. 3 (17.7%) women (p = 0,0447). We found significant association between abnormal endometrial receptivity and patient's age and duration of infertility. Young women were diagnosed significantly more often as normal or late-receptive, whereas older women with longer history of infertility as early-receptive and pre-receptive. CONCLUSIONS In patients with RIF in comparison to other women undergoing IVF procedures, patient's age and infertility duration are the most important factors related to endometrial receptivity abnormalities, indicating that older women with a longer history of infertility may benefit the most from endometrial receptivity testing. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Katarzyna Opuchlik
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, Warsaw, 01-211, Poland.
| | - Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, Warsaw, 01-211, Poland
- OVIklinika Infertility Center, Połczyńska 31, Warsaw, 01-377, Poland
| | - Piotr Pierzyński
- OVIklinika Infertility Center, Połczyńska 31, Warsaw, 01-377, Poland
| | - Janusz Sierdziński
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Elina Aleksejeva
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, Warsaw, 01-211, Poland
| | - Piotr Laudański
- OVIklinika Infertility Center, Połczyńska 31, Warsaw, 01-377, Poland
- Women's Health Research Institute, Calisia University, Kalisz, Poland
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Ye Q, Liu FY, Xia XJ, Chen XY, Zou L, Wu HM, Li DD, Xia CN, Huang T, Cui Y, Zou Y. Whole exome sequencing identifies a novel mutation in Annexin A4 that is associated with recurrent spontaneous abortion. Front Med (Lausanne) 2024; 11:1462649. [PMID: 39399103 PMCID: PMC11466819 DOI: 10.3389/fmed.2024.1462649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is a multifactorial disease, the exact causes of which are still unknown. Environmental, maternal, and genetic factors have been shown to contribute to this condition. The aim of this study was to investigate the presence of mutations in the ANXA4 gene in patients with RSA. Methods Genomic DNA was extracted from 325 patients with RSA and 941 control women with a normal reproductive history for whole-exome sequencing (WES). The detected variants were annotated and filtered, and the pathogenicity of the variants was predicted through the SIFT online tool, functional enrichment analyses, Sanger sequencing validation, prediction of changes in protein structure, and evolutionary conservation analysis. Furthermore, plasmid construction, Western blotting, RT-qPCR, and cell migration, invasion and adhesion assays were used to detect the effects of ANXA4 mutations on protein function. Results An ANXA4 mutation (p.G8D) in 1 of the 325 samples from patients with RSA (RSA-219) was identified through WES. This mutation was not detected in 941 controls or included in public databases. Evolutionary conservation analysis revealed that the amino acid residue affected by the mutation (p.G8D) was highly conserved among 13 vertebrate species, and the SIFT program and structural modeling analysis predicted that this mutation was harmful. Furthermore, functional assays revealed that this mutation could inhibit cell migration, invasion and adhesion. Conclusion Our study suggests that an unreported novel ANXA4 mutation (p.G8D) plays an important role in the pathogenesis of RSA and may contribute to the genetic diagnosis of RSA.
Collapse
Affiliation(s)
- Qian Ye
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiao-Jian Xia
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiao-Yong Chen
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Li Zou
- Quality Control Office, Ganzhou People's Hospital, Ganzhou, China
| | - Hui-Min Wu
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dan-Dan Li
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen-Nian Xia
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ting Huang
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
7
|
Doi-Tanaka Y, Tamura I, Shiroshita A, Fujimura T, Shirafuta Y, Maekawa R, Taketani T, Sato S, Sugino N. Differential gene expression in decidualized human endometrial stromal cells induced by different stimuli. Sci Rep 2024; 14:7726. [PMID: 38565619 PMCID: PMC10987566 DOI: 10.1038/s41598-024-58065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Decidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.
Collapse
Affiliation(s)
- Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| | - Amon Shiroshita
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Taishi Fujimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| |
Collapse
|
8
|
Xu X, Yang A, Tian P, Zhang K, Liu Y, Wang Y, Wang Z, Wu Y, Zhao Z, Li Q, Shi B, Huang X, Hao GM. Expression profile analysis of LncRNAs and mRNAs in pre-receptive endometrium of women with polycystic ovary syndrome undergoing in vitro fertilization-embryo transfer. BMC Med Genomics 2024; 17:26. [PMID: 38243290 PMCID: PMC10799537 DOI: 10.1186/s12920-024-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND To compare the expression levels of long non-coding RNA (lncRNA) and messenger RNA (mRNA) in pre-receptive endometrium between patients with Polycystic Ovary Syndrome (PCOS)and normal ovulation undergoing in vitro fertilization-embryo transfer (IVF-ET). METHODS Endometrial tissues were collected with endometrial vacuum curette in pre-receptive phase (3 days after oocytes retrieval) from PCOS and control groups. LncRNAs and mRNAs of endometrium were identified via RNA sequencing and alignments. A subset of 9 differentially expressed lncRNAs and 11 mRNAs were validated by quantitative reverse transcription polymerase chain reaction(qRT-PCR)in 22 PCOS patients and 18 ovulation patients. The function of mRNAs with differential expression patterns were explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS We found out 687 up-regulated and 680 down-regulated mRNAs, as well as 345 up-regulated and 63 down-regulated lncRNAs in the PCOS patients in contrast to normal ovulation patients. qRT-PCR was used to detect the expression of 11 mRNAs, and validated that the expression of these 6 mRNAs CXCR4, RABL6, OPN3, SYBU, IDH1, NOP10 were significantly elevated among PCOS patients, and the expression of ZEB1 was significantly decreased. qRT-PCR was performed to detect the expression of 9 lncRNAs, and validated that the expression of these 7 lncRNAs IDH1-AS1, PCAT14, FTX, DANCR, PRKCQ-AS1, SNHG8, TPT1-AS1 were significantly enhanced among PCOS patients. Bioinformatics analysis showed that differentially expressed genes (DEGs) involved KEGG pathway were tyrosine metabolism, PI3K-Akt pathway, metabolic pathway, Jak-STAT pathway, pyruvate metabolism, protein processing in endoplasmic reticulum, oxidative phosphorylation and proteasome. The up-regulation of GO classification was involved in ATP metabolic process, oxidative phosphorylation, RNA catabolic process, and down-regulation of GO classification was response to corticosteroid, steroid hormone, and T cell activation. CONCLUSION Our results determined the characteristics and expression profile of endometrial lncRNAs and mRNAs in PCOS patients in pre-receptive phase, which is the day 3 after oocytes retrival. The possible pathways and related genes of endometrial receptivity disorders were found, and those lncRNAs may be developed as a predictive biomarker of endometrium in pre-receptive phase.
Collapse
Affiliation(s)
- Xiuhua Xu
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Cardiovascular platform, Institute of Health and Disease, Hebei Medical University, Shijiazhuang, 050000, China
| | - Aimin Yang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Gynecology and Obstetrics, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Pengxiang Tian
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Kun Zhang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yuanyuan Liu
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yizhuo Wang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ziwei Wang
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanjing Wu
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhiming Zhao
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qian Li
- Cardiovascular platform, Institute of Health and Disease, Hebei Medical University, Shijiazhuang, 050000, China
| | - Baojun Shi
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xianghua Huang
- Department of Gynecology and Obstetrics, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Gui-Min Hao
- Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, Hebei Medical Key Discipline of Reproductive Medicine, Hebei Collaborative Innovation Center of Integrated Traditional and Western Medicine on Reproductive Disease, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
9
|
Ding H, Xu H, Zhang T, Shi C. Identification and validation of M2 macrophage-related genes in endometriosis. Heliyon 2023; 9:e22258. [PMID: 38058639 PMCID: PMC10695979 DOI: 10.1016/j.heliyon.2023.e22258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
Aims M2 macrophage is believed to play an important role in the development of endometriosis. This study aimed to identify several key genes related to the M2 macrophage in endometriosis. Method Differential expressed genes between endometriosis and non-endometriosis were identified based on three microarray datasets from the Gene Expression Omnibus database. Gene modules significantly associated with M2 macrophage were identified from the weighted gene co-expression network analysis. Furthermore, by intersecting the differential expressed genes and M2 macrophage-associated module genes, M2 macrophage-related genes in endometriosis were identified. Functional analyses of the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes for these genes were then performed. Following, the least absolute shrinkage and selection operator, random forest, and receiver operating characteristic curves were further conducted to identify the key M2 macrophage-related genes in endometriosis. Finally, the expressions of key genes in endometriosis, as well as their correlations with M2 macrophages were verified in an independent validation cohort. Results Totally, 185 M2 macrophage-related genes were identified, and they were mainly enriched in functions associated with the cell cycle, oocyte maturation, and immune response. Following machine learning algorithms, eight key genes were selected in the endometriosis: PGR, OLFM4, PIP5K1B, CCNA1, BRIP1, CADM1, PRAME, and GCNT1. The eight key genes were confirmed to be negative with M2 macrophage infiltration levels. Furthermore, the expression levels of these genes were significantly lower in the middle secretory stage while relevantly higher in the proliferative stage. The validation analysis also showed similar outcomes with the above results. Conclusion Eight M2 macrophage-related genes were identified as potential biomarkers of endometriosis, providing novel understanding of immune cells in the endometriosis.
Collapse
Affiliation(s)
- Hongyan Ding
- Department of Obstetrics and Gynecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Hongge Xu
- Department of Obstetrics and Gynecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Ting Zhang
- Department of Obstetrics and Gynecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Can Shi
- Department of Obstetrics and Gynecology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| |
Collapse
|
10
|
Teh WT, Chung J, Holdsworth-Carson SJ, Donoghue JF, Healey M, Rees HC, Bittinger S, Obers V, Sloggett C, Kendarsari R, Fung JN, Mortlock S, Montgomery GW, Girling JE, Rogers PAW. A molecular staging model for accurately dating the endometrial biopsy. Nat Commun 2023; 14:6222. [PMID: 37798294 PMCID: PMC10556104 DOI: 10.1038/s41467-023-41979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Natural variability in menstrual cycle length, coupled with rapid changes in endometrial gene expression, makes it difficult to accurately define and compare different stages of the endometrial cycle. Here we develop and validate a method for precisely determining endometrial cycle stage based on global gene expression. Our 'molecular staging model' reveals significant and remarkably synchronised daily changes in expression for over 3400 endometrial genes throughout the cycle, with the most dramatic changes occurring during the secretory phase. Our study significantly extends existing data on the endometrial transcriptome, and for the first time enables identification of differentially expressed endometrial genes with increasing age and different ethnicities. It also allows reinterpretation of all endometrial RNA-seq and array data that has been published to date. Our molecular staging model will significantly advance understanding of endometrial-related disorders that affect nearly all women at some stage of their lives, such as heavy menstrual bleeding, endometriosis, adenomyosis, and recurrent implantation failure.
Collapse
Affiliation(s)
- W T Teh
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Melbourne IVF, Melbourne, Victoria, Australia
| | - J Chung
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Melbourne, Victoria, Australia
| | - S J Holdsworth-Carson
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, Victoria, Australia
| | - J F Donoghue
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
| | - M Healey
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
| | - H C Rees
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - S Bittinger
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - V Obers
- Melbourne Pathology, Collingwood, Victoria, Australia
| | - C Sloggett
- Melbourne Bioinformatics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Melbourne, Victoria, Australia
| | - R Kendarsari
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
- Illumina Inc. 11 Biopolis Way, Singapore, 138667, Singapore
| | - J N Fung
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - S Mortlock
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - G W Montgomery
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - J E Girling
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Aotearoa, New Zealand
| | - P A W Rogers
- University of Melbourne Department of Obstetrics and Gynaecology, Melbourne, Victoria, Australia.
- Royal Women's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Parraga-Leo A, Sebastian-Leon P, Devesa-Peiro A, Marti-Garcia D, Pellicer N, Remohi J, Dominguez F, Diaz-Gimeno P. Deciphering a shared transcriptomic regulation and the relative contribution of each regulator type through endometrial gene expression signatures. Reprod Biol Endocrinol 2023; 21:84. [PMID: 37700285 PMCID: PMC10496172 DOI: 10.1186/s12958-023-01131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGORUND While various endometrial biomarkers have been characterized at the transcriptomic and functional level, there is generally a poor overlap among studies, making it unclear to what extent their upstream regulators (e.g., ovarian hormones, transcription factors (TFs) and microRNAs (miRNAs)) realistically contribute to menstrual cycle progression and function. Unmasking the intricacies of the molecular interactions in the endometrium from a novel systemic point of view will help gain a more accurate perspective of endometrial regulation and a better explanation the molecular etiology of endometrial-factor infertility. METHODS An in-silico analysis was carried out to identify which regulators consistently target the gene biomarkers proposed in studies related to endometrial progression and implantation failure (19 gene lists/signatures were included). The roles of these regulators, and of genes related to progesterone and estrogens, were then analysed in transcriptomic datasets compiled from samples collected throughout the menstrual cycle (n = 129), and the expression of selected TFs were prospectively validated in an independent cohort of healthy participants (n = 19). RESULTS A total of 3,608 distinct genes from the 19 gene lists were associated with endometrial progression and implantation failure. The lists' regulation was significantly favoured by TFs (89% (17/19) of gene lists) and progesterone (47% (8 /19) of gene lists), rather than miRNAs (5% (1/19) of gene lists) or estrogen (0% (0/19) of gene lists), respectively (FDR < 0.05). Exceptionally, two gene lists that were previously associated with implantation failure and unexplained infertility were less hormone-dependent, but primarily regulated by estrogen. Although endometrial progression genes were mainly targeted by hormones rather than non-hormonal contributors (odds ratio = 91.94, FDR < 0.05), we identified 311 TFs and 595 miRNAs not previously associated with ovarian hormones. We highlight CTCF, GATA6, hsa-miR-15a-5p, hsa-miR-218-5p, hsa-miR-107, hsa-miR-103a-3p, and hsa-miR-128-3p, as overlapping novel master regulators of endometrial function. The gene expression changes of selected regulators throughout the menstrual cycle (FDR < 0.05), dually validated in-silico and through endometrial biopsies, corroborated their potential regulatory roles in the endometrium. CONCLUSIONS This study revealed novel hormonal and non-hormonal regulators and their relative contributions to endometrial progression and pathology, providing new leads for the potential causes of endometrial-factor infertility.
Collapse
Affiliation(s)
- Antonio Parraga-Leo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
| | - Patricia Sebastian-Leon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
| | - Almudena Devesa-Peiro
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
| | - Diana Marti-Garcia
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de La Policia Local 3, 46015, Valencia, Spain
| | - Jose Remohi
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de La Policia Local 3, 46015, Valencia, Spain
| | - Francisco Dominguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
| | - Patricia Diaz-Gimeno
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain.
| |
Collapse
|
12
|
Meltsov A, Saare M, Teder H, Paluoja P, Arffman RK, Piltonen T, Laudanski P, Wielgoś M, Gianaroli L, Koel M, Peters M, Salumets A, Krjutškov K, Palta P. Targeted gene expression profiling for accurate endometrial receptivity testing. Sci Rep 2023; 13:13959. [PMID: 37633957 PMCID: PMC10460380 DOI: 10.1038/s41598-023-40991-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Expressional profiling of the endometrium enables the personalised timing of the window of implantation (WOI). This study presents and evaluates a novel analytical pipeline based on a TAC-seq (Targeted Allele Counting by sequencing) method for endometrial dating. The expressional profiles were clustered, and differential expression analysis was performed on the model development group, using 63 endometrial biopsies spanning over proliferative (PE, n = 18), early-secretory (ESE, n = 18), mid-secretory (MSE, n = 17) and late-secretory (LSE, n = 10) endometrial phases of the natural cycle. A quantitative predictor model was trained on the development group and validated on sequenced samples from healthy women, consisting of 52 paired samples taken from ESE and MSE phases and five LSE phase samples from 31 individuals. Finally, the developed test was applied to 44 MSE phase samples from a study group of patients diagnosed with recurrent implantation failure (RIF). In validation samples (n = 57), we detected displaced WOI in 1.8% of the samples from fertile women. In the RIF study group, we detected a significantly higher proportion of the samples with shifted WOI than in the validation set of samples from fertile women, 15.9% and 1.8% (p = 0.012), respectively. The developed model was evaluated with an average cross-validation accuracy of 98.8% and an accuracy of 98.2% in the validation group. The developed beREADY screening model enables sensitive and dynamic detection of selected transcriptome biomarkers, providing a quantitative and accurate prediction of endometrial receptivity status.
Collapse
Affiliation(s)
- Alvin Meltsov
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Merli Saare
- Competence Centre On Health Technologies, 50411, Tartu, Estonia.
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia.
| | - Hindrek Teder
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Priit Paluoja
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, FI-90014, Oulu, Finland
| | - Terhi Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, FI-90014, Oulu, Finland
| | - Piotr Laudanski
- Oviklinika Infertility Center, 01-377, Warsaw, Poland
- Women's Health Research Institute, Calisia University, 62-800, Kalisz, Poland
- Department of Obstetrics, Gynecology and Gynaecological Oncology, Medical University of Warsaw, 02-091, Warsaw, Poland
| | | | - Luca Gianaroli
- SISMeR, Reproductive Medicine Institute, 40138, Bologna, Italy
| | - Mariann Koel
- Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Maire Peters
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Andres Salumets
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, SE-141 52, Stockholm, Sweden
| | - Kaarel Krjutškov
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
| | - Priit Palta
- Competence Centre On Health Technologies, 50411, Tartu, Estonia
- Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
13
|
Edimiris P, Doehmen C, Baston-Buest DM, Kruessel JS, Bielfeld AP. One center experience with a personalized frozen-thawed embryo transfer in patients with recurrent implantation failure. J Assist Reprod Genet 2023:10.1007/s10815-023-02835-7. [PMID: 37261585 DOI: 10.1007/s10815-023-02835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE Displaced endometrial receptivity has been discussed as a possible cause of recurrent implantation failure in patients undergoing assisted reproductive technology. The aim of this study was to document our experience with the endometrial receptivity analysis in patients with recurrent implantation failure. METHODS This retrospective cohort study, conducted at the Fertility Centre of the University Hospital, Duesseldorf Germany, presents the results of the endometrial receptivity analysis in 67 patients with recurrent implantation failure and compares the clinical outcome between these 67 patients who underwent a personalized frozen-thawed embryo transfer guided by the results of the endometrial receptivity analysis and 32 patients with recurrent implantation failure who performed a standardized frozen-thawed embryo transfer. RESULTS The data analysis revealed a displaced endometrial receptivity in 73% (49/67) of all tested patients. Out of these patients, 24% (12/49) were early receptive, 74% (36/49) were pre-receptive, and 2% (1/49) were post-receptive. Comparison of pregnancy rate, clinical pregnancy rate, and live-birth rate between personalized (49%, 39%, 27%, respectively) and standardized embryo transfer (44%, 31%, 19%, respectively) reveals no statistically significant difference. In both groups, patients had an average of four unsuccessful embryo transfers. CONCLUSION In this cohort of patients with recurrent implantation failure, the endometrial receptivity analysis showed a high incidence of displaced endometrial receptivity. However, a personalized embryo transfer did not increase reproductive outcome. Displaced endometrial receptivity might not be the main cause for recurrent implantation failure in this cohort.
Collapse
Affiliation(s)
- Philippos Edimiris
- Department of OB/GYN and REI (UniKiD), Medical Center University of Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany.
| | - Cornelius Doehmen
- Department of OB/GYN and REI (UniKiD), Medical Center University of Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
- Kinderwunschzentrum Niederrhein, Madrider Str. 6, 41069, Moenchengladbach, Germany
| | - Dunja Maria Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Center University of Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Jan-Steffen Kruessel
- Department of OB/GYN and REI (UniKiD), Medical Center University of Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Alexandra Petra Bielfeld
- Department of OB/GYN and REI (UniKiD), Medical Center University of Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| |
Collapse
|
14
|
Kirschen GW, Hessami K, AlAshqar A, Afrin S, Lulseged B, Borahay M. Uterine Transcriptome: Understanding Physiology and Disease Processes. BIOLOGY 2023; 12:634. [PMID: 37106834 PMCID: PMC10136129 DOI: 10.3390/biology12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
In recent years, transcriptomics has enabled us to gain a deeper understanding of fundamental reproductive physiology, including the menstrual cycle, through a more precise molecular analysis. The endometrial mRNA transcript levels fluctuate during the normal menstrual cycle, indicating changes in the relative recruitment and abundance of inflammatory cells, as well as changes in the receptivity and remodeling of the endometrium. In addition to providing a more comprehensive understanding of the molecular underpinnings of pathological gynecological conditions such as endometriosis, leiomyomas, and adenomyosis through RNA sequencing, this has allowed researchers to create transcriptome profiles during both normal menstrual cycles and pathological gynecological conditions. Such insights could potentially lead to more targeted and personalized therapies for benign gynecological conditions. Here, we provide an overview of recent advances in transcriptome analysis of normal and pathological endometrium.
Collapse
Affiliation(s)
- Gregory W. Kirschen
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamran Hessami
- Maternal Fetal Care Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Mostafa Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Żeberkiewicz M, Hyc A, Iwan A, Zwierzchowska A, Ścieżyńska A, Kalaszczyńska I, Barcz E, Malejczyk J. Expression of Fucosyltransferase 4 ( FUT4) mRNA Is Increased in Endometrium from Women with Endometriosis. J Clin Med 2022; 11:jcm11195606. [PMID: 36233470 PMCID: PMC9572337 DOI: 10.3390/jcm11195606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Endometriosis is a common gynecological disorder defined as the presence of endometrial-like tissue (glands and stroma) outside the uterus. The etiopathogenesis of endometriosis is still poorly recognized. It is speculated that stage-specific embryonic antigen 1 (SSEA-1)-positive stem-like glandular epithelial cells may contribute to the development of the disease. The synthesis of SSEA-1 is mediated by fucosyltransferase 4 encoded by the FUT4 gene. Therefore, this study aimed to evaluate the specific expression of FUT4 mRNA in biopsies of the endometrium from women with and without endometriosis. FUT4 mRNA levels were examined in 49 women with laparoscopically confirmed endometriosis and 28 controls by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The expression of FUT4 mRNA was significantly increased in the endometrium of patients with endometriosis when compared to the controls (p < 0.0001). Expression of FUT4 mRNA in the endometrium was correlated with the severity of endometriosis (rs = 0.5579, p < 0.0001); however, there were no differences in endometrial FUT4 mRNA expression when comparing endometriotic lesions from various locations. The discriminatory ability of FUT4 mRNA expression was evaluated by receiver-operating characteristics (ROC), which showed high statistical significance (AUC = 0.90, p < 0.0001), thus indicating that an increased level of endometrial FUT4 mRNA may serve as a specific marker for endometriosis.
Collapse
Affiliation(s)
- Marta Żeberkiewicz
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Anna Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Aneta Zwierzchowska
- Chair and Clinic of Gynecology and Obstetrics, Faculty of Medicine, Collegium Medicum, Cardinale Stefan Wyszyński University, 04-749 Warsaw, Poland
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Diagendo Ltd., 05-504 Bobrowiec, Poland
| | - Ewa Barcz
- Chair and Clinic of Gynecology and Obstetrics, Faculty of Medicine, Collegium Medicum, Cardinale Stefan Wyszyński University, 04-749 Warsaw, Poland
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Diagendo Ltd., 05-504 Bobrowiec, Poland
- Correspondence: ; Tel./Fax: +48-22-6295282
| |
Collapse
|
16
|
Herta AC, Mengden L, Akin N, Billooye K, Coucke W, Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo and in vitro grown and matured mouse antral follicles. Biol Reprod 2022; 107:998-1013. [PMID: 35717588 DOI: 10.1093/biolre/ioac124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/14/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), polyol pathway, hexosamine biosynthesis pathway (HBP)) as well as for the antioxidant capacity were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate (NADPH) and increases TCA cycle and small molecules antioxidant capacity (SMAC) activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfil their role in providing proper support for acquiring oocyte competence. SUMMARY SENTENCE: In vitro cultured mouse follicles exhibit altered glycolytic activity and redox metabolism in the somatic compartment during meiotic maturation.
Collapse
Affiliation(s)
- Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Lucia Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Nazli Akin
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Wim Coucke
- Freelance statistician, Brugstraat 107, 3001 Heverlee, Belgium
| | - Julia Leersum
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Berta Cava-Cami
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Laura Saucedo-Cuevas
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| |
Collapse
|
17
|
Adamczyk M, Rawłuszko-Wieczorek AA, Wirstlein P, Nowicki M, Jagodziński PP, Wender-Ozegowska E, Kedzia M. Assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. Biomed Pharmacother 2022; 150:112989. [PMID: 35489280 DOI: 10.1016/j.biopha.2022.112989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
Endometriosis is the cause of infertility. The eutopic endometrium of women with endometriosis showed an aberrant expression pattern of multitude genes. The role of TET1 protein in the pathogenesis of endometriosis and related infertility is not sufficiently known. Further, knowledge on TET1 transcriptional control still remains incomplete. The aim of the study was assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. The study included 44 infertile patients with endometriosis (IWE) and 77 infertile (IW) and fertile (FW) patients without endometriosis. The research material was eutopic endometrium. The TET1 mRNA level was analyzed by qPCR. Western blot was used to evaluate the level of TET1 protein. The level of DNA methylation and H3K27me3 level of TET1 gene's promoter region were assessed using HRM and ChIP qPCR, respectively. The level of TET1 expression (TET1 mRNA; TET1 protein level) was lower in IWE during the implantation window (p < 0.001; p = 0.0329). The level of TET1 DNA methylation was higher in the secretory endometrium in mild and advanced IWE (p < 0.004; p < 0.008). H3K27me3 level did not differ between the study groups. The diminished expression of TET1 gene during the secretory phase, may account for the aberrant process of embryonic implantation in infertile endometriosis patients. DNA hypermethylation of TET1 gene is a potential relevant regulator of its expression. H3K27me3 occupancy does not affect the expression of TET1 gene in our study group.
Collapse
Affiliation(s)
- Magdalena Adamczyk
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland.
| | | | - Przemysław Wirstlein
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| | - Michał Nowicki
- Department of Histology and Embriology, Poznan University of Medical Sciences, 60-781, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| | - Malgorzata Kedzia
- Department of Reproduction, Poznan University of Medical Sciences, 60-535, Poland
| |
Collapse
|
18
|
Epigenetic Factors in Eutopic Endometrium in Women with Endometriosis and Infertility. Int J Mol Sci 2022; 23:ijms23073804. [PMID: 35409163 PMCID: PMC8998720 DOI: 10.3390/ijms23073804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Eutopic endometrium in patients with endometriosis is characterized by aberrant expression of essential genes during the implantation window. It predisposes to disturbance of endometrial receptivity. The pathomechanism of implantation failures in women with endometriosis remains unclear. This paper aims to summarize the knowledge on epigenetic mechanisms in eutopic endometrium in the group of patients with both endometriosis and infertility. The impaired DNA methylation patterns of gene promoter regions in eutopic tissue was established. The global profile of histone acetylation and methylation and the analysis of selected histone modifications showed significant differences in the endometrium of women with endometriosis. Aberrant expression of the proposed candidate genes may promote an unfavorable embryonic implantation environment of the endometrium due to an immunological dysfunction, inflammatory reaction, and apoptotic response in women with endometriosis. The role of the newly discovered proteins regulating gene expression, i.e., TET proteins, in endometrial pathology is not yet completely known. The cells of the eutopic endometrium in women with endometriosis contain a stable, impaired methylation pattern and a histone code. Medication targeting critical genes responsible for the aberrant gene expression pattern in eutopic endometrium may help treat infertility in women with endometriosis.
Collapse
|
19
|
Diaz-Gimeno P, Sebastian-Leon P, Sanchez-Reyes JM, Spath K, Aleman A, Vidal C, Devesa-Peiro A, Labarta E, Sánchez-Ribas I, Ferrando M, Kohls G, García-Velasco JA, Seli E, Wells D, Pellicer A. Identifying and optimizing human endometrial gene expression signatures for endometrial dating. Hum Reprod 2022; 37:284-296. [PMID: 34875061 DOI: 10.1093/humrep/deab262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION What are the key considerations for developing an enhanced transcriptomic method for secretory endometrial tissue dating? SUMMARY ANSWER Multiple gene expression signature combinations can serve as biomarkers for endometrial dating, but their predictive performance is variable and depends on the number and identity of the genes included in the prediction model, the dataset characteristics and the technology employed for measuring gene expression. WHAT IS KNOWN ALREADY Among the new generation of transcriptomic endometrial dating (TED) tools developed in the last decade, there exists variation in the technology used for measuring gene expression, the gene makeup and the prediction model design. A detailed study, comparing prediction performance across signatures for understanding signature behaviour and discrepancies in gene content between them, is lacking. STUDY DESIGN, SIZE, DURATION A multicentre prospective study was performed between July 2018 and October 2020 at five different centres from the same group of clinics (Spain). This study recruited 281 patients and finally included in the gene expression analysis 225 Caucasian patients who underwent IVF treatment. After preprocessing and batch effect filtering, gene expression measurements from 217 patients were combined with artificial intelligence algorithms (support vector machine, random forest and k-nearest neighbours) allowing evaluation of different prediction models. In addition, secretory-phase endometrial transcriptomes from gene expression omnibus (GEO) datasets were analysed for 137 women, to study the endometrial dating capacity of genes independently and grouped by signatures. This provided data on the consistency of prediction across different gene expression technologies and datasets. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrial biopsies were analysed using a targeted TruSeq (Illumina) custom RNA expression panel called the endometrial dating panel (ED panel). This panel included 301 genes previously considered relevant for endometrial dating as well as new genes selected for their anticipated value in detecting the secretory phase. Final samples (n = 217) were divided into a training set for signature discovery and an independent testing set for evaluation of predictive performance of the new signature. In addition, secretory-phase endometrial transcriptomes from GEO were analysed for 137 women to study endometrial dating capacity of genes independently and grouped by signatures. Predictive performance among these signatures was compared according to signature gene set size. MAIN RESULTS AND THE ROLE OF CHANCE Testing of the ED panel allowed development of a model based on a new signature of 73 genes, which we termed 'TED' and delivers an enhanced tool for the consistent dating of the secretory phase progression, especially during the mid-secretory endometrium (3-8 days after progesterone (P) administration (P + 3-P + 8) in a hormone replacement therapy cycle). This new model showed the best predictive capacity in an independent test set for staging the endometrial tissue in the secretory phase, especially in the expected window of implantation (average of 114.5 ± 7.2 h of progesterone administered; range in our patient population of 82-172 h). Published sets of genes, in current use for endometrial dating and the new TED genes, were evaluated in parallel in whole-transcriptome datasets and in the ED panel dataset. TED signature performance was consistently excellent for all datasets assessed, frequently outperforming previously published sets of genes with a smaller number of genes for dating the endometrium in the secretory phase. Thus, this optimized set exhibited prediction consistency across datasets. LARGE SCALE DATA The data used in this study is partially available at GEO database. GEO identifiers GSE4888, GSE29981, GSE58144, GSE98386. LIMITATIONS, REASONS FOR CAUTION Although dating the endometrial biopsy is crucial for investigating endometrial progression and the receptivity process, further studies are needed to confirm whether or not endometrial dating methods in general are clinically useful and to guide the specific use of TED in the clinical setting. WIDER IMPLICATIONS OF THE FINDINGS Multiple gene signature combinations provide adequate endometrial dating, but their predictive performance depends on the identity of the genes included, the gene expression platform, the algorithms used and dataset characteristics. TED is a next-generation endometrial assessment tool based on gene expression for accurate endometrial progression dating especially during the mid-secretory. STUDY FUNDING/COMPETING INTEREST(S) Research funded by IVI Foundation (1810-FIVI-066-PD). P.D.-G. visiting scientist fellowship at Oxford University (BEFPI/2010/032) and Josefa Maria Sanchez-Reyes' predoctoral fellowship (ACIF/2018/072) were supported by a program from the Generalitat Valenciana funded by the Spanish government. A.D.-P. is supported by the FPU/15/01398 predoctoral fellowship from the Ministry of Science, Innovation and Universities (Spanish Government). D.W. received support from the NIHR Oxford Biomedical Research Centre. The authors do not have any competing interests to declare.
Collapse
Affiliation(s)
- P Diaz-Gimeno
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre John Radcliffe Hospital, Oxford, UK
| | - P Sebastian-Leon
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - J M Sanchez-Reyes
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - K Spath
- Research Department, JUNO Genetics, Oxford, UK
| | - A Aleman
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - C Vidal
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Reproductive medicine, IVI RMA Valencia, Valencia, Spain
| | - A Devesa-Peiro
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - E Labarta
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Reproductive medicine, IVI RMA Valencia, Valencia, Spain
| | - I Sánchez-Ribas
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Reproductive medicine, IVI RMA Barcelona, Barcelona, Spain
| | - M Ferrando
- Reproductive medicine, IVI RMA Bilbao, Leioa, Bizkaia, Spain
| | - G Kohls
- Reproductive medicine, IVI RMA Madrid, Madrid, Spain
| | - J A García-Velasco
- Reproductive medicine, IVI RMA Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Madrid, Spain
| | - E Seli
- Research Department, IVI RMA New Jersey, Basking Ridge, NJ, USA
- Department of Obstetrics, Gynecology & Reproductive Science, Yale School of Medicine, New Haven, CT, USA
| | - D Wells
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre John Radcliffe Hospital, Oxford, UK
- Research Department, JUNO Genetics, Oxford, UK
| | - A Pellicer
- Genomic & Systems Reproductive Medicine, IVI Foundation/Instituto de investigación sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
- Research Department, JUNO Genetics, Oxford, UK
- Reproductive medicine, IVI RMA Rome, Roma, Italy
| |
Collapse
|
20
|
Mortlock S, McKinnon B, Montgomery GW. Genetic Regulation of Transcription in the Endometrium in Health and Disease. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:795464. [PMID: 36304015 PMCID: PMC9580733 DOI: 10.3389/frph.2021.795464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2023] Open
Abstract
The endometrium is a complex and dynamic tissue essential for fertility and implicated in many reproductive disorders. The tissue consists of glandular epithelium and vascularised stroma and is unique because it is constantly shed and regrown with each menstrual cycle, generating up to 10 mm of new mucosa. Consequently, there are marked changes in cell composition and gene expression across the menstrual cycle. Recent evidence shows expression of many genes is influenced by genetic variation between individuals. We and others have reported evidence for genetic effects on hundreds of genes in endometrium. The genetic factors influencing endometrial gene expression are highly correlated with the genetic effects on expression in other reproductive (e.g., in uterus and ovary) and digestive tissues (e.g., salivary gland and stomach), supporting a shared genetic regulation of gene expression in biologically similar tissues. There is also increasing evidence for cell specific genetic effects for some genes. Sample size for studies in endometrium are modest and results from the larger studies of gene expression in blood report genetic effects for a much higher proportion of genes than currently reported for endometrium. There is also emerging evidence for the importance of genetic variation on RNA splicing. Gene mapping studies for common disease, including diseases associated with endometrium, show most variation maps to intergenic regulatory regions. It is likely that genetic risk factors for disease function through modifying the program of cell specific gene expression. The emerging evidence from our gene mapping studies coupled with tissue specific studies, and the GTEx, eQTLGen and EpiMap projects, show we need to expand our understanding of the complex regulation of gene expression. These data also help to link disease genetic risk factors to specific target genes. Combining our data on genetic regulation of gene expression in endometrium, and cell types within the endometrium with gene mapping data for endometriosis and related diseases is beginning to uncover the specific genes and pathways responsible for increased risk of these diseases.
Collapse
Affiliation(s)
| | | | - Grant W. Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Emerging in vitro platforms and omics technologies for studying the endometrium and early embryo-maternal interface in humans. Placenta 2022; 125:36-46. [DOI: 10.1016/j.placenta.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 01/09/2022] [Indexed: 12/11/2022]
|
22
|
Chen J, He A, Zhang Q, Zhao J, Fu J, Li H, Li Y. The RNA-seq based endometrial receptivity test (rsERT) compared to pinopode: A better diagnostic tool for endometrial receptivity for patients with recurrent implantation failure in Chinese population. Front Endocrinol (Lausanne) 2022; 13:1009161. [PMID: 36339409 PMCID: PMC9634259 DOI: 10.3389/fendo.2022.1009161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Displaced window of implantation (WOI) is one of the endometrial origins that accounts for implantation failure, especially for patients with recurrent implantation failure (RIF), yet no standard diagnostic tool has been recognized. The study consists of two parts, aiming to compare the concordance and efficacy of the diagnostic tools, the newly developed RNA-seq based endometrial receptivity test (rsERT) to the conventional pinopode, in diagnosing WOI and guiding personalized embryo transfer (pET). With the same group of RIF patients, the rsERT diagnosed 32 patients (65.31%) with normal WOIs, and most of the displacements were advancements (30.61%). While according to pinopode, only 14 patients (28.57%) were found with normal WOIs, and most patients (63.27%) presented delayed growth patterns. After conducting pET, patients in the rsERT group had higher successful pregnancy rates while requiring fewer ET cycles (50.00% vs. 16.67%, p=0.001). The study proved poor consistency between the diagnostic tools of endometrial receptivity based on cellular structure and gene profiling, and it supported rsERT as a reliable tool with potential clinical value.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
| | - Aihua He
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
| | - Jing Fu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
- *Correspondence: Hui Li, ; Yanping Li,
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, China
- *Correspondence: Hui Li, ; Yanping Li,
| |
Collapse
|
23
|
Transcriptome study of receptive endometrium in overweight and obese women shows important expression differences in immune response and inflammatory pathways in women who do not conceive. PLoS One 2021; 16:e0261873. [PMID: 34941965 PMCID: PMC8699967 DOI: 10.1371/journal.pone.0261873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity and being overweight are growing worldwide health problems that also affect women of reproductive age. They impair women’s fertility and are associated with lower IVF success rates. The mechanism by which increased body weight disrupts fertility has not yet been established. One possibility is that it affects the process of embryo implantation on the endometrial level. The purpose of our study was to determine the differences in enriched biological pathways in the endometrium of overweight and obese women undergoing IVF procedures. For this purpose, 14 patients (5 pregnant, 9 non-pregnant) were included in the study. Endometrial samples were obtained during the window of implantation and RNA sequencing was performed. There were no differences in general patient’s and IVF cycle characteristics between pregnant and non-pregnant women. In the endometrial samples of women who did not conceive, pathways related to the immune response, inflammation, and reactive oxygen species production were over-expressed. Our findings show that the reason for implantation failure in overweight and obese women could lie in the excessive immune and inflammatory response at the endometrial level.
Collapse
|
24
|
Santamaria X, Simón C. Endometrial Factor in Unexplained Infertility and Recurrent Implantation Failure. Semin Reprod Med 2021; 39:227-232. [PMID: 34425598 DOI: 10.1055/s-0041-1735199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Unexplained infertility (UI) and recurrent implantation failure (RIF) are diagnoses based on failed pregnancy attempts within current infertility treatment models. Both diagnoses are made when fertility is unexplained based on current diagnostic methods and has no clear cause; UI is diagnosed when testing is inconclusive, and RIF is diagnosed after three failed in vitro fertilization cycles. In both cases, interventions are often introduced without an understanding of the cause of the infertility, frequently leading to frustration for patients and caregivers. Here, we review evidence to support an influence of endometrial factor in patients given these poorly defined diagnoses and possible treatments targeting the endometrium to improve outcomes in these patients.
Collapse
Affiliation(s)
- Xavier Santamaria
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain.,Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carlos Simón
- Igenomix Foundation, INCLIVA Health Research Institute, Valencia, Spain.,Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain.,Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston
| |
Collapse
|
25
|
Khatun M, Meltsov A, Lavogina D, Loid M, Kask K, Arffman RK, Rossi HR, Lättekivi F, Jääger K, Krjutškov K, Rinken A, Salumets A, Piltonen TT. Decidualized endometrial stromal cells present with altered androgen response in PCOS. Sci Rep 2021; 11:16287. [PMID: 34381107 PMCID: PMC8357821 DOI: 10.1038/s41598-021-95705-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Hyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSCCtrl); however, this has not been assessed in PCOS cells (eSCPCOS). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT. The non-DE eSCs were subjected to E2 ± DHT treatment, whereas the DE (0.5 mM 8-Br-cAMP, 96 h) eSCs were post-treated with E2 and P4 ± DHT, and RNA-sequenced. Validation was performed by immunofluorescence and immunohistochemistry. The results showed that, regardless of treatment, the PCOS and Ctrl samples clustered separately. The comparison of DE vs. non-DE eSCPCOS without DHT revealed PCOS-specific differentially expressed genes (DEGs) involved in mitochondrial function and progesterone signaling. When further adding DHT, we detected altered responses for lysophosphatidic acid (LPA), inflammation, and androgen signaling. Overall, the results highlight an underlying defect in decidualized eSCPCOS, present with or without DHT exposure, and possibly linked to the altered pregnancy outcomes. We also report novel factors which elucidate the mechanisms of endometrial dysfunction in PCOS.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Alvin Meltsov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Marina Loid
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Keiu Kask
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Riikka K Arffman
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Henna-Riikka Rossi
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Kersti Jääger
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.
| |
Collapse
|
26
|
Molecular Characterisation of Uterine Endometrial Proteins during Early Stages of Pregnancy in Pigs by MALDI TOF/TOF. Int J Mol Sci 2021; 22:ijms22136720. [PMID: 34201586 PMCID: PMC8267828 DOI: 10.3390/ijms22136720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanism underlying embryonic implantation is vital to understand the correct communications between endometrium and developing conceptus during early stages of pregnancy. This study’s objective was to determine molecular changes in the uterine endometrial proteome during the preimplantation and peri-implantation between 9 days (9D), 12 days (12D), and 16 days (16D) of pregnant Polish Large White (PLW) gilts. 2DE-MALDI-TOF/TOF and ClueGOTM approaches were employed to analyse the biological networks and molecular changes in porcine endometrial proteome during maternal recognition of pregnancy. A total of sixteen differentially expressed proteins (DEPs) were identified using 2-DE gels and MALDI-TOF/TOF mass spectrometry. Comparison between 9D and 12D of pregnancy identified APOA1, CAPZB, LDHB, CCT5, ANXA4, CFB, TTR upregulated DEPs, and ANXA5, SMS downregulated DEPs. Comparison between 9D and 16D of pregnancy identified HP, APOA1, ACTB, CCT5, ANXA4, CFB upregulated DEPs and ANXA5, SMS, LDHB, ACTR3, HP, ENO3, OAT downregulated DEPs. However, a comparison between 12D and 16D of pregnancy identified HP, ACTB upregulated DEPs, and CRYM, ANXA4, ANXA5, CAPZB, LDHB, ACTR3, CCT5, ENO3, OAT, TTR down-regulated DEPs. Outcomes of this study revealed key proteins and their interactions with metabolic pathways involved in the recognition and establishment of early pregnancy in PLW gilts.
Collapse
|
27
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
28
|
Alfer J, Popovici RM, Fattahi A, Krieg J, Dittrich R, Beckmann MW, Hartmann A, Bleisinger N. Endometrial delay is found to be part of a normal individual dynamic transformation process. Arch Gynecol Obstet 2021; 304:1599-1609. [PMID: 34009460 PMCID: PMC8553713 DOI: 10.1007/s00404-021-06086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
Purpose Limited information is clinically available concerning endometrial receptivity; assessing endometrial transformation status is therefore an urgent topic in assisted reproductive technology. This study aimed to investigate individual endometrial transformation rates during the secretory phase in subfertile patients using personal endometrial transformation analysis. Methods Monitoring was carried out during the secretory phase to obtain endometrial receptivity profiles. For the investigation, two endometrial biopsies were taken within one menstrual cycle. The extended endometrial dating was based on the Noyes criteria, combined with immunohistochemical analyses of hormone receptors and proliferation marker Ki-67. Biopsies were taken mainly at days ovulation (OV, n = 76)/hormone replacement therapy (HRT, n = 58) + 5 and + 10. Results The results of the two biopsies were correlated with the clinically expected day of the cycle and showed temporal delays or hypercompensations, diverging from the expected cycle days by 0.5–5 days. In comparison with the first biopsies, the transformation rate in the second biopsies showed compensation, augmented delay, or constant transformation in 48.69, 22.37, and 28.94% of cases for ovulation in natural cycles and 56.89, 25.85, and 17.26% for HRT cycles, respectively. Conclusion The study revealed an individually dynamic transformation process of the endometrium, with the ability to compensate or enlarge an initial “delay”, which is now identified as a normal individual transformation process during the secretory phase. This information is of great importance for the scientific investigation of dynamic changes in endometrial tissue, as well as for the timing of embryo transfers.
Collapse
Affiliation(s)
- Joachim Alfer
- Department of Pathology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
- Kaufbeuren-Ravensburg Institute of Pathology, Elisabethenstrasse 19, 88212, Ravensburg, Germany.
| | | | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Mackens S, Santos-Ribeiro S, Racca A, Daneels D, Koch A, Essahib W, Verpoest W, Bourgain C, Van Riet I, Tournaye H, Brosens JJ, Lee YH, Blockeel C, Van de Velde H. The proliferative phase endometrium in IVF/ICSI: an in-cycle molecular analysis predictive of the outcome following fresh embryo transfer. Hum Reprod 2021; 35:130-144. [PMID: 31916571 DOI: 10.1093/humrep/dez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does an early proliferative phase endometrial biopsy harvested during ovarian stimulation harbour information predictive of the outcome following fresh embryo transfer (ET) in that same cycle? SUMMARY ANSWER Transcriptome analysis of the whole-tissue endometrium did not reveal significant differential gene expression (DGE) in relation to the outcome; however, the secretome profile of isolated, cultured and in vitro decidualized endometrial stromal cells (EnSCs) varied significantly between patients who had a live birth compared to those with an implantation failure following fresh ET in the same cycle as the biopsy. WHAT IS KNOWN ALREADY In the majority of endometrial receptivity research protocols, biopsies are harvested during the window of implantation (WOI). This, however, precludes ET in that same cycle, which is preferable as the endometrium has been shown to adapt over time. Endometrial biopsies taken during ovarian stimulation have been reported not to harm the chances of implantation, and in such biopsies DGE has been observed between women who achieve pregnancy versus those who do not. The impact of the endometrial proliferative phase on human embryo implantation remains unclear, but deserves further attention, especially since in luteal phase endometrial biopsies, a transcriptional signature predictive for repeated implantation failure has been associated with reduced cell proliferation, possibly indicating proliferative phase involvement. Isolation, culture and in vitro decidualization (IVD) of EnSCs is a frequently applied basic research technique to assess endometrial functioning, and a disordered EnSC secretome has previously been linked with failed implantation. STUDY DESIGN, SIZE, DURATION This study was nested in a randomized controlled trial (RCT) investigating the effect of endometrial scratching during the early follicular phase of ovarian stimulation on clinical pregnancy rates after IVF/ICSI. Of the 96 endometrial biopsies available, after eliminating those without fresh ET and after extensive matching in order to minimize the risk of potential confounding, 18 samples were retained to study two clinical groups: nine biopsies of patients with a live birth versus nine biopsies of patients with an implantation failure, both following fresh ET performed in the same cycle as the biopsy. We studied the proliferative endometrium by analysing its transcriptome and by isolating, culturing and decidualizing EnSCs in vitro. We applied this latter technique for the first time on proliferative endometrial biopsies obtained during ovarian stimulation for in-cycle outcome prediction, in an attempt to overcome inter-cycle variability. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA-sequencing was performed for 18 individual whole-tissue endometrial biopsies on an Illumina HiSeq1500 machine. DGE was analysed three times using different approaches (DESeq2, EdgeR and the Wilcoxon rank-sum test, all in R). EnSC isolation and IVD was performed (for 2 and 4 days) for a subset of nine samples, after which media from undifferentiated and decidualized cultures were harvested, stored at -80°C and later assayed for 45 cytokines using a multiplex suspension bead immunoassay. The analysis was performed by partial least squares regression modelling. MAIN RESULTS AND THE ROLE OF CHANCE After correction for multiple hypothesis testing, DGE analysis revealed no significant differences between endometrial samples from patients who had a live birth and those with an implantation failure following fresh ET. However secretome analysis after EnSC isolation and culture, showed two distinct clusters that clearly corresponded to the two clinical groups. Upon IVD, the secretome profiles shifted from that of undifferentiated cells but the difference between the two clinical groups remained yet were muted, suggesting convergence of cytokine profiles after decidualization. LIMITATIONS, REASONS FOR CAUTION Caution is warranted due to the limited sample size of the study and the in vitro nature of the EnSC experiment. Validation on a larger scale is necessary, however, hard to fulfil given the very limited availability of in-cycle proliferative endometrial biopsies outside a RCT setting. WIDER IMPLICATIONS OF THE FINDINGS These data support the hypothesis that the endometrium should be assessed not only during the WOI and that certain endometrial dysfunctionalities can probably be detected early in a cycle by making use of the proliferative phase. This insight opens new horizons for the development of endometrial tests, whether diagnostic or predictive of IVF/ICSI treatment outcome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Fonds Wetenschappelijk Onderzoek (FWO, Flanders, Belgium, 11M9415N, 1 524 417N), Wetenschappelijk Fonds Willy Gepts (WFWG G160, Universitair Ziekenhuis Brussel, Belgium) and the National Medicine Research Council (NMRC/CG/M003/2017, Singapore). There are no conflicts of interests. TRIAL REGISTRATION NUMBER NCT02061228.
Collapse
Affiliation(s)
- S Mackens
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - S Santos-Ribeiro
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,IVI-RMA Lisboa, Avenida Infante Dom Henrique 333 H 1-9, 1800-282 Lisbon, Portugal
| | - A Racca
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - D Daneels
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - A Koch
- Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - W Essahib
- Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - W Verpoest
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - C Bourgain
- Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Pathology, Imelda Ziekenhuis Bonheiden, Bonheiden, Belgium
| | - I Van Riet
- Department of Hematology and Immunology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - H Tournaye
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK
| | - Y H Lee
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Obstetrics & Gynaecology-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - C Blockeel
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - H Van de Velde
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
30
|
Ruiz-Alonso M, Valbuena D, Gomez C, Cuzzi J, Simon C. Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open 2021; 2021:hoab011. [PMID: 33880420 PMCID: PMC8045472 DOI: 10.1093/hropen/hoab011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
This article summarises and contextualises the accumulated basic and clinical data on the ERA test and addresses specific comments and opinions presented by the opponent as part of an invited debate. Progress in medicine depends on new technologies and concepts that translate to practice to solve long-standing problems. In a key example, combining RNA sequencing data (transcriptomics) with artificial intelligence (AI) led to a clinical revolution in personalising disease diagnosis and fostered the concept of precision medicine. The reproductive field is no exception. Translation of endometrial transcriptomics to the clinic yielded an objective definition of the limited time period during which the maternal endometrium is receptive to an embryo, known as the window of implantation (WOI). The WOI is induced by the presence of exogenous and/or endogenous progesterone (P) after proper oestradiol (E2) priming. The window lasts 30-36 hours and, depending on the patient, occurs between LH + 6 and LH + 9 in natural cycles or between P + 4 and P + 7 in hormonal replacement therapy (HRT) cycles. In approximately 30% of IVF cycles in which embryo transfer is performed blindly, the WOI is displaced and embryo-endometrial synchrony is not achieved. Extending this application of endometrial transcriptomics, the endometrial receptivity analysis (ERA) test couples next-generation sequencing (NGS) to a computational predictor to identify transcriptomic signatures for each endometrial stage: proliferative (PRO), pre-receptive (PRE), receptive (R) and post-receptive (POST). In this way, personalised embryo transfer (pET) may be possible by synchronising embryo transfer with each patient's WOI. Data are the only way to confront arguments sustained in opinions and/or misleading concepts; it is up to the reader to make their own conclusions regarding its clinical utility.
Collapse
Affiliation(s)
- Maria Ruiz-Alonso
- Igenomix Foundation-INCLIVA, Valencia, Spain
- Igenomix SL, Valencia, Spain
| | - Diana Valbuena
- Igenomix Foundation-INCLIVA, Valencia, Spain
- Igenomix SL, Valencia, Spain
| | | | | | - Carlos Simon
- Igenomix Foundation-INCLIVA, Valencia, Spain
- Department of Pediatrics, Obstetrics & Gynecology, University of
Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIMDC, Harvard
University, Boston, MA, USA
| |
Collapse
|
31
|
Reavey JJ, Walker C, Nicol M, Murray AA, Critchley HOD, Kershaw LE, Maybin JA. Markers of human endometrial hypoxia can be detected in vivo and ex vivo during physiological menstruation. Hum Reprod 2021; 36:941-950. [PMID: 33496337 PMCID: PMC7970728 DOI: 10.1093/humrep/deaa379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Can markers of human endometrial hypoxia be detected at menstruation in vivo? SUMMARY ANSWER Our in vivo data support the presence of hypoxia in menstrual endometrium of women during physiological menstruation. WHAT IS KNOWN ALREADY Current evidence from animal models and human in vitro studies suggests endometrial hypoxia is present at menstruation and drives endometrial repair post menses. However, detection of human endometrial hypoxia in vivo remains elusive. STUDY DESIGN, SIZE, DURATION We performed a prospective case study of 16 women with normal menstrual bleeding. PARTICIPANTS/MATERIALS, SETTING, METHODS Reproductively aged female participants with a regular menstrual cycle underwent objective measurement of their menstrual blood loss using the alkaline haematin method to confirm a loss of <80 ml per cycle. Exclusion criteria were exogenous hormone use, an intrauterine device, endometriosis or fibroids >3 cm. Participants attended for two MRI scans; during days 1-3 of menstruation and the early/mid-secretory phase of their cycle. The MRI protocol included dynamic contrast-enhanced MRI and T2* quantification. At each visit, an endometrial sample was also collected and hypoxia-regulated repair factor mRNA levels (ADM, VEGFA, CXCR4) were quantified by RT-qPCR. MAIN RESULTS AND THE ROLE OF CHANCE Women had reduced T2* during menstrual scans versus non-menstrual scans (P = 0.005), consistent with menstrual hypoxia. Plasma flow (Fp) was increased at menstruation compared to the non-menstrual phase (P = 0.0005). Laboratory findings revealed increased ADM, VEGF-A and CXCR4 at menstruation on examination of paired endometrial biopsies from the menstrual and non-menstrual phase (P = 0.008; P = 0.03; P = 0.009). There was a significant correlation between T2* and these ex vivo hypoxic markers (P < 0.05). LIMITATIONS, REASONS FOR CAUTION This study examined the in vivo detection of endometrial hypoxic markers at specific timepoints in the menstrual cycle in women with a menstrual blood loss <80 ml/cycle and without significant uterine structural abnormalities. Further research is required to determine the presence of endometrial hypoxia in those experiencing abnormal uterine bleeding with and without fibroids/adenomyosis. WIDER IMPLICATIONS OF THE FINDINGS Heavy menstrual bleeding (HMB) is a common, debilitating condition. Understanding menstrual physiology may improve therapeutics. To our knowledge, this is the first in vivo data supporting the presence of menstrual hypoxia in the endometrium of women with normal menstrual bleeding. If aberrant in those with HMB, these non-invasive tests may aid diagnosis and facilitate personalized treatments for HMB. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by Wellbeing of Women grant RG1820, Wellcome Trust Fellowship 209589/Z/17/Z and undertaken in the MRC Centre for Reproductive Health, funded by grants G1002033 and MR/N022556/1. H.O.D.C. has clinical research support for laboratory consumables and staff from Bayer AG and provides consultancy advice (but with no personal remuneration) for Bayer AG, PregLem SA, Gedeon Richter, Vifor Pharma UK Ltd, AbbVie Inc; Myovant Sciences GmbH. H.O.D.C. receives royalties from UpToDate for articles on abnormal uterine bleeding. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- J J Reavey
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, Edinburgh, UK
| | - C Walker
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, Edinburgh, UK
| | - M Nicol
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, Edinburgh, UK
| | - A A Murray
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, Edinburgh, UK
| | - H O D Critchley
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, Edinburgh, UK
| | - L E Kershaw
- Edinburgh Imaging, The Queen’s Medical Research Institute, Edinburgh, UK
- Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh, UK
| | - J A Maybin
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, Edinburgh, UK
| |
Collapse
|
32
|
Rivera Del Alamo MM, Katila T, Palviainen M, Reilas T. Effects of intrauterine devices on proteins in the uterine lavage fluid of mares. Theriogenology 2021; 165:1-9. [PMID: 33601088 DOI: 10.1016/j.theriogenology.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/26/2023]
Abstract
Intrauterine devices block luteolysis in cyclic mares, but the underlying mechanism is unknown. To clarify the mechanisms, the protein profile of the endometrial secretome was analyzed using two-dimensional difference gel electrophoresis (2D-DIGE). Twenty-seven mares were classified according to whether they were inseminated (AI) or had an intrauterine device (IUD), a water-filled plastic sphere, inserted into the uterus on Day 3 after ovulation. Uterine lavage fluids were collected on Day 15 from pregnant inseminated mares (AI-P; n = 8), non-pregnant inseminated mares (AI-N; n = 4), and mares with IUD (n = 15). The IUD group was further divided into prolonged (IUD-P; n = 7) and normal luteal phase (IUD-N; n = 8) groups on the basis of ultrasound examinations, serum levels of progesterone and PGFM on Days 14 and 15, and COX-2 results on Day 15. Four mares from each group were selected for the 2D-DIGE analyses. Ten proteins had significantly different abundance among the groups, nine of the proteins were identified. Malate dehydrogenase 1, increased sodium tolerance 1, aldehyde dehydrogenase 1A1, prostaglandin reductase 1, albumin and hemoglobin were highest in pregnant mares; T-complex protein 1 was highest in non-pregnant mares; and annexin A1 and 6-phosphogluconolactonase were highest in IUD mares. The results suggest that the mechanism behind the intrauterine devices is likely related to inflammation.
Collapse
Affiliation(s)
- M M Rivera Del Alamo
- Unit of Reproduction, Faculty of Veterinary Medicine, Travessera Dels Turons S/n Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - T Katila
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - M Palviainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - T Reilas
- Natural Resources Institute Finland (Luke), Jokioinen, Finland.
| |
Collapse
|
33
|
Akin N, von Mengden L, Herta AC, Billooye K, van Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Glucose metabolism characterization during mouse in vitro maturation identifies alterations in cumulus cells†. Biol Reprod 2021; 104:902-913. [PMID: 33480981 DOI: 10.1093/biolre/ioab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
In vitro maturation (IVM) is an assisted reproduction technique with reduced hormone-related side-effects. Several attempts to implement IVM in routine practice have failed, primarily due to its relatively low efficiency compared with conventional in vitro fertilization (IVF). Recently, capacitation (CAPA)-IVM-a novel two-step IVM method-has improved the embryology outcomes through synchronizing the oocyte nuclear and cytoplasmic maturation. However, the efficiency gap between CAPA-IVM and conventional IVF is still noticeable especially in the numerical production of good quality embryos. Considering the importance of glucose for oocyte competence, its metabolization is studied within both in vivo and CAPA-IVM matured mouse cumulus-oocyte-complexes (COCs) through direct measurements in both cellular compartments, from transcriptional and translational perspectives, to reveal metabolic shortcomings within the CAPA-IVM COCs. These results confirmed that within in vivo COC, cumulus cells (CCs) are highly glycolytic, whereas oocytes, with low glycolytic activity, are deviating their glucose towards pentose phosphate pathway. No significant differences were observed in the CAPA-IVM oocytes compared with their in vivo counterparts. However, their CCs exhibited a precocious increase of glycolytic activity during the pre-maturation culture step and activity was decreased during the IVM step. Here, specific alterations in mouse COC glucose metabolism due to CAPA-IVM culture were characterized using direct measurements for the first time. Present data show that, while CAPA-IVM CCs are able to utilize glucose, their ability to support oocytes during final maturation is impaired. Future CAPA-IVM optimization strategies could focus on adjusting culture media energy substrate concentrations and/or implementing co-culture strategies.
Collapse
Affiliation(s)
- Nazli Akin
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lucia von Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil
| | - Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julia van Leersum
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Berta Cava-Cami
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura Saucedo-Cuevas
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
34
|
Marla S, Mortlock S, Houshdaran S, Fung J, McKinnon B, Holdsworth-Carson SJ, Girling JE, Rogers PAW, Giudice LC, Montgomery GW. Genetic risk factors for endometriosis near estrogen receptor 1 and coexpression of genes in this region in endometrium. Mol Hum Reprod 2021; 27:gaaa082. [PMID: 33394050 PMCID: PMC8453628 DOI: 10.1093/molehr/gaaa082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
The etiology and pathogenesis of endometriosis are complex with both genetic and environmental factors contributing to disease risk. Genome-wide association studies (GWAS) have identified multiple signals in the estrogen receptor 1 (ESR1) region associated with endometriosis and other reproductive traits and diseases. In addition, candidate gene association studies identified signals in the ESR1 region associated with endometriosis risk suggesting genetic regulation of genes in this region may be important for reproductive health. This study aimed to investigate hormonal and genetic regulation of genes in the ESR1 region in human endometrium. Changes in serum oestradiol and progesterone concentrations and expression of hormone receptors ESR1 and progesterone receptor (PGR) were assessed in endometrial samples from 135 women collected at various stages of the menstrual cycle. Correlation between hormone concentrations, receptor expression and expression of genes in the ESR1 locus was investigated. The effect of endometriosis risk variants on expression of genes in the region was analyzed to identify gene targets. Hormone concentrations and receptor expression varied significantly across the menstrual cycle. Expression of genes in the ESR1 region correlated with progesterone concentration; however, they were more strongly correlated with expression of ESR1 and PGR suggesting coregulation of genes. There was no evidence that endometriosis risk variants directly regulated expression of genes in the region. Limited sample size and cellular heterogeneity in endometrial tissue may impact the ability to detect significant genetic effects on gene expression. Effects of these variants should be validated in a larger dataset and in relevant individual cell types.
Collapse
Affiliation(s)
- S Marla
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - S Mortlock
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - S Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - J Fung
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - B McKinnon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Department of Gynaecology, Inselspital, Bern, Switzerland
| | - S J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - J E Girling
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - P A W Rogers
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - L C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - G W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
35
|
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 2020; 26:264-301. [PMID: 32096829 DOI: 10.1093/humupd/dmz042] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryo implantation is a complex process that requires the coordination of a series of events, involving both the embryo and the maternal endometrium. Key to this process is the intricate cascade of molecular mechanisms regulated by endocrine, paracrine and autocrine modulators of embryonic and maternal origin. Despite significant progress in ART, implantation failure still affects numerous infertile couples worldwide and fewer than 10% of embryos successfully implant. Improved selection of both the viable embryos and the optimal endometrial phenotype for transfer remains crucial to enhancing implantation chances. However, both classical morphological embryo selection and new strategies incorporated into clinical practice, such as embryonic genetic analysis, morphokinetics or ultrasound endometrial dating, remain insufficient to predict successful implantation. Additionally, no techniques are widely applied to analyse molecular signals involved in the embryo-uterine interaction. More reliable biological markers to predict embryo and uterine reproductive competence are needed to improve pregnancy outcomes. Recent years have seen a trend towards 'omics' methods, which enable the assessment of complete endometrial and embryonic molecular profiles during implantation. Omics have advanced our knowledge of the implantation process, identifying potential but rarely implemented biomarkers of successful implantation. OBJECTIVE AND RATIONALE Differences between the findings of published omics studies, and perhaps because embryonic and endometrial molecular signatures were often not investigated jointly, have prevented firm conclusions being reached. A timely review summarizing omics studies on the molecular determinants of human implantation in both the embryo and the endometrium will help facilitate integrative and reliable omics approaches to enhance ART outcomes. SEARCH METHODS In order to provide a comprehensive review of the literature published up to September 2019, Medline databases were searched using keywords pertaining to omics, including 'transcriptome', 'proteome', 'secretome', 'metabolome' and 'expression profiles', combined with terms related to implantation, such as 'endometrial receptivity', 'embryo viability' and 'embryo implantation'. No language restrictions were imposed. References from articles were also used for additional literature. OUTCOMES Here we provide a complete summary of the major achievements in human implantation research supplied by omics approaches, highlighting their potential to improve reproductive outcomes while fully elucidating the implantation mechanism. The review highlights the existence of discrepancies among the postulated biomarkers from studies on embryo viability or endometrial receptivity, even using the same omic analysis. WIDER IMPLICATIONS Despite the huge amount of biomarker information provided by omics, we still do not have enough evidence to link data from all omics with an implantation outcome. However, in the foreseeable future, application of minimally or non-invasive omics tools, together with a more integrative interpretation of uniformly collected data, will help to overcome the difficulties for clinical implementation of omics tools. Omics assays of the embryo and endometrium are being proposed or already being used as diagnostic tools for personalised single-embryo transfer in the most favourable endometrial environment, avoiding the risk of multiple pregnancies and ensuring better pregnancy rates.
Collapse
Affiliation(s)
- Purificación Hernández-Vargas
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Manuel Muñoz
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Francisco Domínguez
- Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| |
Collapse
|
36
|
Vallvé-Juanico J, López-Gil C, Ponomarenko J, Melnychuk T, Castellví J, Ballesteros A, Colás E, Gil-Moreno A, Santamaria Costa X. External validation of putative biomarkers in eutopic endometrium of women with endometriosis using NanoString technology. J Assist Reprod Genet 2020; 37:2981-2987. [PMID: 33033989 DOI: 10.1007/s10815-020-01965-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/04/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To combine different independent endometrial markers to classify the presence of endometriosis. METHODS Endometrial biopsies were obtained from 109 women with endometriosis as well as 110 control women. Nine candidate biomarkers independent of cycle phase were selected from the literature and NanoString was performed. We compared differentially expressed genes between groups and generated generalized linear models to find a classifier for the disease. RESULTS Generalized linear models correctly detected 68% of women with endometriosis (combining deep infiltrating and ovarian endometriosis). However, we were not able to distinguish between individual types of endometriosis compared to controls. From the 9 tested genes, FOS, MMP7, and MMP11 seem to be important for disease classification, and FOS was the most over-expressed gene in endometriosis. CONCLUSION(S) Although generalized linear models may allow identification of endometriosis, we did not obtain perfect classification with the selected gene candidates.
Collapse
Affiliation(s)
- Júlia Vallvé-Juanico
- Department of Gynecology, IVIRMA Barcelona S.L., Ronda del General Mitre, 14, 08017, Barcelona, Spain.,Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centre for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos López-Gil
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Gynecology, Vall d'Hebron Hospital, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Taisiia Melnychuk
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Gynecology, Vall d'Hebron Hospital, Barcelona, Spain
| | - Josep Castellví
- Department of Pathology, Vall d'Hebron Hospital, Barcelona, Spain
| | - Agustín Ballesteros
- Department of Gynecology, IVIRMA Barcelona S.L., Ronda del General Mitre, 14, 08017, Barcelona, Spain
| | - Eva Colás
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Antonio Gil-Moreno
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Gynecology, Vall d'Hebron Hospital, Barcelona, Spain
| | - Xavier Santamaria Costa
- Department of Gynecology, IVIRMA Barcelona S.L., Ronda del General Mitre, 14, 08017, Barcelona, Spain. .,Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain. .,Igenomix, Paterna, Valencia, Spain.
| |
Collapse
|
37
|
Saare M, Laisk T, Teder H, Paluoja P, Palta P, Koel M, Kirss F, Karro H, Sõritsa D, Salumets A, Krjutškov K, Peters M. A molecular tool for menstrual cycle phase dating of endometrial samples in endometriosis transcriptome studies†. Biol Reprod 2020; 101:1-3. [PMID: 31004479 DOI: 10.1093/biolre/ioz072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Merli Saare
- Competence Centre on Health Technologies; Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia
| | - Triin Laisk
- Competence Centre on Health Technologies; Tartu, Estonia.,Estonian Genome Center Science Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hindrek Teder
- Competence Centre on Health Technologies; Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Paluoja
- Competence Centre on Health Technologies; Tartu, Estonia.,Institute of Computer Science, University of Tartu, Estonia
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Mariann Koel
- Competence Centre on Health Technologies; Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Fred Kirss
- Tartu University Hospital, Women's Clinic, Tartu, Estonia
| | - Helle Karro
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia.,Tartu University Hospital, Women's Clinic, Tartu, Estonia
| | - Deniss Sõritsa
- Competence Centre on Health Technologies; Tartu, Estonia.,Elite Clinic, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies; Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies; Tartu, Estonia.,Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maire Peters
- Competence Centre on Health Technologies; Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu; Tartu, Estonia
| |
Collapse
|
38
|
A 5-year multicentre randomized controlled trial comparing personalized, frozen and fresh blastocyst transfer in IVF. Reprod Biomed Online 2020; 41:402-415. [DOI: 10.1016/j.rbmo.2020.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
|
39
|
Neykova K, Tosto V, Giardina I, Tsibizova V, Vakrilov G. Endometrial receptivity and pregnancy outcome. J Matern Fetal Neonatal Med 2020; 35:2591-2605. [PMID: 32744104 DOI: 10.1080/14767058.2020.1787977] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human implantation is a highly complex and multifactorial process. Successful implantation requires the presence of a healthy embryo, a receptive endometrium, and a synchronized molecular dialogue between the two, as well as immune tolerance/protection from the host. The endometrial receptivity refers to a hormonally limited period in which the endometrial tissue acquires a transient functional status allowing blastocyst implantation and pregnancy initiation. Global knowledge of endometrial receptivity grew up in recent years. Improvements in genetics, new biomarkers, noninvasive methods, new advanced techniques (Endometrial receptivity assay - the ERA system, proteomic analysis) offer the possibility to evaluate the endometrial status and to manage patients with infertility problems, especially women undergoing assisted reproductive treatment. This overview reports the most relevant knowledge and recent advances in the study of implantation processes from the perspective of the endometrium, often considered as being the main barrier for a successful pregnancy initiation. Endometrial receptivity is a topic of great interest and further studies are needed for the early identification of endometrial abnormalities and the discovery of new strategies for increasing the chance for the establishment of pregnancy.
Collapse
Affiliation(s)
- Konstantsa Neykova
- Department of Reproductive Medicine, "Maichin Dom" State University Hospital, Sofia, Bulgaria
| | - Valentina Tosto
- Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Irene Giardina
- Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Valentina Tsibizova
- Almazov National Medical Research Centre, St Petetrsburg, Russian Federation
| | - Georgi Vakrilov
- Department of Reproductive Medicine, "Maichin Dom" State University Hospital, Sofia, Bulgaria
| |
Collapse
|
40
|
Mirza Z, Abdel-dayem UA. Uncovering Potential Roles of Differentially Expressed Genes, Upstream Regulators, and Canonical Pathways in Endometriosis Using an In Silico Genomics Approach. Diagnostics (Basel) 2020; 10:diagnostics10060416. [PMID: 32575462 PMCID: PMC7344784 DOI: 10.3390/diagnostics10060416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is characterized by ectopic endometrial tissue implantation, mostly within the peritoneum, and affects women in their reproductive age. Studies have been done to clarify its etiology, but the precise molecular mechanisms and pathophysiology remain unclear. We downloaded genome-wide mRNA expression and clinicopathological data of endometriosis patients and controls from NCBI’s Gene Expression Omnibus, after a systematic search of multiple independent studies comprising 156 endometriosis patients and 118 controls to identify causative genes, risk factors, and potential diagnostic/therapeutic biomarkers. Comprehensive gene expression meta-analysis, pathway analysis, and gene ontology analysis was done using a bioinformatics-based approach. We identified 1590 unique differentially expressed genes (129 upregulated and 1461 downregulated) mapped by IPA as biologically relevant. The top upregulated genes were FOS, EGR1, ZFP36, JUNB, APOD, CST1, GPX3, and PER1, and the top downregulated ones were DIO2, CPM, OLFM4, PALLD, BAG5, TOP2A, PKP4, CDC20B, and SNTN. The most perturbed canonical pathways were mitotic roles of Polo-like kinase, role of Checkpoint kinase proteins in cell cycle checkpoint control, and ATM signaling. Protein–protein interaction analysis showed a strong network association among FOS, EGR1, ZFP36, and JUNB. These findings provide a thorough understanding of the molecular mechanism of endometriosis, identified biomarkers, and represent a step towards the future development of novel diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Umama A. Abdel-dayem
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
41
|
Craciunas L, Gallos I, Chu J, Bourne T, Quenby S, Brosens JJ, Coomarasamy A. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum Reprod Update 2020; 25:202-223. [PMID: 30624659 DOI: 10.1093/humupd/dmy044] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early reproductive failure is the most common complication of pregnancy with only 30% of conceptions reaching live birth. Establishing a successful pregnancy depends upon implantation, a complex process involving interactions between the endometrium and the blastocyst. It is estimated that embryos account for one-third of implantation failures, while suboptimal endometrial receptivity and altered embryo-endometrial dialogue are responsible for the remaining two-thirds. Endometrial receptivity has been the focus of extensive research for over 80 years, leading to an indepth understanding of the processes associated with embryo-endometrial cross-talk and implantation. However, little progress has been achieved to translate this understanding into clinically meaningful prognostic tests and treatments for suboptimal endometrial receptivity. OBJECTIVE AND RATIONALE The objective of this systematic review was to examine the evidence from observational studies supporting the use of endometrial receptivity markers as prognostic factors for pregnancy outcome in women wishing to conceive, in order to aid clinicians in choosing the most useful marker in clinical practice and for informing further research. SEARCH METHODS The review protocol was registered with PROSPERO (CRD42017077891). MEDLINE and Embase were searched for observational studies published from inception until 26 February 2018. We included studies that measured potential markers of endometrial receptivity prior to pregnancy attempts and reported the subsequent pregnancy outcomes. We performed association and accuracy analyses using clinical pregnancy as an outcome to reflect the presence of receptive endometrium. The Newcastle-Ottawa scale for observational studies was employed to assess the quality of the included studies. OUTCOMES We included 163 studies (88 834 women) of moderate overall quality in the narrative synthesis, out of which 96 were included in the meta-analyses. Studies reported on various endometrial receptivity markers evaluated by ultrasound, endometrial biopsy, endometrial fluid aspirate and hysteroscopy in the context of natural conception, IUI and IVF. Associations were identified between clinical pregnancy and various endometrial receptivity markers (endometrial thickness, endometrial pattern, Doppler indices, endometrial wave-like activity and various molecules); however, their poor ability to predict clinical pregnancy prevents them from being used in clinical practice. Results from several modern molecular tests are promising and further data are awaited. WIDER IMPLICATIONS The post-test probabilities from our analyses may be used in clinical practice to manage couples' expectations during fertility treatments (IUI and IVF). Conventionally, endometrial receptivity is seen as a dichotomous outcome (present or absent), but we propose that various levels of endometrial receptivity exist within the window of implantation. For instance, different transcriptomic signatures could represent varying levels of endometrial receptivity, which can be linked to different pregnancy outcomes. Many studies reported the means of a particular biomarker in those who achieved a pregnancy compared with those who did not. However, extreme values of a biomarker (as opposite to the means) may have significant prognostic and diagnostic implications that are not captured in the means. Therefore, we suggest reporting the outcomes by categories of biomarker levels rather than reporting means of biomarker levels within clinical outcome groups.
Collapse
Affiliation(s)
- Laurentiu Craciunas
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Ioannis Gallos
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Justin Chu
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Tom Bourne
- Tommy's National Centre for Miscarriage Research, Imperial College London, London, UK
| | - Siobhan Quenby
- Tommy's National Centre for Miscarriage Research, University of Warwick, Coventry, UK
| | - Jan J Brosens
- Tommy's National Centre for Miscarriage Research, University of Warwick, Coventry, UK
| | - Arri Coomarasamy
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Human Uterine Biopsy: Research Value and Common Pitfalls. Int J Reprod Med 2020; 2020:9275360. [PMID: 32411783 PMCID: PMC7206876 DOI: 10.1155/2020/9275360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
The human uterus consists of the inner endometrium, the myometrium, and the outer serosa. Knowledge of the function of the uterus in health and disease is relevant to reproduction, fertility, embryology, gynaecology, endocrinology, and oncology. Research performed on uterine biopsies is essential to further the current understanding of human uterine biology. This brief review explores the value of the uterine biopsy in gynaecological and human fertility research and explores the common problems encountered when analysing data generated from different types of uterine biopsies, with the aim of improving the quality, reproducibility, and clinical translatability of future research.
Collapse
|
43
|
Li L, Wang P, Liu S, Bai X, Zou B, Li Y. Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation. J Assist Reprod Genet 2020; 37:21-32. [PMID: 31745762 PMCID: PMC7000608 DOI: 10.1007/s10815-019-01616-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
RESEARCH QUESTION Using RNA-sequencing analysis, we investigated the relationship between ovarian stimulation and endometrial transcriptome profiles during the window of implantation (WOI) to identify candidate predictive factors for the WOI and to optimize timing for embryo transfer. METHODS Twelve women with normal basal hormone levels and regular ovulation were randomly assigned into three groups based on sampling time: late-proliferate phase (P group), and receptive phase in natural cycles (LH+7, N group) and stimulated cycles (hCG+7, S group). Transcriptome profiles of mRNAs and long non-coding RNAs (lncRNAs) were then compared among the three groups. Validation was performed using real-time qPCR. RESULTS Comparison of transcriptome profiles between the natural and stimulated endometrium revealed 173 differentially expressed genes (DEGs), with a > 2-fold change (FC) and p < 0.05, under the influence of supraphysiological estradiol (E2) induced by ovarian stimulation. By clustering and KEGG pathway analysis, molecules and pathways associated with endometrial receptivity were identified. Of the 39 DEGs common to the three groups, eight genes were validated using real-time PCR. ESR1, MMP10, and HPSE were previously reported to be associated with endometrial receptivity. In addition, three novel genes (IL13RA2, ZCCHC12, SRARP) and two lncRNAs (LINC01060, LINC01104) were new potential endometrial receptivity-related markers. CONCLUSION Using mRNA and lncRNA sequencing, we found that supraphysiological E2 levels from ovarian stimulation had a marked impact upon endometrial transcriptome profiles and may result in a shift of the WOI. The precise mechanisms underlying the supraphysiological hormone-induced shift of the WOI require further research. REGISTRATION NUMBER ChiCTR180001453.
Collapse
Affiliation(s)
- Lingxiu Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shan Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xueyan Bai
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Binbin Zou
- Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, China
| | - Yuan Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Haider S, Gamperl M, Burkard TR, Kunihs V, Kaindl U, Junttila S, Fiala C, Schmidt K, Mendjan S, Knöfler M, Latos PA. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology 2019; 160:2282-2297. [PMID: 31290979 DOI: 10.1210/en.2019-00314] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The human endometrium is the inner lining of the uterus consisting of stromal and epithelial (secretory and ciliated) cells. It undergoes a hormonally regulated monthly cycle of growth, differentiation, and desquamation. However, how these cyclic changes control the balance between secretory and ciliated cells remains unclear. Here, we established endometrial organoids to investigate the estrogen (E2)-driven control of cell fate decisions in human endometrial epithelium. We demonstrate that they preserve the structure, expression patterns, secretory properties, and E2 responsiveness of their tissue of origin. Next, we show that the induction of ciliated cells is orchestrated by the coordinated action of E2 and NOTCH signaling. Although E2 is the primary driver, inhibition of NOTCH signaling provides a permissive environment. However, inhibition of NOTCH alone is not sufficient to trigger ciliogenesis. Overall, we provide insights into endometrial biology and propose endometrial organoids as a robust and powerful model for studying ciliogenesis in vitro.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Kaindl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | - Katy Schmidt
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Mortlock S, Restuadi R, Levien R, Girling JE, Holdsworth-Carson SJ, Healey M, Zhu Z, Qi T, Wu Y, Lukowski SW, Rogers PAW, Yang J, McRae AF, Fung JN, Montgomery GW. Genetic regulation of methylation in human endometrium and blood and gene targets for reproductive diseases. Clin Epigenetics 2019; 11:49. [PMID: 30871624 PMCID: PMC6416889 DOI: 10.1186/s13148-019-0648-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 02/02/2023] Open
Abstract
Background Major challenges in understanding the functional consequences of genetic risk factors for human disease are which tissues and cell types are affected and the limited availability of suitable tissue. The aim of this study was to evaluate tissue-specific genotype-epigenetic characteristics in DNA samples from both endometrium and blood collected from women at different stages of the menstrual cycle and relate results to genetic risk factors for reproductive traits and diseases. Results We analysed DNA methylation (DNAm) data from endometrium and blood samples from 66 European women. Methylation profiles were compared between stages of the menstrual cycle, and changes in methylation overlaid with changes in transcription and genotypes. We observed large changes in methylation (27,262 DNAm probes) across the menstrual cycle in endometrium that were not observed in blood. Individual genotype data was tested for association with methylation at 443,016 and 443,101 DNAm probes in endometrium and blood respectively to identify methylation quantitative trait loci (mQTLs). A total of 4546 sentinel cis-mQTLs (P < 1.13 × 10−10) and 434 sentinel trans-mQTLs (P < 2.29 × 10−12) were detected in endometrium and 6615 sentinel cis-mQTLs (P < 1.13 × 10−10) and 590 sentinel trans-mQTLs (P < 2.29 × 10−12) were detected in blood. Following secondary analyses, conducted to test for overlap between mQTLs in the two tissues, we found that 62% of endometrial cis-mQTLs were also observed in blood and the genetic effects between tissues were highly correlated. A number of mQTL SNPs were associated with reproductive traits and diseases, including one mQTL located in a known risk region for endometriosis (near GREB1). Conclusions We report novel findings characterising genetic regulation of methylation in endometrium and the association of endometrial mQTLs with endometriosis risk and other reproductive traits and diseases. The high correlation of genetic effects between tissues highlights the potential to exploit the power of large mQTL datasets in endometrial research and identify target genes for functional studies. However, tissue-specific methylation profiles and genetic effects also highlight the importance of also using disease-relevant tissues when investigating molecular mechanisms of disease risk. Electronic supplementary material The online version of this article (10.1186/s13148-019-0648-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sally Mortlock
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia.
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Rupert Levien
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Ting Qi
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Jenny N Fung
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| |
Collapse
|
46
|
Montoya-Botero P, Polyzos NP. The endometrium during and after ovarian hyperstimulation and the role of segmentation of infertility treatment. Best Pract Res Clin Endocrinol Metab 2019; 33:61-75. [PMID: 30770200 DOI: 10.1016/j.beem.2018.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Controlled ovarian hyperstimulation (COH) is a crucial part of assisted reproductive technologies (ART) that resulted in a substantial increase in pregnancy rates from in vitro fertilization (IVF). However, in spite of the apparent benefit of COH on an increase in the number of follicles and the number of oocytes retrieved, allowing for extended embryo culture and enabling the selection of the best quality embryo for transfer, several reports has shown that the supraphysiologic hormonal levels may indeed have a detrimental effect at the endometrial level. The current article revises the pathophysiological mechanisms through which ovarian stimulation may negatively affect endometrial receptivity. Also, the evidence is analyzed explaining how segmentation of IVF treatment may allow us to overcome the deleterious effects of hyperstimulation on endometrial receptivity. Deferred embryo transfer may be performed in a more physiologic uterine environment in a subsequent cycle, improve endometrial receptivity, decrease uterine contractility, diminishes the impact of premature luteinization and allow individualized stimulation according to the level of response.
Collapse
Affiliation(s)
- Pedro Montoya-Botero
- Department of Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain; Conceptum - Unidad de Fertilidad del Country, Bogotá, Colombia.
| | - Nikolaos P Polyzos
- Department of Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark; Faculty of Medicine and Pharmacy, Department of Surgical and Clinical Science, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
47
|
Sebastian-Leon P, Garrido N, Remohí J, Pellicer A, Diaz-Gimeno P. Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure. Hum Reprod 2019; 33:626-635. [PMID: 29452422 DOI: 10.1093/humrep/dey023] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Is endometrial recurrent implantation failure (RIF) only a matter of an asynchronous (displaced) window of implantation (WOI), or could it also be a pathological (disrupted) WOI? SUMMARY ANSWER Our predictive results demonstrate that both displaced and disrupted WOIs exist and can present independently or together in the same RIF patient. WHAT IS KNOWN ALREADY Since 2002, many gene expression signatures associated with endometrial receptivity and RIF have been described. Endometrial transcriptomics prediction has been applied to the human WOI in two previous studies. One study describes endometrial RIF to be the result of a temporal displacement of the WOI. The other indicates that endometrial RIF can also result from a molecularly disrupted WOI without temporal displacement. STUDY DESIGN, SIZE, DURATION Retrospective analysis was undertaken to compare WOI endometrial transcriptomics predictions in controls (n = 72) and RIF patients (n = 43). RIF was clinically designated by the absence of implantation after four or more transfers of high quality embryos or after the placement of 10 or more embryos in multiple transfers. Endometrial tissue samples were collected from LH + 5 to LH + 8. We compared the two molecular causes of RIF to signatures currently described in the literature. We propose a new transcriptomic RIF taxonomy to fill the gap between the two hypotheses and to guide the development of clinical detection and determination of both types of RIF. PARTICIPANTS/MATERIALS, SETTING, METHODS Utilizing 115 gene expression profiles, two different predictive designs were developed: one considering RIF versus controls removing menstrual cycle timing, called the disrupted or pathological model, and another stratifying the WOI in transcriptomic profiles related to timing for predicting displacements. The predictive value of each model was compared between all signatures selected. We propose a new genomic approach that distinguishes between both types of RIF in the same sample cohort. MAIN RESULTS AND THE ROLE OF CHANCE From the 16 signatures analysed, we clearly predicted two causes of RIF-both a displaced WOI and an on-time but pathologically disrupted WOI. A high predictive value related to WOI profiles associated with menstrual cycle timing was found in most of the signatures. Specifically, 69% of the signatures analysed presented an accuracy higher than expected by chance in a range from 0.87 to 0.97. Displacements and disruptions were not molecularly independent, as some signatures were moderately associated with both causes. The gene and functional comparison between signatures revealed that they were not similar, although we did find functions in common and a cluster of moderate functional concordance between some of the signatures that predicted displacements (the highest Cohen's Kappa index were between 0.55 and 0.62 depending on the functional database). We propose a new transcriptomic RIF taxonomy to fill the gap between these prior studies and to establish methodology for detecting and distinguishing both types of RIF in clinical practice. Our findings indicate these two phenotypes could present independently or together in the same RIF patient. RIF patients designated by clinical criteria have been stratified transcriptomically as 18.6% with only a displaced WOI, 53.5% with a displaced and pathological WOI, 23.3% with only a disrupted WOI, and 4.7% could be a clinical RIF with non-endometrial origin. The new RIF transcriptomic taxonomy avoids menstrual cycle timing as a confounding variable that should be controlled for, distinguishing clearly between a disrupted and a displaced WOI for precision medicine in RIF. LIMITATIONS REASONS FOR CAUTION The main objective of this study was to use transcriptomics to detect both RIF causes and to understand the role of transcriptomic signatures in these phenotypes. The predictive value in absolute terms for each signature was not indicative in these prediction designs; instead, the comparison between signatures was most important for prediction capability in the same sample cohort for both RIF causes. Clinical follow up of the RIF taxonomies proposed has not been analysed in this study, so further prospective clinical studies are necessary to determine the prevalence and penetrance of these phenotypes. WIDER IMPLICATIONS OF THE FINDINGS The main insight from this study is a new understanding of RIF taxonomy. Understanding how to classify RIF patients to distinguish clinically between a patient who could benefit from a personalized embryo transfer day and a patient with a disrupted WOI will enable identification and stratification for the research and development of new treatments. In addition, we demonstrate that basic research designs in endometrial transcriptomics cause masking of the study variable by the menstrual cycle timing. STUDY FUNDING/COMPETING INTEREST(S) This research has been funded by IVI-RMA; the authors do not have any competing interests.
Collapse
Affiliation(s)
- P Sebastian-Leon
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
| | - N Garrido
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
| | - J Remohí
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Instituto Universitario IVI, Av. Blásco Ibáñez, 15, CP 46010, Valencia, Spain
| | - A Pellicer
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Instituto Universitario IVI, Av. Blásco Ibáñez, 15, CP 46010, Valencia, Spain
- Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
| | - P Diaz-Gimeno
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
| |
Collapse
|
48
|
Genexpressions- und Proteomanalyse – Reif für die klinische Anwendung? GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Genetic regulation of disease risk and endometrial gene expression highlights potential target genes for endometriosis and polycystic ovarian syndrome. Sci Rep 2018; 8:11424. [PMID: 30061686 PMCID: PMC6065421 DOI: 10.1038/s41598-018-29462-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Gene expression varies markedly across the menstrual cycle and expression levels for many genes are under genetic control. We analyzed gene expression and mapped expression quantitative trait loci (eQTLs) in endometrial tissue samples from 229 women and then analyzed the overlap of endometrial eQTL signals with genomic regions associated with endometriosis and other reproductive traits. We observed a total of 45,923 cis-eQTLs for 417 unique genes and 2,968 trans-eQTLs affecting 82 unique genes. Two eQTLs were located in known risk regions for endometriosis including LINC00339 on chromosome 1 and VEZT on chromosome 12 and there was evidence for eQTLs that may be target genes in genomic regions associated with other reproductive diseases. Dynamic changes in expression of individual genes across cycle include alterations in both mean expression and transcriptional silencing. Significant effects of cycle stage on mean expression levels were observed for (2,427/15,262) probes with detectable expression in at least 90% of samples and for (2,877/9,626) probes expressed in some, but not all samples. Pathway analysis supports similar biological control of both altered expression levels and transcriptional silencing. Taken together, these data identify strong genetic effects on genes with diverse functions in human endometrium and provide a platform for better understanding genetic effects on endometrial-related pathologies.
Collapse
|
50
|
Drury JA, Parkin KL, Coyne L, Giuliani E, Fazleabas AT, Hapangama DK. The dynamic changes in the number of uterine natural killer cells are specific to the eutopic but not to the ectopic endometrium in women and in a baboon model of endometriosis. Reprod Biol Endocrinol 2018; 16:67. [PMID: 30021652 PMCID: PMC6052567 DOI: 10.1186/s12958-018-0385-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Endometriosis is a common condition associated with growth of endometrial-like tissue beyond the uterine cavity. Previous reports have suggested a role for uNK cells in the pathogenesis of endometriosis postulating that survival and accumulation of menstrual endometrial tissue in the peritoneal cavity may relate to a reduction in the cytotoxic activity of peripheral blood NK cells. We aimed to assess the differences in percentage of uNK cells and their phenotypical characterization in eutopic and ectopic endometrial samples from women with and without endometriosis and baboons with induced endometriosis. METHODS Eutopic and ectopic endometrial samples from 82 women across the menstrual cycle with/without endometriosis and from 8 baboons before and after induction of endometriosis were examined for CD56 and NKp30 expression with immunohistochemistry, quantified using computer assisted image analysis. Curated secretory phase endometrial microarray datasets were interrogated for NK cell receptors and their ligands. In silico data was validated by examining the secretory phase eutopic endometrium of women with and without endometriosis (n = 8/group) for the immuno-expression of BAG6 protein. RESULTS The percentage of uNK cells increased progressively from the proliferative phase with the highest levels in the late secretory phase in the eutopic endometrium of women with and without endometriosis. The percentage of uNK cells in ectopic lesions remained significantly low throughout the cycle. In baboons, induction of endometriosis increased the percentage of uNK in the ectopic lesions but not NKp30. Published eutopic endometrial microarray datasets demonstrated significant upregulation of NKp30 and its ligand BAG6 in women with endometriosis compared with controls. Immunohistochemical staining scores for BAG6 was also significantly higher in secretory phase eutopic endometrium from women with endometriosis compared with the endometrium of healthy women (n = 8/group). CONCLUSIONS The dynamic increase in the percentage of uNK cells in the secretory phase is preserved in the endometrium of women with endometriosis. The low number of uNK cells in human and baboon ectopic lesions may be due to their exaggerated reduction in hormonal responsiveness (progesterone resistance).
Collapse
Affiliation(s)
- Josephine A. Drury
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Kirstin L. Parkin
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| | - Lucy Coyne
- Department of Gynecology, Liverpool Women’s Hospital, Liverpool, UK
- Hewitt Fertility Centre; Liverpool Women’s Hospital, Liverpool, UK
| | - Emma Giuliani
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
- Department of Obstetrics and Gynecology, Grand Rapids Medical Education Partners/Michigan State University, Grand Rapids, MI USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Gynecology, Liverpool Women’s Hospital, Liverpool, UK
| |
Collapse
|