1
|
Xiong M, Lu J, Dong N, Wu R, Zhang D, Li B, Wang W. Exposure to gonadotropin-releasing hormone agonist in early pregnancy leads to adverse pregnancy outcomes: a retrospective analysis. Arch Gynecol Obstet 2025; 311:801-809. [PMID: 39945791 PMCID: PMC11919969 DOI: 10.1007/s00404-024-07914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND GnRH-a is commonly used in the luteal phase for pituitary down-regulation during in-vitro fertilization (IVF). There is an ineluctable risk of spontaneous pregnancy for infertile couples who lack the use of contraception during the luteal phase down-regulation before IVF treatment. However, it is unclear whether exposure to GnRH-a affects clinical pregnancy outcomes. METHODS A single-center retrospective cohort study based on propensity score matching was used to analyze the clinical data of a total of 6602 infertile women who were about to undergo assisted reproduction with IVF or intracytoplasmic microsperm injection with spermatozoa (ICSI) and with confirmed clinical pregnancies outcomes in the Reproductive Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China, from January 2011 to December 2022. Participants were divided into the NP group (Natural pregnancy with the use of GnRH-a) and the CT group (Conceived through IVF/ICSI-ET). Baseline characteristics and pregnancy outcomes of the groups were compared by correlation analysis, analysis of variance, and generalized estimating equations. The correlation between pregnancy outcomes and GnRH-a exposure was analyzed based on logistic regression modeling. The primary outcome of the study is the ectopic pregnancy rate. The secondary outcomes included spontaneous abortion rate, clinical pregnancy rate, live birth rate and adverse neonatal outcomes rate. RESULTS Our study demonstrates statistically significant differences in spontaneous abortion rate (29.5% vs. 13.6%, P < 0.05), ectopic pregnancy rate (14.3% vs. 3.1%, P < 0.05), live birth rate ((56.2% vs. 83.3%, P < 0.05)) between NP group and CT group. Logistic analysis showed that exposure to GnRH-a was a risk factor for adverse pregnancy outcomes and was associated with spontaneous abortion(odds ratio[ OR], 95% confidence interval [95% CI] {2.66,1.61-4.40}, P < 0.05) and ectopic pregnancy(odds ratio [OR], 95%confidence interval [95% CI] {5.21,2.39-11.32}, P < 0.05). CONCLUSION Exposure to GnRH-a during the luteal phase of down-regulation can adversely affect pregnancy outcomes. Therefore, we recommend contraception during the IVF/ICSI down-regulation. A higher dose of progesterone during early pregnancy is needed for infertile women who conceive spontaneously after exposure to GnRH-a.
Collapse
Affiliation(s)
- Mimi Xiong
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
| | - Jinyu Lu
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
- Haidian District Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Nan Dong
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
| | - Ruochun Wu
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
| | - Dingyun Zhang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
| | - Bife Li
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
| | - Wenjun Wang
- Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Sun Yat-Sen Memorial Hospital, No. 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, People's Republic of China.
| |
Collapse
|
2
|
Ortega MA, Pekarek T, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Bujan J, Pekarek L, Barrena-Blázquez S, Gragera R, Rodríguez-Benitez P, Hernández-Fernández M, López-González L, Díaz-Pedrero R, Asúnsolo Á, Álvarez-Mon M, García-Honduvilla N, Saez MA, De León-Luis JA, Bravo C. Placental Tissue Calcification and Its Molecular Pathways in Female Patients with Late-Onset Preeclampsia. Biomolecules 2024; 14:1237. [PMID: 39456171 PMCID: PMC11506500 DOI: 10.3390/biom14101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks' gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses. Previous studies have shown a correlation between grade 3 placental calcifications and an elevated risk of developing PE at term. However, little is known about the molecular pathways leading to placental calcification. In this work, we studied the gene and protein expression of c-Jun N-terminal kinase (JNK), Runt-related transcription factor 2 (RUNX2), osteocalcin (OSC), osteopontin (OSP), pigment epithelium-derived factor (PEDF), MSX-2/HOX8, SOX-9, WNT-1, and β-catenin in placental tissue from women with late-onset PE (LO-PE). In addition, we employed von Kossa staining to detect mineral deposits in placental tissues. Our results show a significant increase of all these components in placentas from women with LO-PE. Therefore, our study suggests that LO-PE may be associated with the activation of molecular pathways of placental calcification. These results could be the starting point for future research to describe the molecular mechanisms that promote placental calcification in PE and the development of therapeutic strategies directed against it.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raquel Gragera
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Mauricio Hernández-Fernández
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
3
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Lyu C, Ni T, Guo Y, Zhou T, Chen Z, Yan J, Li Y. Insufficient GDF15 expression predisposes women to unexplained recurrent pregnancy loss by impairing extravillous trophoblast invasion. Cell Prolif 2023; 56:e13514. [PMID: 37272232 PMCID: PMC10693185 DOI: 10.1111/cpr.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Insufficient extravillous trophoblast (EVT) invasion during early placentation has been shown to contribute to recurrent pregnancy loss (RPL). However, the regulatory factors involved and their involvement in RPL pathogenesis remain unknown. Here, we found aberrantly decreased growth differentiation factor 15 (GDF15) levels in both first-trimester villous and serum samples of unexplained recurrent pregnancy loss (URPL) patients as compared with normal pregnancies. Moreover, GDF15 knockdown significantly reduced the invasiveness of both HTR-8/SVneo cells and primary human EVT cells and suppressed the Jagged-1 (JAG1)/NOTCH3/HES1 pathway activity, and JAG1 overexpression rescued the invasion phenotype of the GDF15 knockdown cells. Induction of a lipopolysaccharide-induced abortion model in mice resulted in significantly reduced GDF15 level in the placenta and serum, as well as increased rates of embryonic resorption, and these effects were reversed by administration of recombinant GDF15. Our study thus demonstrates that insufficient GDF15 level at the first-trimester maternal-foetal interface contribute to the pathogenesis of URPL by impairing EVT invasion and suppressing JAG1/NOTCH3/HES1 pathway activity, and suggests that supplementation with GDF15 could benefit early pregnancy maintenance and reduce the risk of early pregnancy.
Collapse
Affiliation(s)
- Chunzi Lyu
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Tianxiang Ni
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Yaqiu Guo
- Department of AnesthesiologyJinan Maternal and Child Health HospitalJinanShandongChina
| | - Tingting Zhou
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Zi‐Jiang Chen
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Junhao Yan
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
| | - Yan Li
- Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandongChina
- Medical Integration and Practice CenterShandong UniversityJinanShandongChina
- Lead Contact
| |
Collapse
|
5
|
Kanda T, Kagami K, Iizuka T, Kasama H, Matsumoto T, Sakai Y, Suzuki T, Yamamoto M, Matsuoka A, Yamazaki R, Hattori A, Horie A, Daikoku T, Ono M, Fujiwara H. Spheroid formation induces chemokine production in trophoblast-derived Swan71 cells. Am J Reprod Immunol 2023; 90:e13752. [PMID: 37491922 DOI: 10.1111/aji.13752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM In the cell column of anchoring villi, the cytotrophoblast differentiates into extravillous trophoblast (EVT) and invades the endometrium in contact with maternal immune cells. Recently, chemokines were proposed to regulate the decidual immune response. To investigate the roles of chemokines around the anchoring villi, we examined the expression profiles of chemokines in the first-trimester trophoblast-derived Swan71 cells using a three-dimensional culture model. METHOD OF STUDY The gene expressions in the spheroid-formed Swan71 cells were examined by microarray and qPCR analyses. The protein expressions were examined by immunochemical staining. The chemoattractant effects of spheroid-formed Swan71 cells were examined by migration assay using monocyte-derived THP-1 cells. RESULTS The expressions of an EVT marker, laeverin, and matrix metalloproteases, MMP2 and MMP9, were increased in the spheroid-cultured Swan71 cells. Microarray and qPCR analysis revealed that mRNA expressions of various chemokines, CCL2, CCL7, CCL20, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and CXCL10, in the spheroid-cultured Swan71 cells were up-regulated as compared with those in the monolayer-cultured Swan71 cells. These expressions were significantly suppressed by hypoxia. Migration assay showed that culture media derived from the spheroid-formed Swan71 cells promoted THP-1 cell migration. CONCLUSION This study indicated that chemokine expressions in Swan71 cells increase under a spheroid-forming culture and the culture media have chemoattractant effects. Since three-dimensional cell assembling in the spheroid resembles the structure of the cell column, this study also suggests that chemokines play important roles in the interaction between EVT and immune cells in their early differentiation stage.
Collapse
Affiliation(s)
- Tatsuhito Kanda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Haruki Kasama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeo Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuya Sakai
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuma Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Megumi Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ayumi Matsuoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rena Yamazaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Rattila S, Kleefeldt F, Ballesteros A, Beltrame JS, L Ribeiro M, Ergün S, Dveksler G. Pro-angiogenic effects of pregnancy-specific glycoproteins in endothelial and extravillous trophoblast cells. Reproduction 2021; 160:737-750. [PMID: 33065549 DOI: 10.1530/rep-20-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
We previously reported that binding to heparan sulfate (HS) is required for the ability of the placentally secreted pregnancy-specific glycoprotein 1 (PSG1) to induce endothelial tubulogenesis. PSG1 is composed of four immunoglobulin-like domains but which domains of the protein bind to HS remains unknown. To analyze the interaction of PSG1 with HS, we generated several recombinant proteins, including the individual domains, chimeric proteins between two PSG1 domains, and mutants. Using flow cytometric and surface plasmon resonance studies, we determined that the B2 domain of PSG1 binds to HS and that the positively charged amino acids encompassed between amino acids 43-59 are required for this interaction. Furthermore, we showed that the B2 domain of PSG1 is required for the increase in the formation of tubes by endothelial cells (EC) including a human endometrial EC line and two extravillous trophoblast (EVT) cell lines and for the pro-angiogenic activity of PSG1 observed in an aortic ring assay. PSG1 enhanced the migration of ECs while it increased the expression of matrix metalloproteinase-2 in EVTs, indicating that the pro-angiogenic effect of PSG1 on these two cell types may be mediated by different mechanisms. Despite differences in amino acid sequence, we observed that all human PSGs bound to HS proteoglycans and confirmed that at least two other members of the family, PSG6 and PSG9, induce tube formation. These findings contribute to a better understanding of the pro-angiogenic activity of human PSGs and strongly suggest conservation of this function among all PSG family members.
Collapse
Affiliation(s)
- Shemona Rattila
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jimena S Beltrame
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Maria L Ribeiro
- Laboratory of Physiology and Pharmacology of Reproduction, Centre for Pharmacological and Botanical Studies (CONICET - School of Medicine, University of Buenos Aires), Buenos Aires, Argentina
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Hu R, Wang Q, Jia Y, Zhang Y, Wu B, Tian S, Wang Y, Wang Y, Ma W. Hypoxia-induced DEC1 mediates trophoblast cell proliferation and migration via HIF1α signaling pathway. Tissue Cell 2021; 73:101616. [PMID: 34481230 DOI: 10.1016/j.tice.2021.101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
In early pregnancy, hypoxia is a typical extrinsic factor that regulates EVT functions including proliferation, migration and invasion which are essential for a successful pregnancy. Human differentiated embryonic chondrocyte-expressed gene 1 (DEC1), a hypoxia-regulated gene, has been reported to be overexpressed in several types of cancers. Given that the placenta and the cancer share several similarities with respect to their capacity to proliferate and invade adjacent tissues, we focused on the role of DEC1 on trophoblast function in a physiologically hypoxic environment, which may be associated with unexplained recurrent spontaneous abortion (URSA).In our study, we measured the expression of HIF-1α and DEC1 in first-trimester villi through real-time-PCR (RT-PCR) and immunohistochemical analysis. in vitro, DEC1 expression was downregulated in trophoblast cells via DEC1-specific shRNA plasmid transfection. The expression of DEC1 and HIF-1α was detected via western blotting and RT-PCR analysis. The proliferation and migration of HTR-8/SVneo cells were assayed using CCK-8 and Transwell migration assays, respectively.Our results indicated that the expression of DEC1 was significantly reduced in villi of URSA compared to that in normal pregnant women. in vitro, hypoxia induced the expression of HIF-1ɑ and DEC1 and upregulated proliferation and migration of the HTR-8/SVneo cells. Knockdown of DEC1 inhibited proliferation and migration of HTR-8/SVneo cells exposure to hypoxia. Furthermore, inhibition of HIF1α expression resulted in a significant decrease in DEC1. These findings illustrate that hypoxia-induced DEC1 expression promotes trophoblast cell proliferation and migration through the HIF1α signaling pathway, which plays an important role during placentation.
Collapse
Affiliation(s)
- Rui Hu
- Center for Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Wang
- Department of Pharmacy, Jinan 5th People' Hospital, Jinan, Shandong, China
| | - Yanfei Jia
- Center for Basic Medical Research, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bin Wu
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shan Tian
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yujie Wang
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Center for Basic Medical Research, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Adu-Gyamfi EA, Ding YB, Wang YX. Regulation of placentation by the transforming growth factor beta superfamily†. Biol Reprod 2021; 102:18-26. [PMID: 31566220 DOI: 10.1093/biolre/ioz186] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, there is increased expression of some cytokines at the fetal-maternal interface; and the clarification of their roles in trophoblast-endometrium interactions is crucial to understanding the mechanism of placentation. This review addresses the up-to-date reported mechanisms by which the members of the transforming growth factor beta superfamily regulate trophoblast proliferation, differentiation, and invasion of the decidua, which are the main phases of placentation. The available information shows that these cytokines regulate placentation in somehow a synergistic and an antagonistic manner; and that dysregulation of their levels can lead to aberrant placentation. Nevertheless, prospective studies are needed to reconcile some conflicting reports; and identify some unknown mediators involved in the actions of these cytokines before their detailed mechanistic regulation of human placentation could be fully characterized. The TGF beta superfamily are expressed in the placenta, and regulate the process of placentation through the activation of several signaling pathways.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Adu-Gyamfi EA, Wang YX, Ding YB. The interplay between thyroid hormones and the placenta: a comprehensive review†. Biol Reprod 2021; 102:8-17. [PMID: 31494673 DOI: 10.1093/biolre/ioz182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormones (THs) regulate a number of metabolic processes during pregnancy. After implantation, the placenta forms and enhances embryonic growth and development. Dysregulated maternal THs signaling has been observed in malplacentation-mediated pregnancy complications such as preeclampsia, miscarriage, and intrauterine growth restriction (IUGR), but the molecular mechanisms involved in this association have not been fully characterized. In this review, we have discussed THs signaling and its roles in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis. We have also explored the relationship between specific pregnancy complications and placental THs transporters, deiodinases, and THs receptors. In addition, we have examined the effects of specific endocrine disruptors on placental THs signaling. The available evidence indicates that THs signaling is involved in the formation and functioning of the placenta and serves as the basis for understanding the pathogenesis and pathophysiology of dysthyroidism-associated pregnancy complications such as preeclampsia, miscarriage, and IUGR.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Matsubara K, Matsubara Y, Uchikura Y, Takagi K, Yano A, Sugiyama T. HMGA1 Is a Potential Driver of Preeclampsia Pathogenesis by Interference with Extravillous Trophoblasts Invasion. Biomolecules 2021; 11:biom11060822. [PMID: 34072941 PMCID: PMC8227282 DOI: 10.3390/biom11060822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia (PE) is a serious disease that can be fatal for the mother and fetus. The two-stage theory has been proposed as its cause, with the first stage comprising poor placentation associated with the failure of fertilized egg implantation. Successful implantation and placentation require maternal immunotolerance of the fertilized egg as a semi-allograft and appropriate extravillous trophoblast (EVT) invasion of the decidua and myometrium. The disturbance of EVT invasion during implantation in PE results in impaired spiral artery remodeling. PE is thought to be caused by hypoxia during remodeling failure-derived poor placentation, which results in chronic inflammation. High-mobility group protein A (HMGA) is involved in the growth and invasion of cancer cells and likely in the growth and invasion of trophoblasts. Its mechanism of action is associated with immunotolerance. Thus, HMGA is thought to play a pivotal role in successful pregnancy, and its dysfunction may be related to the pathogenesis of PE. The evaluation of HMGA function and its changes in PE might confirm that it is a reliable biomarker of PE and provide prospects for PE treatment through the induction of EVT proliferation and invasion during the implantation.
Collapse
Affiliation(s)
- Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Graduate School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan
- Correspondence:
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Katsuko Takagi
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Akiko Yano
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| |
Collapse
|
11
|
Perlman BE, Merriam AA, Lemenze A, Zhao Q, Begum S, Nair M, Wu T, Wapner RJ, Kitajewski JK, Shawber CJ, Douglas NC. Implications for preeclampsia: hypoxia-induced Notch promotes trophoblast migration. Reproduction 2021; 161:681-696. [PMID: 33784241 PMCID: PMC8403268 DOI: 10.1530/rep-20-0483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/30/2021] [Indexed: 01/15/2023]
Abstract
In the first trimester of human pregnancy, low oxygen tension or hypoxia is essential for proper placentation and placenta function. Low oxygen levels and activation of signaling pathways have been implicated as critical mediators in the promotion of trophoblast differentiation, migration, and invasion with inappropriate changes in oxygen tension and aberrant Notch signaling both individually reported as causative to abnormal placentation. Despite crosstalk between hypoxia and Notch signaling in multiple cell types, the relationship between hypoxia and Notch in first trimester trophoblast function is not understood. To determine how a low oxygen environment impacts Notch signaling and cellular motility, we utilized the human first trimester trophoblast cell line, HTR-8/SVneo. Gene set enrichment and ontology analyses identified pathways involved in angiogenesis, Notch and cellular migration as upregulated in HTR-8/SVneo cells exposed to hypoxic conditions. DAPT, a γ-secretase inhibitor that inhibits Notch activation, was used to interrogate the crosstalk between Notch and hypoxia pathways in HTR-8/SVneo cells. We found that hypoxia requires Notch activation to mediate HTR-8/SVneo cell migration, but not invasion. To determine if our in vitro findings were associated with preeclampsia, we analyzed the second trimester chorionic villous sampling (CVS) samples and third trimester placentas. We found a significant decrease in expression of migration and invasion genes in CVS from preeclamptic pregnancies and significantly lower levels of JAG1 in placentas from pregnancies with early-onset preeclampsia with severe features. Our data support a role for Notch in mediating hypoxia-induced trophoblast migration, which may contribute to preeclampsia development.
Collapse
Affiliation(s)
- Barry E Perlman
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Audrey A. Merriam
- Department of Obstetrics, Gynecology and Reproductive Sciences Yale University, New Haven, CT, USA
| | - Alexander Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Salma Begum
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Mohan Nair
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ronald J. Wapner
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jan K. Kitajewski
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
12
|
Wu H, Xu X, Ma C, Zhou Y, Pei S, Geng H, He Y, Xu Q, Xu Y, He X, Zhou P, Wei Z, Xu X, Cao Y. No significant long-term complications from inadvertent exposure to gonadotropin-releasing hormone agonist during early pregnancy in mothers and offspring: a retrospective analysis. Reprod Biol Endocrinol 2021; 19:46. [PMID: 33743741 PMCID: PMC7980339 DOI: 10.1186/s12958-021-00732-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of gonadotropin-releasing hormone agonist (GnRH-a) in the luteal phase is commonly used for pituitary suppression during in vitro fertilisation (IVF). There is an ineluctable risk of inadvertent exposure of spontaneous pregnancy to GnRH-a. However, little is known about the pregnancy complications and repregnancy outcomes of the affected women and the neurodevelopmental outcomes of the GnRH-a-exposed children. METHODS Retrospective analysis was used to determine obstetric and repregnancy outcomes after natural conception in 114 women who naturally conceived while receiving GnRH-a during their early pregnancy over the past 17 years. The GnRH-a-exposed children were evaluated to determine their neonatal characteristics and long-term neurodevelopmental outcomes. The outcomes were compared to those of relevant age-matched control groups. RESULTS Sixty-five women had 66 live births. The neonatal health outcomes and the incidence of maternal complications were similar in the GnRH-a-exposed and control groups. Thirty-one GnRH-a-exposed children, aged 2-8 years, were available for investigation of neurodevelopment. Except for one case of autism spectrum disorder, the full-scale intelligence quotient score was within the normal range and similar to that of the control group. Most mothers with successful pregnancies and about one-third of the women who had spontaneous abortions were subsequently able to conceive naturally again. IVF is recommended for repregnancy in women who have experienced ectopic pregnancies. CONCLUSIONS Accidental exposure to GnRH-a in early pregnancy might be safe. Reproductive treatment suggestions for repregnancy should be made with consideration of the outcomes of the previously GnRH-a-exposed spontaneous pregnancy.
Collapse
Affiliation(s)
- Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, China
| | - Xiaoyan Xu
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, China
| | - Yiran Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Shanai Pei
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Ye He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Qianhua Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
13
|
Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27:501-530. [PMID: 33410481 DOI: 10.1093/humupd/dmaa054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Seriola
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amélie L Godeau
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Veiga
- B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Reproductive Medicine Service, Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
14
|
Wang P, Chen X, Chang Y, Wang Y, Xu X, Guo Y, Cui H. Inhibition of microRNA-149 protects against recurrent miscarriage through upregulating RUNX2 and activation of the PTEN/Akt signaling pathway. J Obstet Gynaecol Res 2020; 46:2534-2546. [PMID: 32939872 PMCID: PMC7756651 DOI: 10.1111/jog.14488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
AIM Recently, microRNA-149 (miR-149) has been indicated to act as an oncogene or a tumor suppressor in various malignant tumors, while its inner mechanisms in recurrent miscarriage (RM) are still in infancy. Therein, this study intends to decode the mechanism of miR-149 in RM. METHODS miR-149 and RUNX2 expression in the chorionic tissues of normal pregnant women and RM patients were first examined, and the correlation between miR-149 and RUNX2 was analyzed. Subsequently, miR-149 was upregulated in HTR-8 cells or downregulated in BEWO cells, and then the changes in biological functions of trophoblasts in RM were detected. Furthermore, the expression of PTEN/Akt signaling pathway-related factors in trophoblasts was detected by western blot analysis. RESULTS miR-149 expression was increased while RUNX2 expression was suppressed in RM patients, and miR-149 was negatively correlated with RUNX2. Overexpressed miR-149 induced cell apoptosis and inhibited cell activity, while reduced miR-149 in trophoblasts contributed to opposite experimental results. Moreover, miR-149 promoted the expression of PTEN and inhibited Akt phosphorylation by targeting RUNX2, thereby inhibiting trophoblast activity and promoting their apoptosis. CONCLUSION Our study demonstrates that miR-149 knockdown halted the RM development through upregulating RUNX2 and activation of the PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| | - Xu Chen
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Ying Chang
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| | - Yanping Wang
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Xinran Xu
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Yuling Guo
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Hongyan Cui
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| |
Collapse
|
15
|
Wang G, Huang Y, Hu T, Zhang B, Tang Z, Yao R, Huang Y, Fan X, Ni X. Contribution of placental 11β-HSD2 to the pathogenesis of preeclampsia. FASEB J 2020; 34:15379-15399. [PMID: 32978833 DOI: 10.1096/fj.202001003rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preeclampsia, a major human pregnancy-specific disorder, leads to maternal and fetal morbidity and mortality. Here we reported that 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), an enzyme that degrades active glucocorticoids, is one of the key factors that contributes to preeclampsia development. In the pregnant rat model, we firstly confirmed that administration of 11β-HSD2 inhibitor carbenoxolone (CBX) subcutaneously or by placenta-targeted delivery system could lead to a decrease in placental 11β-HSD2 expression and activity and an increase in corticosterone level in placenta and maternal circulation. Then, we showed that subcutaneous administration and placenta-targeted delivery of CBX resulted in the hallmark of preeclampsia-like features including hypertension, proteinuria, renal damages as well as elevated circulatory soluble fms-like tyrosine kinase 1 (sFlt1) and increased sFlt1/placental growth factor (PlGF) ratio in pregnant rats. These animals displayed decreased trophoblast invasion in uterus, impaired spiral artery remodeling, and reduced placental blood flow. Preeclampsia-like features could also be induced by administration of dexamethasone in pregnant rats. In the cultured human trophoblast models, we found that cortisol only inhibited migration and invasion of the extravillous trophoblasts with 11β-HSD2 knockdown, and promoted sFlt1 release in the cultured syncytiotrophoblasts with 11β-HSD2 knockdown. Furthermore, we elucidated that cortisol stimulated a disintegrin and metalloprotease (ADAM)17 expression in placentas, thereby promoting sFlt1 release in placenta. Collectively, our study provided the evidence that placental 11β-HSD2 dysfunction plays a key role in the development of preeclampsia and immediately identified innovative target to counteract preeclampsia.
Collapse
Affiliation(s)
- Gang Wang
- Department of Gynecology and Obstetrics and Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yan Huang
- Department of Gynecology and Obstetrics and Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China
| | - Tianxiao Hu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Baozhen Zhang
- Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengshan Tang
- Department of Gynecology and Obstetrics and Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Ruojing Yao
- Department of Gynecology and Obstetrics and Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Ying Huang
- Maternity and Child Health Hospital of Pudong New District, Shanghai, China
| | - Xiujun Fan
- Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Ni
- Department of Gynecology and Obstetrics and Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
16
|
Corso MC, Cortasa SA, Schmidt AR, Proietto S, Inserra PIF, Fernández MO, Di Giorgio N, Lux-Lantos V, Vitullo AD, Dorfman VB, Halperin J. Mammary gland-specific regulation of GNRH and GNRH-receptor gene expression is likely part of a local autoregulatory system in female vizcachas (Rodentia: Chinchillidae). Gen Comp Endocrinol 2020; 296:113518. [PMID: 32474048 DOI: 10.1016/j.ygcen.2020.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
In addition to key mammotrophic hormones such as the pituitary prolactin (PRL) and the ovarian steroids progesterone and estradiol, there are local factors that modulate the tissue dynamics of the mammary glands during pregnancy and lactation. By immunohistochemistry and RT-PCR, we found local transcription and translation of gonadotropin-releasing hormone (GNRH), GNRH receptor (GNRHR), PRL and PRL receptor (PRLR) in mammary glands of adult vizcachas during pregnancy and lactation. Both GNRH and GNRHR showed a lag between protein expression and gene transcription throughout the gestational period: while the highest transcription levels of these genes were recorded at early-pregnancy, the epithelial immunoexpressions of both showed their maximum during lactation. RIA results corroborated the presence of GNRH in mammary glands at all the analyzed stages and confirmed the maximum amount of this peptide in the lactating group. Significant amounts of GNRH were detected in milk samples as well. Conversely, PRL and PRLR shared similar protein and gene expression profiles, all exhibiting maximum values during lactation. GNRH peptide content in mammary glands of females with sulpiride-induced hyperprolactinemia (HP) was significantly lower than that of control females (CT). Although PRL mRNA levels remained unchanged, there was a marked increase in theα-lactalbumin (LALBA) transcription in mammary glands of HP- vs CT-females. These results suggest that after targeting mammary glands, PRL stimulates the expression of milk protein genes, but also, tempers the local expression of GNRH. Mammary gland-explantssupplemented with a GNRH analogue (GN-explants) had no differences in terms of PRLR orLALBA transcription levels compared to CT-explants, so the mammary PRLR signaling would not appear to be modulated by GNRH. Yet, mRNA expression levels of both GNRH and the GNRHR-downstream factor, EGR1, were significantly higher in GN-explants compared to that of CT which would point to a GNRH-positive feedback mechanism. In summary, the local coupled expression of GNRH, GNRHR and EGR1 in the mammary gland throughout pregnancy of vizcachas, the PRL-dependent mammary GNRH secretion as well as the GNRH positive feedback on its own transcription suggest an autocrine-paracrine regulatory mechanism and propose an active role for GNRH in mammary gland tissue remodeling.
Collapse
Affiliation(s)
- María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marina Olga Fernández
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
17
|
Wang KJ, Wang KY, Zhang HZ, Meng XY, Chen JF, Wang P, Jiang JH, Ma Q. Up-Regulation of RIP3 Alleviates Prostate Cancer Progression by Activation of RIP3/MLKL Signaling Pathway and Induction of Necroptosis. Front Oncol 2020; 10:1720. [PMID: 32984054 PMCID: PMC7480187 DOI: 10.3389/fonc.2020.01720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Background The receptor-interacting protein kinase 3 (RIP3/RIPK3) was recently found to be a critical regulator of programmed necrosis/necroptosis. However, the biological role and clinical significance of RIP3 in prostate cancer remain obscure. Methods Western blotting and QRT-PCR were performed to detect the level of RIP3 in prostate cancer cells. Fixed cancer tissue and normal tissue specimens were subjected to immunohistochemical analysis of RIP3. Cell migration and invasion abilities were evaluated by transwell assays. In vitro proliferative ability was examed by MTS. And in vivo nude mice model were used to evaluate the effect of RIP3 ectopic expression on proliferative capability. Cell cycle of prostate cancer cells were analyzed by flow cytometry. Changes in some related proteins caused by RIP3 overexpression were explored using Western blotting. Results RIP3 was significantly down-regulated in prostate cancer cell lines and clinical prostate tumor samples. And over-expressing RIP3 suppressed the migration and invasion of prostate cancer cells. Two important matrix metalloproteinases MMP2, MMP9 which enables the destruction of the histological barrier of tumor cell invasion and three mesenchymal markers Vimentin, fibronectin, and N-cadherin were under-expressed due to the overexpression of RIP3, but the E-cadherin level which is the epithelial marker was increased. Furthermore, our results also showed that RIP3 can inhibit the proliferation and tumorigenicity of prostate cancer cells both in vitro and in vivo by phosphorylating MLKL, which were reversed by MLKL inhibitor treatment, indicating that necroptosis was involved in cell death. Conclusion Taken together, these findings indicated that RIP3 is responsible for the progression of prostate cancer, suggesting that RIP3 might have the potential to be a prognostic marker or a therapeutic target against prostate cancer.
Collapse
Affiliation(s)
- Ke-Jie Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kai-Yun Wang
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China.,Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China.,Medical School, Ningbo University, Ningbo, China
| | - Hui-Zhi Zhang
- Department of Pathology, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Xiang-Yu Meng
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ping Wang
- Medical School, Ningbo University, Ningbo, China
| | - Jun-Hui Jiang
- Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China.,Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Tang L, Yang M, Qin L, Li X, He G, Liu X, Xu W. Deficiency of DICER reduces the invasion ability of trophoblasts and impairs the pro-angiogenic effect of trophoblast-derived microvesicles. J Cell Mol Med 2020; 24:4915-4930. [PMID: 32198822 PMCID: PMC7205818 DOI: 10.1111/jcmm.14917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
DICER is a key rate‐limiting enzyme in the canonical miRNAs biogenesis pathway, and DICER and DICER‐dependent miRNAs have been proved to play essential roles in many physiological and pathological processes. However, whether DICER is involved in placentation has not been studied. Successful spiral artery remodelling is one of the key milestones during placentation, which depends mostly on the invasion of trophoblasts and the crosstalk between trophoblasts and endothelial cells. In the present study, we show that DICER knockdown impairs the invasion ability of both primary extravillous trophoblasts (EVT) and HTR8/SVneo (HTR8) cell lines. The decreased invasion of HTR8 cells upon DICER knockdown (sh‐Dicer) was partly due to the up‐regulation of miR‐16‐2‐3p, which led to a reduced expression level of the collagen type 1 alpha 2 chain (COL1A2) protein. Moreover, microvesicles (MVs) can be secreted by HTR8 cells and promote the tube formation ability of human umbilical cord vein endothelial cells (HUVECs). However, conditioned medium and MVs derived from sh‐Dicer HTR8 cells have an anti‐angiogenic effect, due to reduced angiogenic factors and increased anti‐angiogenic miRNAs (including let‐7d, miR‐1‐6‐2 and miR‐15b), respectively. In addition, reduced protein expression of DICER is found in PE placenta by immunoblotting and immunohistochemistry. In summary, our study uncovered a novel DICER‐miR‐16‐2‐COL1A2 mediated pathway involved in the invasion ability of EVT, and DICER‐containing MVs mediate the pro‐angiogenic effect of trophoblast‐derived conditioned medium on angiogenesis, implying the involvement of DICER in the pathogenesis of PE.
Collapse
Affiliation(s)
- Li Tang
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ming Yang
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoliang Li
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guolin He
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - WenMing Xu
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu Sichuan, China
| |
Collapse
|
19
|
Onconase Restores Cytotoxicity in Dabrafenib-Resistant A375 Human Melanoma Cells and Affects Cell Migration, Invasion and Colony Formation Capability. Int J Mol Sci 2019; 20:ijms20235980. [PMID: 31783660 PMCID: PMC6928899 DOI: 10.3390/ijms20235980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/14/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a lethal tumor because of its severe metastatic potential, and serine/threonine-protein kinase B-raf inhibitors (BRAFi) are used in patients harboring BRAF-mutation. Unfortunately, BRAFi induce resistance. Therefore, we tested the activity of onconase (ONC), a cytotoxic RNase variant, against BRAFi-resistant cells to re-establish the efficacy of the chemotherapy. To do so, an A375 dabrafenib-resistant (A375DR) melanoma cell subpopulation was selected and its behavior compared with that of parental (A375P) cells by crystal violet, 5-Bromo-2’-deoxyuridine incorporation, and cleaved poly(ADP-ribose) polymerase 1 (PARP1) western blot measurements. Then, nuclear p65 Nuclear Factor kappaB (NF-κB) and IκB kinases-α/β (IKK) phosphorylation levels were measured. Gelatin zymography was performed to evaluate metalloproteinase 2 (MMP2) activity. In addition, assays to measure migration, invasion and soft agar colony formation were performed to examine the tumor cell dissemination propensity. ONC affected the total viability and the proliferation rate of both A375P and A375DR cell subpopulations in a dose-dependent manner and also induced apoptotic cell death. Among its pleiotropic effects, ONC reduced nuclear p65 NF-κB amount and IKK phosphorylation level, as well as MMP2 activity in both cell subpopulations. ONC decreased cell colony formation, migration, and invasion capability. Notably, it induced apoptosis and inhibited colony formation and invasiveness more extensively in A375DR than in A375P cells. In conclusion, ONC successfully counteracts melanoma malignancy especially in BRAFi-resistant cells and could become a tool against melanoma recurrence.
Collapse
|
20
|
Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, Czika A, Nelson W, Lamptey J, Wang YX, Ding YB. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct 2019; 38:106-117. [PMID: 31746004 DOI: 10.1002/cbf.3458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Preeclampsia is not fully understood; and few biomarkers, therapeutic targets, and therapeutic agents for its management have been identified. Original investigative findings suggest that abnormal placentation triggers preeclampsia and leads to hypertension, proteinuria, endothelial dysfunction, and inflammation, which are characteristics of the disease. Because of the regulatory roles that it plays in several metabolic processes, adiponectin has become a cytokine of interest in metabolic medicine. In this review, we have discussed the role of adiponectin in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis, which are the major phases of placentation. Also, we have highlighted the physiological profile of adiponectin in the course of normal pregnancy. Moreover, we have discussed the involvement of adiponectin in hypertension, endothelial dysfunction, inflammation, and proteinuria. Furthermore, we have summarized the reported relationship between the maternal serum adiponectin level and preeclampsia. The available evidence indicates that adiponectin level physiologically falls as pregnancy advances, regulates placentation, and exhibits protective effects against the symptoms of preeclampsia and that while hyperadiponectinemia is evident in normal-weight preeclamptic women, hypoadiponectinemia is evident in overweight and obese preeclamptic women. Therefore, the clinical use of adiponectin as a biomarker, therapeutic target, or therapeutic agent against the disease looks promising and should be considered.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - William K B A Owiredu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Armin Czika
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - William Nelson
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
The Increased lncRNA MIR503HG in Preeclampsia Modulated Trophoblast Cell Proliferation, Invasion, and Migration via Regulating Matrix Metalloproteinases and NF- κB Signaling. DISEASE MARKERS 2019; 2019:4976845. [PMID: 31467616 PMCID: PMC6701315 DOI: 10.1155/2019/4976845] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 01/16/2023]
Abstract
Background Preeclampsia (PE) is a pregnancy-related syndrome characterized by hypertension and proteinuria after the 20th week of gestation. The long noncoding RNAs (lncRNAs) have been recently discovered for their roles in the pathogenesis of PE. This study is aimed at determining the expression of lncRNA MIR503 host gene (MIR503HG) in PE placental tissues and exploring the molecular mechanism underlying MIR503HG-mediated trophoblast cell proliferation, invasion, and migration. Methods The expression level of MIR503HG in placental tissues, HTR-8/SVneo, and JEG3 cells was determined by quantitative real-time PCR; western blot detected the relevant protein expression levels in HTR-8/SVneo and JEG3 cells; flow cytometry determined cell apoptosis and cell cycle of HTR-8/SVneo and JEG3 cells; trophoblast cell proliferation, invasion, and migration of HTR-8/SVneo and JEG3 cells were measured by CCK-8, transwell invasion, and wound healing assays, respectively. Results The highly expressed MIR503HG was detected in PE placental tissues compared to normal placental tissues. MIR503HG overexpression suppressed cell proliferation, invasion, and migration of HTR-8/SVneo and JEG3 cells, while knockdown of MIR503HG increased trophoblast cell proliferation, invasion, and migration. Flow cytometry results showed that MIR503HG overexpression induced apoptosis and caused cell cycle arrest at the G0/G1 phase, while MIR503HG knockdown had the opposite actions in HTR-8/SVneo and JEG3 cells. Western blot assay results showed that MIR503HG overexpression suppressed the matrix metalloproteinase-2/-9 and the snail protein expression and increased the E-cadherin expression in trophoblast cells. In addition, MIR503HG overexpression suppressed the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and the nuclear translocation of NF-κB signaling subunit p65. On the other hand, MIR503HG knockdown played an opposite role in these protein expression levels. Conclusion Our results showed that MIR503HG inhibited the proliferation, invasion, and migration of HTR-8/SVneo and JEG3 cells, which may be related to the pathogenesis of PE.
Collapse
|
22
|
Brown JL, Sones JL, Angulo CN, Abbott K, Miller AD, Boehm U, Roberson MS. Conditional loss of ERK1 and ERK2 results in abnormal placentation and delayed parturition in the mouse. Sci Rep 2019; 9:9641. [PMID: 31270345 PMCID: PMC6610138 DOI: 10.1038/s41598-019-45997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/21/2019] [Indexed: 11/11/2022] Open
Abstract
Extracellular-signal-regulated kinases (ERK) 1 and 2 regulate many aspects of the hypothalamic-pituitary-gonadal axis. We sought to understand the role of ERK1/2 signaling in cells expressing a Cre allele regulated by the endogenous GnRHR promoter (GRIC-ERKdko). Adult female GRIC-ERKdko mice were hypogonadotropic and anovulatory. Gonadotropin administration and mating led to pregnancy in one-third of the ERKdko females. Litters from ERKdko females and pup weights were reduced coincident with delayed parturition and 100% neonatal mortality. Based on this, we examined Cre expression in implantation sites as a potential mechanism. GnRHR mRNA levels at e10.5 and e12.5 were comparable to pituitary levels from adult female mice at proestrus and GnRHR mRNA in decidua was enriched compared to whole implantation site. In vivo studies confirmed recombination in decidua, and GRIC-ERKdko placentas showed reduced ERK2 expression. Histopathology revealed abnormalities in placental architecture in the GRIC-ERKdko animals. Regions of apoptosis at the decidual/uterine interface at e18.5 were observed in control animals but apoptotic tone in these regions was reduced in ERKdko animals. These studies support a potential model of ERK-dependent signaling within the implantation site leading to loss of placental architecture and mis-regulation of apoptotic events at parturition occurring coincident with prolonged gestation and neonatal mortality.
Collapse
Affiliation(s)
- Jessica L Brown
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer L Sones
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Cynthia N Angulo
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Keelin Abbott
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrew D Miller
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Mark S Roberson
- Department Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
23
|
Martinez-Fierro ML, Carrillo-Arriaga JG, Luevano M, Lugo-Trampe A, Delgado-Enciso I, Rodriguez-Sanchez IP, Garza-Veloz I. Serum levels of miR-628-3p and miR-628-5p during the early pregnancy are increased in women who subsequently develop preeclampsia. Pregnancy Hypertens 2019; 16:120-125. [PMID: 31056146 DOI: 10.1016/j.preghy.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Preeclampsia pathogenesis involves imbalances of oxidative stress networks including the heat shock protein (HSP) pathway. Micro-RNAs regulate gene networks associated with preeclampsia. Hsp90 and Runx2 are transcriptional targets of miR-628-3p. Considering that potential participation of hsa-miR-628-3p in PE development is still not elucidated, the aim of this study was to evaluate serum microRNA expression of hsa-miR-628-3p and hsa-miR-628-5p and their association with the preeclampsia development. STUDY DESIGN A retrospective nested cohort case-control study was conducted. Serum samples from 16 pregnant women who developed preeclampsia (WWD-PE) during the follow-up period were selected and individually matched to that from 18 women in the cohort who had healthy pregnancies without complications (controls). MAIN OUTCOME MEASURES The levels of hsa-miR-628-3p and hsa-miR-628-5p were measured in serum samples from study groups at 12, 16, and 20 weeks of gestation (WG) using TaqMan probes. Additionally serum levels were measured at the moment of diagnosis, in women with preeclampsia. RESULTS Serum levels of hsa-miR-628-3p were higher than controls in WWD-PE at 12 WG (RQ = 7.7; P = 0.020), and of hsa-miR-628-5p at 20 WG (RQ = 3.4; P = 0.008). An increase in hsa-miR-628-3p serum levels at 12 WG (RQ = 12.01; P = 0.001) and of hsa-miR-628-5p at 20 WG (RQ = 2.95; P = 0.033) was also observed in women who developed mild preeclampsia, and severe preeclampsia, respectively. CONCLUSIONS Serum hsa-miR-628-3p and hsa-miR-628-5p were differentially expressed between WWD-PE and controls, suggesting a participation of these miRNAs in the development of preeclampsia. Future studies are needed to validate hsa-miR628-3p and -5p as early predictors of preeclampsia.
Collapse
Affiliation(s)
- Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara Km 6, Ejido la Escondida, 98160 Zacatecas, Mexico.
| | - Jose Gerardo Carrillo-Arriaga
- Instituto Tecnologico de Estudios Superiores Monterrey, Campus Monterrey, Avenida Ignacio Morones Prieto 3000 Poniente, Los Doctores, 64710 Monterrey, Nuevo Leon, Mexico
| | | | - Angel Lugo-Trampe
- Escuela de Medicina Humana, Campus IV, Universidad Autonoma de Chiapas, Tapachula, Chiapas 30700, Mexico
| | - Ivan Delgado-Enciso
- School of Medicine, University of Colima, Av. Universidad # 333, Colonia Las Viboras, 28040 Colima, Colima, Mexico
| | - Iram Pablo Rodriguez-Sanchez
- Laboratorio de Fisiologia Molecular y Estructural, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Avenida Pedro de Alba s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara Km 6, Ejido la Escondida, 98160 Zacatecas, Mexico
| |
Collapse
|
24
|
Baryla M, Kaczynski P, Goryszewska E, Riley SC, Waclawik A. Prostaglandin F 2α stimulates adhesion, migration, invasion and proliferation of the human trophoblast cell line HTR-8/SVneo. Placenta 2019; 77:19-29. [PMID: 30827352 DOI: 10.1016/j.placenta.2019.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The amount of prostaglandin F2α (PGF2α) in the uterine lumen increases during the window of implantation in many mammals, including humans. We hypothesized that PGF2α regulates processes related to human embryo implantation. METHODS The effect of PGF2α was studied using an in vitro model of human extravillous trophoblast (EVT) cell line (HTR-8/SVneo). Adhesion, proliferation, invasion and migration assays, zymography for metalloproteinases (MMP) activity, and gene/protein expression analyses were applied. Doses of 100 nM and/or 1 μM of PGF2α and fluprostenol were used. PGF2α receptor (PTGFR), MMP9 and MMP2 proteins in the human first trimester placenta were localized by immunohistochemistry and immunofluorescence. RESULTS This study is the first reporting the expression of PTGFR protein in the first trimester placenta, as well as in HTR-8/SVneo cells. PGF2α and fluprostenol increased HTR-8/SVneo cell proliferation and adhesion to extracellular matrix protein (P < 0.05). This effect was abolished by mitogen activated protein kinases (MAPK) inhibitor. PGF2α induced phosphorylation of focal adhesion kinase and MAPK1/3 (P < 0.05). PGF2α increased mRNA content and protein activity of MMP9, and gene and protein expression of interleukin-6 (P < 0.05). EVT cell migration and invasiveness were stimulated by PGF2α (P < 0.05). The PGF2α effect on cell invasion was reduced by inhibitors of MMP2, MMP9 and mTOR. In all experiments, the stimulatory effects of PGF2α were diminished by using a PTGFR antagonist. DISCUSSION Our findings suggest a significant role for PGF2α in mechanisms associated with implantation. PGF2α acting by PTGFR in HTR-8/SVneo cells stimulates their adhesion and proliferation through the MAPK signaling pathway and increases invasiveness inducing MMP proteolytic activity and mTOR signaling.
Collapse
Affiliation(s)
- Monika Baryla
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland
| | - Piotr Kaczynski
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland
| | - Ewelina Goryszewska
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland
| | - Simon C Riley
- MRC Centre for Reproductive Health, University of Edinburgh, UK
| | - Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research, The Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
25
|
Li X, Wu C, Shen Y, Wang K, Tang L, Zhou M, Yang M, Pan T, Liu X, Xu W. Ten-eleven translocation 2 demethylates the MMP9 promoter, and its down-regulation in preeclampsia impairs trophoblast migration and invasion. J Biol Chem 2018; 293:10059-10070. [PMID: 29773648 DOI: 10.1074/jbc.ra117.001265] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia is the most common clinical disorder in pregnancy and might result from disordered uterine environments caused by epigenetic modifications, including deregulation of DNA methylation/demethylation. Recent research has indicated that 5-hydroxymethylcytosine (5hmC), a DNA base derived from 5-methylcytosine (5mC) via oxidation by ten-eleven translocation (TET) enzymes, is involved in DNA methylation-related plasticity. Here, we report that TET2 expression and 5hmC abundance are significantly altered in the placentas from preeclampsia patients. shRNA-mediated TET2 knockdown (shTET2) reduced trophoblast migration and invasion when cultured in Matrigel. Both real-time PCR of matrix metalloproteinase (MMP)-related transcripts and a human angiogenesis antibody array indicated that TET2 knockdown in trophoblasts inhibits the expression of MMP transcript, of which MMP9 represented one of the most significant TET2 downstream targets. Using an established shTET2 HTR-8/SVneo cell model, we further confirmed alterations of 5hmC levels and MMP9 expression at both mRNA and protein levels. In particular, we found that TET2 bound to and removed 5mC modifications at the MMP9 promoter region. Interestingly, in TET2 knockdown cells, both MMP9 expression and the compromised trophoblast phenotype could be rescued by vitamin C, an activator of TET enzyme activity. Finally, TET2 expression correlated with MMP9 levels in placenta samples from the preeclampsia patients, indicating that TET2 deregulation is critically involved in the pathogenesis of preeclampsia through down-regulation of MMP9 expression. Our findings highlight a critical role of TET2 in regulating trophoblast cell migration through demethylation at the MMP9 promoter, and suggest that down-regulation of the TET2-MMP9-mediated pathway contributes to preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Xiaoliang Li
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and.,Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong 637009 China
| | - Chunlian Wu
- Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong 637009 China
| | - Ying Shen
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Ke Wang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Li Tang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Mi Zhou
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Ming Yang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Tianying Pan
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Xinghui Liu
- Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Wenming Xu
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China, .,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| |
Collapse
|
26
|
Zhou W, Ma H, Deng G, Tang L, Lu J, Chen X. Clinical significance and biological function of fucosyltransferase 2 in lung adenocarcinoma. Oncotarget 2017; 8:97246-97259. [PMID: 29228607 PMCID: PMC5722559 DOI: 10.18632/oncotarget.21896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Fucosylation, which is catalyzed by fucosyltransferases (FUTs), is one of the most important glycosylation events involved in cancer. Studies have shown that fucosyltransferase 8 (FUT8) is overexpressed in NSCLC and promotes lung cancer progression. However, there are no reports about the pathological role of fucosyltransferase 2 (FUT2) in lung cancer. To identify FUT2 associated with lung cancer, the expression and clinical significance of FUT2 in lung cancer was investigated by Real-Time PCR, Immunohistochemistry and Western Blot. In addition, we investigated the effect of knockdown FUT2 in lung adenocarcinoma cells. The results showed that the expression of FUT2 in lung adenocarcinoma is higher than that in adjacent noncancerous tissues. Knocking down FUT2 in A549 and H1299 cells decreased cell proliferation, migration and invasion, and increased cell apoptosis compared to corresponding control cells. Furthermore, Western Blot showed that knockdown FUT2 can impact the expression of migration-associated and apoptosis-associated proteins in A549 cells. Our results suggest that FUT2 may be associated with lung adenocarcinoma development and thus is a potential biomarker or/and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijun Ma
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory, Women and Children's Hospital of Qingdao, Qingdao, China
| | - Guoqing Deng
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lili Tang
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lu
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering/School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Coles MJ, Palmer N, Casper R. The Refractory Endometrium is Still Refractory. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2017; 39:1188-1191. [PMID: 28867236 DOI: 10.1016/j.jogc.2017.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022]
Affiliation(s)
| | - Nicole Palmer
- Department of Endocrinology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Robert Casper
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Toronto Centre for Advanced Reproductive Technology, Toronto, ON, Canada
| |
Collapse
|
28
|
周 尚, 沈 朗, 李 雪, 谢 晓, 芮 塬, 陈 年, 王 志. [Effect of serum restriction on insulin like growth factor-1 expressions and invasiveness in human trophoblast HTR-8/SVneo cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:774-779. [PMID: 28669951 PMCID: PMC6744146 DOI: 10.3969/j.issn.1673-4254.2017.06.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To explore the effect of serum restriction on the invasiveness and expressions of insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-2 (MMP-2) in human trophoblast HTR-8/SVneo cells in vitro. METHODS HTR-8/SVneo cells were cultured in the presence of 1%, 5%, or 10% fetal bovine serum (FBS) for 48 h. Fluorescence quantitative PCR and immunofluorescence staining were employed to examine the changes in IGF-1 and MMP-2 expressions at both the mRNA and protein levels in HTR-8/SVneo cells; MTT assay and Transwell invasion assay were used to assess the changes of the cell proliferation and the cell invasion ability, respectively. MMP-2 expression, cell proliferation and invasiveness were also assessed in the cells treated with recombinant human IGF-1. RESULTS HTR-8/SVneo cells exhibited significantly lowered cell proliferation in cultures containing low concentrations of FBS (P<0.05). The expressions of IGF-1 and MMP-2 at both mRNA and protein levels were significantly down-regulated and the invasiveness was significantly lowered in cells cultured in the medium containing 1% FBS as compared with those of cells cultured in the presence of 5% and 10% FBS (P<0.05). Treatment of the cells with recombinant human IGF-1 significantly up-regulated MMP-2 expression (P<0.05) and increased the cell invasiveness (P<0.05). CONCLUSIONS FBS restriction down-regulates IGF-1 expression in human trophoblast HTR-8/SVneo cells and suppress the cell invasiveness possibly by suppressing MMP-2 expression. Treatment with recombinant human IGF-1 can up-regulate MMP-2 expression and promote the invasiveness of HTR-8/SVneo cells.
Collapse
Affiliation(s)
- 尚谦 周
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
| | - 朗 沈
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 雪媛 李
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
| | - 晓珍 谢
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
| | - 塬 芮
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
| | - 年坤 陈
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 南方医科大学,广东 广州 510515Southern Medical University, Guangzhou 510515, China
| | - 志坚 王
- 南方医科大学南方医院妇产科,广东 广州 510515Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Jayaram S, Gupta MK, Raju R, Gautam P, Sirdeshmukh R. Multi-Omics Data Integration and Mapping of Altered Kinases to Pathways Reveal Gonadotropin Hormone Signaling in Glioblastoma. ACTA ACUST UNITED AC 2016; 20:736-746. [DOI: 10.1089/omi.2016.0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Rajesh Raju
- Computational Biology and Bioinformatics, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Poonam Gautam
- National Institute of Pathology, ICMR, New Delhi, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Mazumdar Shaw Centre for Translational Research, Narayana Hrudayalaya Health City, Bangalore, India
| |
Collapse
|
30
|
Wang Q, Yu W, Huang T, Zhu Y, Huang C. RUNX2 promotes hepatocellular carcinoma cell migration and invasion by upregulating MMP9 expression. Oncol Rep 2016; 36:2777-2784. [PMID: 27666365 DOI: 10.3892/or.2016.5101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 11/06/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) was first identified as a transcription factor to play an important role in different biological processes of osteoblast and chondrocyte, including differentiation and migration. Recently, RUNX2 has been implicated in promigratory/proinvasive behavior in different human malignancies. In the present study, we demonstrated that the RUNX2 mRNA and protein expression were both increased significantly in HCC tissues and cell lines. High RUNX2 expression was correlated obviously with poor clinicopathological characteristics including multiple tumor nodes, high histological grading, venous infiltration and advanced tumor-node-metastasis (TNM) stage. In addition, we demonstrated that RUNX2 was a prognostic indicator for predicting 5-year overall survival and disease-free survival of HCC patients. Our studies showed that RUXN2 overexpression promoted, while RUNX2 knockdown inhibited HCC cell migration and invasion in vitro. Notably, RUNX2 positively regulated matrix metalloproteinase 9 (MMP9) accumulation in HCC cells. Furthermore, we confirmed that RUNX2 was positively correlated with MMP9 expression in HCC tissues by Pearson correlation analysis. Mechanistically, we demonstrated that MMP9 overexpression increased HCC cell migration and invasion, while MMP9 knockdown reduced HCC cell migration and invasion in vitro. Alteration of MMP9 expression partially abrogated the effects of RUNX2 on HCC cell migration and invasion, which suggests that RUNX2 developed its pro-metastatic biological function by upregulating the expression of MMP9 in HCC cells. In conclusion, our results reveal that RUNX2 promotes HCC cell migration and invasion by MMP9-mediated pathway, and potentially serves as a new prognostic biomarker and in therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hepato-biliary-pancreatic surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wei Yu
- Department of Hepato-biliary-pancreatic surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Tao Huang
- Department of Hepato-biliary-pancreatic surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yan Zhu
- Department of Medical Oncology, People's Hospital of Henan Province, Zhengzhou, Henan 450000, P.R. China
| | - Changshan Huang
- Department of Hepato-biliary-pancreatic surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
31
|
Peng B, Klausen C, Campbell L, Leung PCK, Horne AW, Bedaiwy MA. Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor are expressed at tubal ectopic pregnancy implantation sites. Fertil Steril 2016; 105:1620-1627.e3. [PMID: 26920257 DOI: 10.1016/j.fertnstert.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate whether gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) are expressed at tubal ectopic pregnancy sites, and to study the potential role of GnRH signaling in regulating immortalized human trophoblast cell viability. DESIGN Immunohistochemical and experimental studies. SETTING Academic research laboratory. PATIENT(S) Fallopian tube implantation sites (n = 25) were collected from women with ectopic pregnancy. First-trimester human placenta biopsies (n = 5) were obtained from elective terminations of pregnancy. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) GnRH and GnRHR expression was examined by means of immunohistochemistry and histoscoring. Trophoblastic BeWo choriocarcinoma and immortalized extravillous trophoblast (HTR-8/SVneo) cell viability was examined by means of cell counting after incubation with GnRH and/or GnRH antagonist (Antide). RESULT(S) GnRH and GnRHR immunoreactivity was detected in cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast in all women with tubal pregnancy. GnRH immunoreactivity was higher and GnRHR immunoreactivity lower in syncytiotrophoblast compared with cytotrophoblast. GnRH and GnRHR immunoreactivity was detected in adjacent fallopian tube epithelium. Whereas neither GnRH nor Antide altered HTR-8/SVneo cell viability, treatment with GnRH significantly increased the overall cell viability of BeWo cells at 48 and 72 hours, and these effects were abolished by pretreatment with Antide. CONCLUSION(S) GnRH and GnRHR are expressed in trophoblast cell populations and fallopian tube epithelium at tubal ectopic pregnancy sites. GnRH increases BeWo cell viability, an effect mediated by the GnRHR. Further work is required to investigate the potential role of GnRH signaling in ectopic pregnancy.
Collapse
Affiliation(s)
- Bo Peng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Campbell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew W Horne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mohamed A Bedaiwy
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|