1
|
Peluso JJ. Progesterone Signaling and Mammalian Ovarian Follicle Growth Mediated by Progesterone Receptor Membrane Component Family Members. Cells 2022; 11:1632. [PMID: 35626669 PMCID: PMC9139379 DOI: 10.3390/cells11101632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
How progesterone influences ovarian follicle growth is a difficult question to answer because ovarian cells synthesize progesterone and express not only the classic nuclear progesterone receptor but also members of the progestin and adipoQ receptor family and the progesterone receptor membrane component (PGRMC) family. Which type of progestin receptor is expressed depends on the ovarian cell type as well as the stage of the estrous/menstrual cycle. Given the complex nature of the mammalian ovary, this review will focus on progesterone signaling that is transduced by PGRMC1 and PGRMC2 specifically as it relates to ovarian follicle growth. PGRMC1 was identified as a progesterone binding protein cloned from porcine liver in 1996 and detected in the mammalian ovary in 2005. Subsequent studies focused on PGRMC family members as regulators of granulosa cell proliferation and survival, two physiological processes required for follicle development. This review will present evidence that demonstrates a causal relationship between PGRMC family members and the promotion of ovarian follicle growth. The mechanisms through which PGRMC-dependent signaling regulates granulosa cell proliferation and viability will also be discussed in order to provide a more complete understanding of our current concept of how progesterone regulates ovarian follicle growth.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Li Y, Wang Z, Andersen CL, Ye X. Functions of Lysosomes in Mammalian Female Reproductive System. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2020; 4:109-122. [PMID: 40046839 PMCID: PMC11882109 DOI: 10.4103/2096-2924.288025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The lysosome is the most acidic membrane-bound intracellular organelle. Lysosomal acidity is primarily maintained by vacuolar H+-ATPase (V-ATPase) and counter ion channels. There are >60 hydrolytic enzymes in the lysosome for its fundamental digestive role. Lysosomes also play important roles in endocytosis, exocytosis, autophagy, and cell death. Studies that have implicated roles of lysosomes in the female reproductive system are reviewed here. In the ovary, lysosomes are implicated in the preparation of free cholesterol for steroidogenesis and degradation of regulators of steroidogenesis, regulation of follicular atresia, follicle rupture during ovulation, luteal cell survival, and luteal regression. In the oviduct, lysosomes are involved in endocytosis of both serum and oviductal luminal components. In the uterus during the menstrual/estrous cycle, lysosomes are associated with endometrial secretion, apoptosis, and menstruation. In the uterus during early pregnancy, lysosomes are involved in the temporal and directional changes of endocytosis, uterine epithelial acidification upon embryo implantation initiation, and embryo-maternal mutual communications via extracellular vesicles. In the placenta, lysosomes are implicated in nutrient transport and placental separation from the uterus for parturition. In the mammary gland, lysosomes are important for mammary gland development and involution. These findings suggest/demonstrate functions of lysosomes in multiple processes of female reproduction, from ovulation to ovarian steroidogenesis for pregnancy maintenance, and from essential in utero nurturing of developing embryos/fetuses via embryo/fetal-maternal communications, to optional postpartum nurturing of newborns via lactation. Future studies using genetically or modified animal models and pharmacological approaches will provide novel insights into the functions and mechanisms of lysosomes in the mammalian female reproductive system.
Collapse
Affiliation(s)
- Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zidao Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Christian L. Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Xu J, Lawson MS, Xu F, Du Y, Tkachenko OY, Bishop CV, Pejovic-Nezhat L, Seifer DB, Hennebold JD. Vitamin D3 Regulates Follicular Development and Intrafollicular Vitamin D Biosynthesis and Signaling in the Primate Ovary. Front Physiol 2018; 9:1600. [PMID: 30487754 PMCID: PMC6246691 DOI: 10.3389/fphys.2018.01600] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
There is an increasing recognition that vitamin D plays important roles in female reproduction. Recent studies demonstrated that 1α,25-dihydroxyvitamin D3 (VD3), the biologically active form of vitamin D, improved ovarian follicle survival and growth in vitro. Therefore, we investigated the direct effects of VD3 at the specific preantral and antral stages of follicular development, and tested the hypothesis that vitamin D receptor (VDR) and enzymes critical for vitamin D biosynthesis are expressed in the primate ovary. Fourteen adult rhesus macaques provided ovarian tissue. Secondary and antral follicles were isolated for PCR analysis on VDR, vitamin D3 25-hydroxylase, and 25-hydroxyvitamin D3-1α-hydroxylase. VDR protein localization was determined by immunohistochemistry on ovarian sections. Isolated secondary follicles were cultured under conditions of control and VD3 supplementation during the preantral or antral stage. Follicle survival, growth, steroid and anti-Müllerian hormone (AMH) production, as well as oocyte maturation were evaluated. In vivo- and in vitro-developed follicles were also assessed for genes that are critical for vitamin D biosynthesis and signaling, gonadotropin signaling, steroid and paracrine factor production, and oocyte quality. The mRNA encoding VDR, 25-hydroxylase, and 1α-hydroxylase was detectable in in vivo- and in vitro-developed preantral and antral follicles. The 25-hydroxylase was elevated in cultured follicles relative to in vivo-developed follicles, which further increased following VD3 exposure. VD3 treatment increased 1α-hydroxylase in in vitro-developed antral follicles. The absence of VD3 during culture decreased VDR expression in in vitro-developed antral follicles, which was restored to levels comparable to those of in vivo-developed antral follicles by VD3 supplementation. Positive immunostaining for VDR was detected in the nucleus and cytoplasm of granulosa cells and oocytes. While only survival was improved in preantral follicles treated with VD3, VD3 supplementation promoted both survival and growth of antral follicles with increased estradiol and AMH production, as well as oocyte maturation. Thus, Vitamin D biosynthesis and signaling systems are expressed in primate ovarian follicles. Our findings support a role for VD3 in regulating follicular development in a stage-dependent manner, as well as the intrafollicular vitamin D biosynthesis and signaling, directly in the ovary.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Maralee S. Lawson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Fuhua Xu
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Yongrui Du
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Reproductive Medicine, Tianjin Center Hospital of Gynecology Obstetrics, Tianjin, China
| | - Olena Y. Tkachenko
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Cecily V. Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Lucas Pejovic-Nezhat
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - David B. Seifer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Jon D. Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Bishop CV, Lee DM, Slayden OD, Li X. Intravenous neutralization of vascular endothelial growth factor reduces vascular function/permeability of the ovary and prevents development of OHSS-like symptoms in rhesus monkeys. J Ovarian Res 2017; 10:41. [PMID: 28683759 PMCID: PMC5501270 DOI: 10.1186/s13048-017-0340-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/20/2017] [Indexed: 11/22/2022] Open
Abstract
Background Ovarian hyperstimulation syndrome (OHSS) is a disorder associated with elevated serum VEGFA following chorionic gonadotropin (hCG) exposure in controlled ovarian stimulation (COS) cycles in women. In this study, we tested the effect of intravenous VEGFA neutralization on OHSS-like symptoms and vascular function in rhesus macaques during COS cycles. Methods Monkeys (n = 8) were treated with 3 COS protocols and assigned randomly to groups as follows: 1) COS alone (Control,n = 5); 2) COS + VEGF mAb Avastin 19 ± 5 h before hCG (Avastin pre-hCG; n = 6); 3) COS + Avastin 3–4 days post-hCG (Avastin post-hCG; n = 4); 4) COS + Simulated Early Pregnancy (SEPn = 3); or 5) COS + SEP + Avastin (SEP + Avastinn = 3). Follicles were aspirated 36 h post-hCG, fluid was collected from one follicle for analysis of steroid and vascular hormone content. Remaining follicles were aspirated, and luteinized granulosa cells (LGCs) cultured for 24 h. Ovarian/uterine vascular flow (VF) and blood volume (BV) were analyzed by contrast enhanced ultrasound (CEUS) before hCG bolus and 6–8 days post-hCG bolus/time of peak SEP response. Ovarian permeability to albumin was analyzed by Dynamic Contrast Enhanced-MRI (DCE-MRI) post-hCG. Results Abdominal fluid was present in 4/5 Control, 2/6 Avastin pre-hCG, and 3/4 Avastin post-hCG females. Neutralization of VEGFA before hCG reduced ovarian VF, BV, and permeability to albumin (P < 0.05), while only ovarian VF and permeability were reduced in Avastin-post hCG group (P < 0.05). There was no effect of Avastin on ovarian vascular function during COS + SEP. VEGF levels in follicular fluid were reduced 78-fold by Avastin pre-hCG, and LGCs exposed to Avastin in vivo also released 4-fold less VEGF into culture media (P < 0.05). Culture medium of LGCs exposed to VEGFA neutralization in vivo had lower levels of P4 and ANGPT1, and an increased ratio of ANGPT2/1 (P < 0.05). Uterine VF was reduced by SEP + Avastin in the basalis/junctional zone (P < 0.05). Conclusions Avastin treatment before hCG prevents the development of symptoms associated with ovarian hyperstimulation syndrome. In vitro data suggest neutralization of VEGFA alters expression of other vascular factors typically induced by hCG in the luteinizing follicle. Neutralization of VEGFA action alters the vascular function of the basalis zone of the uterus during simulated early pregnancy, indicating a potential effect on embryo implantation. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0340-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| | - D M Lee
- Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - O D Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.,Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - X Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
5
|
Bishop CV, Hennebold JD, Kahl CA, Stouffer RL. Knockdown of Progesterone Receptor (PGR) in Macaque Granulosa Cells Disrupts Ovulation and Progesterone Production. Biol Reprod 2016; 94:109. [PMID: 26985003 PMCID: PMC4939739 DOI: 10.1095/biolreprod.115.134981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Adenoviral vectors (vectors) expressing short-hairpin RNAs complementary to macaque nuclear progesterone (P) receptor PGR mRNA (shPGR) or a nontargeting scrambled control (shScram) were used to determine the role PGR plays in ovulation/luteinization in rhesus monkeys. Nonluteinized granulosa cells collected from monkeys (n = 4) undergoing controlled ovarian stimulation protocols were exposed to either shPGR, shScram, or no virus for 24 h; human chorionic gonadotropin (hCG) was then added to half of the wells to induce luteinization (luteinized granulosa cells [LGCs]; n = 4-6 wells/treatment/monkey). Cells/media were collected 48, 72, and 120 h postvector for evaluation of PGR mRNA and P levels. Addition of hCG increased (P < 0.05) PGR mRNA and medium P levels in controls. However, a time-dependent decline (P < 0.05) in PGR mRNA and P occurred in shPGR vector groups. Injection of shPGR, but not shScram, vector into the preovulatory follicle 20 h before hCG administration during controlled ovulation protocols prevented follicle rupture in five of six monkeys as determined by laparoscopic evaluation, with a trapped oocyte confirmed in three of four follicles of excised ovaries. Injection of shPGR also prevented the rise in serum P levels following the hCG bolus compared to shScram (P < 0.05). Nuclear PGR immunostaining was undetectable in granulosa cells from shPGR-injected follicles, compared to intense staining in shScram controls. Thus, the nuclear PGR appears to mediate P action in the dominant follicle promoting ovulation in primates. In vitro and in vivo effects of PGR knockdown in LGCs also support the hypothesis that P enhances its own synthesis in the primate corpus luteum by promoting luteinization.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Christoph A Kahl
- Molecular Virology Support Core, Oregon National Primate Research Center, Beaverton, Oregon
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Bishop CV, Xu F, Xu J, Ting AY, Galbreath E, McGee WK, Zelinski MB, Hennebold JD, Cameron JL, Stouffer RL. Western-style diet, with and without chronic androgen treatment, alters the number, structure, and function of small antral follicles in ovaries of young adult monkeys. Fertil Steril 2015; 105:1023-34. [PMID: 26718060 DOI: 10.1016/j.fertnstert.2015.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the small antral follicle (SAF) cohort in ovaries of adult rhesus monkeys after consumption of a Western-style diet (WSD), with or without chronically elevated androgen levels since before puberty. DESIGN Cholesterol or T (n = 6 per group) implants were placed SC in female rhesus macaques beginning at 1 year of age (prepubertal), with addition of a WSD (high fat/fructose) at 5.5 years (menarche approximately 2.6 years). Ovaries were collected at 7 years of age. One ovary per female was embedded in paraffin for morphologic and immunohistochemical analyses. The SAFs (<2.5 mm) were dissected from the other ovary obtained at or near menses in a subgroup of females (n = 3 per group) and processed for microarray analyses of the SAF transcriptome. Ovaries of adult monkeys consuming a standard macaque diet (low in fats and sugars) were obtained at similar stages of the menstrual cycle and used as controls for all analyses. SETTING Primate research center. ANIMAL(S) Adult, female rhesus monkeys (Macaca mulatta). INTERVENTION(S) None. MAIN OUTCOME MEASURES Histologic analyses, SAF counts and morphology, protein localization and abundance in SAFs, transcriptome in SAFs (messenger RNAs [mRNAs]). RESULT(S) Compared with controls, consumption of a WSD, with and without T treatment, increased the numbers of SAFs per ovary, owing to the presence of more atretic follicles. Numbers of granulosa cells expressing cellular proliferation markers (pRb and pH3) was greater in healthy SAFs, whereas numbers of cells expressing the cell cycle inhibitor (p21) was higher in atretic SAFs. Intense CYP17A1 staining was observed in the theca cells of SAFs from WSD with or without T groups, compared with controls. Microarray analyses of the transcriptome in SAFs isolated from WSD and WSD plus T-treated females and controls consuming a standard diet identified 1,944 genes whose mRNA levels changed twofold or more among the three groups. Further analyses identified several gene pathways altered by WSD and/or WSD plus T associated with steroid, carbohydrate, and lipid metabolism, plus ovarian processes. Alterations in levels of several SAF mRNAs are similar to those observed in follicular cells from women with polycystic ovary syndrome. CONCLUSION(S) These data indicate that consumption of a WSD high in fats and sugars in the presence and absence of chronically elevated T alters the structure and function of SAFs within primate ovaries.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.
| | - Fuhua Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Alison Y Ting
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Etienne Galbreath
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Whitney K McGee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Mary B Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Judy L Cameron
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
7
|
Bishop CV, Xu F, Molskness TA, Stouffer RL, Hennebold JD. Dynamics of Immune Cell Types Within the Macaque Corpus Luteum During the Menstrual Cycle: Role of Progesterone. Biol Reprod 2015; 93:112. [PMID: 26400401 DOI: 10.1095/biolreprod.115.132753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
The goal of the current study was to characterize the immune cell types within the primate corpus luteum (CL). Luteal tissue was collected from rhesus females at discrete intervals during the luteal phase of the natural menstrual cycle. Dispersed cells were incubated with fluorescently labeled antibodies specific for the immune cell surface proteins CD11b (neutrophils and monocytes/macrophages), CD14 (monocytes/macrophages), CD16 (natural killer [NK] cells), CD20 (B-lymphocytes), and CD3epsilon (T-lymphocytes) for analysis by flow cytometry. Numbers of CD11b-positive (CD11b(+)) and CD14(+) cells increased significantly 3 to 4 days after serum progesterone (P4) concentrations declined below 0.3 ng/ml. CD16(+) cells were the most abundant immune cell type in CL during the mid and mid-late luteal phases and were 3-fold increased 3 to 4 days after serum P4 decreased to baseline levels. CD3epsilon(+) cells tended to increase 3 to 4 days after P4 decline. To determine whether immune cells were upregulated by the loss of luteotropic (LH) support or through loss of LH-dependent steroid milieu, monkeys were assigned to 4 groups: control (no treatment), the GnRH antagonist Antide, Antide plus synthetic progestin (R5020), or Antide plus the estrogen receptor agonists diarylpropionitrile (DPN)/propyl-pyrazole-triol (PPT) during the mid-late luteal phase. Antide treatment increased the numbers of CD11b(+) and CD14(+) cells, whereas progestin, but not estrogen, replacement suppressed the numbers of CD11b(+), CD14(+), and CD16(+) cells. Neither Antide nor steroid replacement altered numbers of CD3epsilon(+) cells. These data suggest that increased numbers of innate immune cells in primate CL after P4 synthesis declines play a role in onset of structural regression of primate CL.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Fuhua Xu
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Theodore A Molskness
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon Division of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon Health & Science University, Portland, Oregon Division of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
8
|
Guo N, Meng C, Bai W, Wei Q, Shi F, Davis JS, Mao D. Prostaglandin F2α induces expression of activating transcription factor 3 (ATF3) and activates MAPK signaling in the rat corpus luteum. Acta Histochem 2015; 117:211-8. [PMID: 25614048 DOI: 10.1016/j.acthis.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Abstract
The current study was conducted to evaluate the expression of ATF3, in association with the activation of mitogen-activated protein kinases (MAPK) during prostaglandin F2α analog (PGF)-induced luteal regression in rats. A sequential PMSG/hCG treatment paradigm was used to obtain a single, well-defined generation of corpora lutea (CL) in rats. Rats were treated with PGF for 0-4h on day 7 of pseudopregnancy. Results showed that serum progesterone (P4) concentrations declined in a time dependent manner. Western blot results revealed that ATF3 increased within 2h post-PGF injection. Phosphorylated ERK1/2 (p-ERK) and JNK (p-JNK) increased within 30min and then were gradually reduced in response to PGF. In contrast, the levels of phosphorylated p38 MAPK (p-p38) were not significantly altered. The immunostaining density for p-ERK decreased from the periphery to the center of the corpus luteum following treatment with PGF, while ATF3 was expressed uniformly in the nuclei of luteal steroidogenic cells. These results indicated that treatment with PGF in vivo could induce increases in MAPK phosphorylation, especially in p-ERK, which might be correlated with the increases in ATF3 expression and the decline in P4 concentrations. To our knowledge, this is the first study to provide evidence for temporal relationships between MAPK activation and ATF3 expression during PGF-induced luteal regression in the rat.
Collapse
Affiliation(s)
- Nannan Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chenling Meng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wujiao Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
9
|
Bishop CV, Aazzerah RA, Quennoz LM, Hennebold JD, Stouffer RL. Effects of steroid ablation and progestin replacement on the transcriptome of the primate corpus luteum during simulated early pregnancy. Mol Hum Reprod 2013; 20:222-34. [PMID: 24219889 DOI: 10.1093/molehr/gat079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous microarray analyses indicated that a portion of the transcriptome in the macaque corpus luteum (CL) of the menstrual cycle was regulated indirectly by luteinizing hormone via the local actions of steroid hormones, notably progesterone (P). The current study was designed to investigate this concept in the CL of early pregnancy by analyzing chorionic gonadotrophin (CG)-regulated genes that are dependent versus independent of local steroid action. Exogenous human chorionic gonadotropin treatment simulating early pregnancy (SEP) began on Day 9 of the luteal phase in female rhesus monkeys with and without concurrent administration of the 3-β-hydroxysteroid dehydrogenase inhibitor trilostane (TRL) with or without the synthetic progestin R5020. Compared with SEP treatment alone, TRL altered 50 mRNA transcripts on Day 10, rising to 95 on Day 15 (P<0.05, ≥2-fold change in gene expression). Steroid-sensitive genes were validated; notably effects of steroid ablation and P replacement varied by day. Expression of some genes previously identified as P-regulated in the macaque CL during the menstrual cycle were not significantly altered by steroid ablation and P replacement during CG exposure in SEP. These data indicate that the majority of CG-regulated luteal transcripts are differentially expressed independently of local steroid actions. However, the steroid-regulated genes in the macaque CL may be essential during early pregnancy, based on previous reports that TRL treatment initiates premature structural regression of the CL during SEP. These data reinforce the concept that the structure, function and regulation of the rescued CL in early pregnancy differs from the CL of the menstrual cycle in primates.
Collapse
Affiliation(s)
- C V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
10
|
Endocrine and local control of the primate corpus luteum. Reprod Biol 2013; 13:259-71. [PMID: 24287034 DOI: 10.1016/j.repbio.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Abstract
The primate corpus luteum is a transient endocrine gland that differentiates from the ovulatory follicle midway through the ovarian (menstrual) cycle. Its formation and limited lifespan is critical for fertility, as luteal-derived progesterone is the essential steroid hormone required for embryo implantation and maintenance of intra-uterine pregnancy until the placenta develops. It is well-established that LH and the LH-like hormone, CG, are the vital luteotropic hormones during the menstrual cycle and early pregnancy, respectively. Recent advances, particularly through genome analyses and cellular studies, increased our understanding of various local factors and cellular processes associated with the development, maintenance and repression of the corpus luteum. These include paracrine or autocrine factors associated with angiogenesis (e.g., VEGF), and that mediate LH/CG actions (e.g., progesterone), or counteract luteotropic effects (i.e., local luteolysis; e.g., PGF2α). However, areas of mystery and controversy remain, particularly regarding the signals and events that initiate luteal regression in the non-fecund cycle. Novel approaches capable of gene "knockdown" or amplification", in vivo as well as in vitro, should identify novel or underappreciated gene products that are regulated by or modulate LH/CG actions to control the functional lifespan of the primate corpus luteum. Further advances in our understanding of luteal physiology will help to improve or control fertility for purposes ranging from preservation of endangered primate species to designing novel ovary-based contraceptives and treating ovarian disorders in women.
Collapse
|
11
|
Bishop CV. Progesterone inhibition of oxytocin signaling in endometrium. Front Neurosci 2013; 7:138. [PMID: 23966904 PMCID: PMC3735988 DOI: 10.3389/fnins.2013.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 11/13/2022] Open
Abstract
Expression of the oxytocin receptor (OXTR) in the endometrium of ruminant species is regulated by the ovarian steroids progesterone (P) and estradiol (E). Near the end of the estrous cycle, long-term exposure of endometrial epithelial cells to P results in loss of genomic P receptors (PGRs), leading to an increase in E receptors (ERs). Genomic regulation of the OXTR is mediated via suppression of ER signaling by P. Upon OT binding at the plasma membrane of endometrial cells, a signaling cascade is generated stimulating release of prostaglandin F2α (PGF2α). Transport of PGF2α to the ovary results in release of OT by luteal cells in a positive feedback loop leading to luteal regression. This signaling cascade can be rapidly blocked by exposing endometrial cells to physiologic levels of P. This mini review will focus on the mechanisms by which P may act to block OXTR signaling and the luteolytic cascade in the ruminant endometrium, with special focus on both non-genomic signaling pathways and non-receptor actions of P at the level of the plasma membrane. While this review focuses on ruminant species, non-classical blockage of OXTR signaling may be important for fertility in women.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University Beaverton, OR, USA
| |
Collapse
|
12
|
Peluso JJ. Progesterone receptor membrane component 1 and its role in ovarian follicle growth. Front Neurosci 2013; 7:99. [PMID: 23781168 PMCID: PMC3680780 DOI: 10.3389/fnins.2013.00099] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Progesterone (P4) is synthesized in the ovary and acts directly on granulosa cells of developing ovarian follicles to suppress their rate of mitosis and apoptosis. Granulosa cells do not express nuclear progesterone receptor (PGR) but rather progesterone receptor membrane component-1 (PGRMC1). PGRMC1 binds P4 and mediates P4's actions, as evidenced by PGRMC1 siRNA studies. PGRMC1 acts by binding plasminogen activator inhibitor 1 RNA-binding protein and regulating gene expression. Specifically, PGRMC1 suppresses some genes that promote cell death (i.e., Bad, Caspase-3, Caspase-4). P4 regulates gene expression in part by inhibiting PGRMC1 binding to Tcf/Lef transcription sites, thereby reducing Tcf/Lef transcriptional activity. Since Tcf/Lef transcription sites are located within the promoters of genes that initiate mitosis and/or apoptosis (i.e., c-jun and c-myc), P4-PGRMC1 mediated suppression of these Tcf/Lef regulated genes could account for P4's actions. PGRMC1 expression is also altered in women with polycystic ovarian syndrome, premature ovarian failure and infertility. Collectively, these observations support a role for PGRMC1 in regulating human ovarian follicle development.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center Farmington CT, USA ; Department of Obstetrics and Gynecology, University of Connecticut Health Center Farmington CT, USA
| |
Collapse
|
13
|
Keator CS, Mah K, Slayden OD. Alterations in progesterone receptor membrane component 2 (PGRMC2) in the endometrium of macaques afflicted with advanced endometriosis. Mol Hum Reprod 2012; 18:308-19. [PMID: 22307145 DOI: 10.1093/molehr/gas006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hormonally driven expression and cell-specific localization patterns of the progesterone receptor membrane components (PGRMC1 and PGRMC2) in the macaque endometrium during the menstrual cycle are unknown. Additionally, the expression and localization patterns of PGRMC1 and PGRMC2 in the secretory eutopic endometrium of primates afflicted with endometriosis are also unknown. Therefore, we used real-time PCR to quantify transcript expression levels of the PGRMCs in well-defined samples of endometrium collected from artificially cycled macaques during the menstrual cycle, and in the secretory phase endometrium of naturally cycling macaques afflicted with endometriosis. In situ hybridization and immunocytochemistry were used to localize PGRMC1 and PGRMC2 mRNA and protein, respectively. We compared the patterns of expression and localization of the PGRMCs with the expression and localization patterns of nuclear progesterone receptor (PGR). PGRMC1 and PGR were elevated during the proliferative phases of the cycle, and then declined to nearly undetectable levels during the late secretory phase of the cycle. Levels of PGRMC2 were lowest during the proliferative phases of the cycle and then increased markedly during the secretory phases. Strong staining for PGRMC2 was localized to the luminal and glandular epithelia during the secretory phases. When compared with artificially cycled disease-free animals, macaques with endometriosis exhibited no changes in the expression or localization patterns for PGR and PGRMC1 but exhibited strikingly reduced levels of PGRMC2 transcript and altered intracellular staining patterns for the PGRMC2 protein. Collectively, these results suggest that membrane-bound PGRMC2 may provide a pathway of action that could potentially mediate the non-genomic effects of progesterone on the glandular epithelia during the secretory phase of the cycle. Further, reduced levels of membrane-bound PGRMC2 may be associated with the progesterone insensitivity often observed in the endometrium of primates afflicted with endometriosis.
Collapse
Affiliation(s)
- Christopher S Keator
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | | | | |
Collapse
|