1
|
Yang Y, Han X, Ma L, Wu Y, Liu X, Fu H, Liu G, Lei X, Guo Y. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H +-ATPase and Na +/H + antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. MOLECULAR PLANT 2021; 14:2000-2014. [PMID: 34339895 DOI: 10.1016/j.molp.2021.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/20/2021] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiuli Han
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2951-2962. [PMID: 28582540 PMCID: PMC5853834 DOI: 10.1093/jxb/erx156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/08/2017] [Indexed: 05/13/2023]
Abstract
Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants.
Collapse
Affiliation(s)
- Xiuli Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohui Liu
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Wang X, Qian X, Stumpf B, Fatima A, Feng K, Schubert S, Hanstein S. Modulatory ATP binding to the E2 state of maize plasma membrane H+-ATPase indicated by the kinetics of vanadate inhibition. FEBS J 2013; 280:4793-806. [DOI: 10.1111/febs.12447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/05/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaozhi Wang
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
- College of Environmental Science and Engineering; Yangzhou University; China
| | - Xiaoqing Qian
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
- College of Environmental Science and Engineering; Yangzhou University; China
| | - Beate Stumpf
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
| | - Ammara Fatima
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
| | - Ke Feng
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
- College of Environmental Science and Engineering; Yangzhou University; China
| | - Sven Schubert
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
| | - Stefan Hanstein
- Institute of Plant Nutrition; Justus Liebig University; Giessen Germany
| |
Collapse
|
4
|
Sánchez-Linares L, Gavilanes-Ruíz M, Díaz-Pontones D, Guzmán-Chávez F, Calzada-Alejo V, Zurita-Villegas V, Luna-Loaiza V, Moreno-Sánchez R, Bernal-Lugo I, Sánchez-Nieto S. Early carbon mobilization and radicle protrusion in maize germination. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4513-26. [PMID: 22611232 PMCID: PMC3421986 DOI: 10.1093/jxb/ers130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Considerable amounts of information is available on the complex carbohydrates that are mobilized and utilized by the seed to support early seedling development. These events occur after radicle has protruded from the seed. However, scarce information is available on the role of the endogenous soluble carbohydrates from the embryo in the first hours of germination. The present work analysed how the soluble carbohydrate reserves in isolated maize embryos are mobilized during 6-24 h of water imbibition, an interval that exclusively embraces the first two phases of the germination process. It was found that sucrose constitutes a very significant reserve in the scutellum and that it is efficiently consumed during the time in which the adjacent embryo axis is engaged in an active metabolism. Sucrose transporter was immunolocalized in the scutellum and in vascular elements. In parallel, a cell-wall invertase activity, which hydrolyses sucrose, developed in the embryo axis, which favoured higher glucose uptake. Sucrose and hexose transporters were active in the embryo tissues, together with the plasma membrane H(+)-ATPase, which was localized in all embryo regions involved in both nutrient transport and active cell elongation to support radicle extension. It is proposed that, during the initial maize germination phases, a net flow of sucrose takes place from the scutellum towards the embryo axis and regions that undergo elongation. During radicle extension, sucrose and hexose transporters, as well as H(+)-ATPase, become the fundamental proteins that orchestrate the transport of nutrients required for successful germination.
Collapse
Affiliation(s)
- Luis Sánchez-Linares
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - David Díaz-Pontones
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Iztapalapa. Apartado Postal 55535, 09340, DF, México
| | - Fernando Guzmán-Chávez
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - Viridiana Calzada-Alejo
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - Viridiana Zurita-Villegas
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - Viridiana Luna-Loaiza
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, 14080, DF, México
| | - Irma Bernal-Lugo
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, DF, México
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|