1
|
Kavi Kishor PB, Thaddi BN, Guddimalli R, Nikam TD, Sambasiva Rao KRS, Mukhopadhyay R, Singam P. The Occurrence, Uses, Biosynthetic Pathway, and Biotechnological Production of Plumbagin, a Potent Antitumor Naphthoquinone. Molecules 2025; 30:1618. [PMID: 40286222 PMCID: PMC11990497 DOI: 10.3390/molecules30071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Plumbagin is an important naphthoquinone with potent anticancer properties besides multitudinous uses in healthcare. It is produced in a limited number of species and families but mostly in the roots of Plumbaginaceae family members. The biosynthetic pathway and the genes that regulate plumbagin synthesis are not completely known, but details of these are being revealed. Several species, including Plumbago, Drosera, and others, are being uprooted for the extraction of plumbagin by pharmaceutical industries, leading to the destruction of natural habitats. The pharmaceutical industry is therefore facing an acute shortage of plant material. This necessitates enhancing the accumulation of plumbagin using suspensions and hairy roots to meet market demands. Many factors, such as the aggregate size of the inoculum, stability of the culture, and the sequential effects of elicitors, immobilization, and permeabilization, have been demonstrated to act synergistically and markedly augment plumbagin accumulation. Hairy root cultures can be used for the large-scale production, growth, and plumbagin accumulation, and the exploration of their efficacy is now imperative. The secretion of compounds into the spent medium and their in situ adsorption via resin has remarkable potential, but this has not been thoroughly exploited. Improvements in the quality of biomass, selection of cell lines, and production of plumbagin in bioreactors have thus far been sporadic, and these parameters need to be further exploited. In this review, we report the advances made relating to the importance of stable cell line selection for the accumulation of compounds in long-term cultures, hairy root cultures for the accumulation of plumbagin, and its semicontinuous production via total cell recycling in different types of bioreactors. Such advances might pave the way for industrial exploitation. The steps in the biosynthetic pathway that are currently understood might also aid us in isolating the relevant genes in order to examine the effects of their overexpression or heterologous downregulation or to edit the genome using CRISPR-Cas9 technology in order to enhance the accumulation of plumbagin. Its potential as an anticancer molecule and its mode of action have been amply demonstrated, but plumbagin has not been exploited in clinics due to its insolubility in water and its highly lipophilic nature. Plumbagin-loaded nanoemulsions, plumbagin-silver, or albumin nanoparticle formulations can overcome these problems relating to its solubility and are currently being tried to improve its bioavailability and antiproliferative activities, as discussed in the current paper.
Collapse
Affiliation(s)
| | - Bangaru Naidu Thaddi
- Department of Life Sciences, Aditya Degree & P.G. College (Autonomous), Kakinada 533003, India;
| | | | | | | | - Rupasree Mukhopadhyay
- Department of Genetics & Biotechnology, Veeranari Chakali Ilamma Women’s University, Hyderabad 500095, India;
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500007, India; (R.G.); (P.S.)
| |
Collapse
|
2
|
Manga-Robles A, Santiago R, Malvar RA, Moreno-González V, Fornalé S, López I, Centeno ML, Acebes JL, Álvarez JM, Caparros-Ruiz D, Encina A, García-Angulo P. Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110882. [PMID: 33902850 DOI: 10.1016/j.plantsci.2021.110882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Lodging is one of the causes of maize (Zea mays L.) production losses worldwide and, at least, the resistance to stalk lodging has been positively correlated with stalk strength. In order to elucidate the putative relationship between cell wall, stalk strength and lodging resistance, twelve maize inbreds varying in rind penetration strength and lodging resistance were characterized for cell wall composition and structure. Stepwise multiple regression indicates that H lignin subunits confer a greater rind penetration strength. Besides, the predictive model for lodging showed that a high ferulic acid content increases the resistance to lodging, whereas those of diferulates decrease it. These outcomes highlight that the strength and lodging susceptibility of maize stems may be conditioned by structural features of cell wall rather than by the net amount of cellulose, hemicelluloses and lignin. The results presented here provide biotechnological targets in breeding programs aimed at improving lodging in maize.
Collapse
Affiliation(s)
- Alba Manga-Robles
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Rogelio Santiago
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo E-36310. Vigo, Spain; Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Spain.
| | - Rosa A Malvar
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Spain; Misión Biológica de Galicia, CSIC, Pontevedra, Spain.
| | - Víctor Moreno-González
- Área de Zoología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Silvia Fornalé
- Centre de Recerca en AgriGenómica (Consorci CSIC-IRTA-UAB-UB), Campus UAB, E-08193. Bellaterra, Barcelona, Spain.
| | - Ignacio López
- Centre de Recerca en AgriGenómica (Consorci CSIC-IRTA-UAB-UB), Campus UAB, E-08193. Bellaterra, Barcelona, Spain.
| | - María Luz Centeno
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - José L Acebes
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Jesús Miguel Álvarez
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - David Caparros-Ruiz
- Centre de Recerca en AgriGenómica (Consorci CSIC-IRTA-UAB-UB), Campus UAB, E-08193. Bellaterra, Barcelona, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain.
| |
Collapse
|
3
|
Magdziak Z, Gąsecka M, Budka A, Goliński P, Mleczek M. Profile and concentration of the low molecular weight organic acids and phenolic compounds created by two-year-old Acer platanoides seedlings growing under different As forms. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122280. [PMID: 32066021 DOI: 10.1016/j.jhazmat.2020.122280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Two-year-old seedlings of Acer platanoides were cultivated during a three-month hydroponic experiment in modified Knop solution enriched with inorganic (As(III), As(V)) and organic (dimethylarsinic acid - DMA) arsenic forms at 0.06 mM, 0.6 mM and their combinations. The profile and content of low molecular weight organic acids (LMWOAs) and phenolic compounds were also determined in the rhizosphere, roots and leaves. Arsenic (As) treatment caused an elevated creation of the above mentioned metabolites, which was higher in leaves than in the rhizosphere or roots, and their overall content was correlated with the concentration of As in A. platanoides organs. The addition of all As forms strongly induced the exudation of citric and oxalic acids into the rhizosphere, while malonic, acetic, citric and malic acids were formed in the roots. The most differential profile of roots was confirmed for As(V) 0.06 mM (4-hydroxybenzoic (4-HBA), syringic, 2,5 dihydroxybenzoic (2,5-DHBA), caffeic, chlorogenic, ferulic, p-coumaric and sinapic acids and catechin). The obtained results indicate that the presence of particular As forms has a significant impact on the content and profile of exuded and created LMWOAs and phenolic compounds, and can also have a decisive influence on the activation of appropriate detoxification mechanisms.
Collapse
Affiliation(s)
- Zuzanna Magdziak
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Monika Gąsecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Piotr Goliński
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625 Poznań, Poland.
| |
Collapse
|
4
|
Martínez-Rubio R, Centeno ML, García-Angulo P, Álvarez JM, Acebes JL, Encina A. The role of cell wall phenolics during the early remodelling of cellulose-deficient maize cells. PHYTOCHEMISTRY 2020; 170:112219. [PMID: 31794882 DOI: 10.1016/j.phytochem.2019.112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The habituation of cultured cells to cellulose biosynthesis inhibitors such as dichlobenil (dichlorobenzonitrile, DCB) has proven a valuable tool to elucidate the mechanisms involved in plant cell wall structural plasticity. Our group has demonstrated that maize cells cope with DCB through a modified cell wall in which cellulose is replaced by a more extensive network of highly cross-linked feruloylated arabinoxylans. In order to gain further insight into the contribution of phenolics to the early remodelling of cellulose-deficient cell walls, a comparative HPLC-PAD analysis was carried out of hydroxycinnamates esterified into nascent and cell wall polysaccharides obtained from non-habituated (NH) and habituated to low DCB concentrations (1.5 μM; H) maize suspension-cultured cells. Incipient DCB-habituated cell walls showed significantly higher levels of esterified ferulic acid and p-coumaric acid throughout the culture cycle. In terms of cell wall fortification, ferulic acid is associated to arabinoxylan crosslinking whereas the increase of p-coumaric suggests an early lignification response. As expected, the level of hydroxycinnamates esterified into nascent polysaccharides was also higher in DCB-habituated cells indicating an overexpression of phenylpropanoid pathway. Due to their key role in cell wall strengthening, special attention was paid into the dimerization pattern of ferulic acid. A quantitative comparison of diferulate dehydrodimers (DFAs) between cell lines and cell compartments revealed that an extra dimerization took place in H cells when both nascent and mature cell wall polysaccharides were analysed. In addition, qualitative differences in the ferulic acid coupling pattern were detected in H cells, allowing us to suggest that 8-O-4'-DFA and 8-5'-DFA featured the ferulic acid dimerization when it occurred in the protoplasmic and cell wall fractions respectively. Both qualitative and quantitative differences in the phenolic profile between NH and H cells point to a regioselectivity in the ferulate dehydrodimerization.
Collapse
Affiliation(s)
- Romina Martínez-Rubio
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - María Luz Centeno
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - Jesús M Álvarez
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| | - José Luis Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, E-24071, León, Spain
| |
Collapse
|
5
|
Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:134-143. [PMID: 30445244 DOI: 10.1016/j.ecoenv.2018.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 05/20/2023]
Abstract
In the present study, a set of pot culture experiments was conducted to reveal how the metabolism process of phenolic compounds was affected by cadmium (Cd) and zinc (Zn) and to further uncover heavy metal tolerance mechanisms in Kandelia obovata. After 60d of treatment, the biomass and chlorophyll a content in the leaves were suppressed, but total phenolic compounds in roots and leaves were improved by the increasing gradient of Cd or Zn concentrations; Total phenolic compounds significantly increased by 3.6-44.6% in the roots, and by 0.4-126.6% in the leaves. At the meantime, the activity of Shikimate dehydrogenase (SKDH), cinnamyl alcohol dehydrogenase (CAD), and polyphenol oxidase (PPO) in the roots increased by 11.2-307.6%, 12.4-175.4% and - 2.7-392.8%, and the results were 3.4-69.5%, 1.7-40.0%, 16.0-99.7% in the leaves. Higher toxicity of Cd than Zn, as well as slight alleviating effect of 100 mg kg-1 Zn on 2.5 mg kg-1 Cd were found. Additionally, a significantly positive correlation coefficients for relationship between phenolic metabolism related enzyme activity and Cd/Zn contamination levels was found, and leaf SKDH, leaf CAD, and leaf PPO activities were moderately correlated with leaf Cd (r = 0.39, r = 0.43, and r = 0.57, respectively) and leaf Zn (r = 0.44, r = 0.41, r = 0.19, respectively) content, which indicate that Cd and Zn play a previously unrecognized but major role in phenolic compounds synthesis, transport, and metabolism in K. obovata. The results also provided evidence that the application of high levels of Cd and Zn was accompanied by three phenolic metabolism pathways participating in heavy metal tolerance process.
Collapse
Affiliation(s)
- Shan Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Qiang Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Junwei Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Dan Yang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
6
|
Martínez-Rubio R, Acebes JL, Encina A, Kärkönen A. Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling. PHYSIOLOGIA PLANTARUM 2018; 164:45-55. [PMID: 29464727 DOI: 10.1111/ppl.12710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Maize (Zea mays L.) suspension-cultured cells habituated to a cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a modified cell wall, in which the reduction in the cellulose content is compensated by a network of highly cross-linked feruloylated arabinoxylans and the deposition of lignin-like polymers. For both arabinoxylan cross-linking and lignin polymerization, class III peroxidases (POXs) have been demonstrated to have a prominent role. For the first time, a comparative study of POX activity and isoforms in control and cellulose-impaired cells has been addressed, also taking into account their cellular distribution in different compartments. Proteins from the spent medium (SM), soluble cellular (SC), ionically (ICW) and covalently bound cell wall protein fractions were assayed for total and specific peroxidase activity by using coniferyl and sinapyl alcohol and ferulic acid as substrates. The isoPOX profile was obtained by isoelectric focusing. POX activity was higher in DCB-habituated than in non-habituated cells in all protein fractions at all cell culture stages. For all substrates assayed, SC and ICW fractions showed higher activity at the early log growth phase than at the late log phase. However, the highest POX activity in the spent medium was found at the late log phase. According to the isoPOX profiles, the highest diversity of isoPOXs was detected in the ICW and SM protein fractions. The latter fraction contained isoPOXs with higher activity in DCB-habituated cells. Some of the isoPOXs detected could be involved in cross-linking of arabinoxylans and in the lignin-like polymer formation in DCB-habituated cells.
Collapse
Affiliation(s)
- Romina Martínez-Rubio
- Department of Engineering and Agricultural Sciences, Universidad de León, León, 24071, Spain
| | - José Luis Acebes
- Department of Engineering and Agricultural Sciences, Universidad de León, León, 24071, Spain
| | - Antonio Encina
- Department of Engineering and Agricultural Sciences, Universidad de León, León, 24071, Spain
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland
| |
Collapse
|
7
|
Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 2018; 9:E309. [PMID: 29925808 PMCID: PMC6027220 DOI: 10.3390/genes9060309] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.
Collapse
Affiliation(s)
- Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - J Armando Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Fabio Apone
- Arterra Biosciences srl/Vitalab srl, via B. Brin 69, 80142 Naples, Italy.
| | - Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ahmad A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Claudio Cantini
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia.
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Brabham C, Stork J, Barrett M, DeBolt S. Grass cell walls have a role in the inherent tolerance of grasses to the cellulose biosynthesis inhibitor isoxaben. PEST MANAGEMENT SCIENCE 2018; 74:878-884. [PMID: 29087620 DOI: 10.1002/ps.4779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cellulose biosynthesis inhibitors (CBIs) are pre-emergence herbicides that inhibit anisotropic cell expansion resulting in a severely swollen and stunted growth phenotype. Resistance to group 21 CBIs, such as isoxaben, is conferred by missense mutations in CELLOSE SYNTHASE A (CesA) genes required for primary cell wall synthesis, concluding that this is their in vivo target. RESULTS Herein, we show that grasses exhibit tolerance to group 21 CBIs and explore the mechanism of tolerance to isoxaben in the grass Brachypodium distachyon (L.). Comparative genomics failed to identify synonymous point mutations that have been found to confer isoxaben resistance in the dicot Arabidopsis thaliana (L.). Brachypodium did not metabolize 14 C-isoxaben. We next explored the role of grass-specific non-cellulosic cell wall components, specifically the hemicellulose polysaccharide mix linkage glucans (MLG), as a potential tolerance mechanism by compensating for the loss of cellulose during cell elongation. A partial-transcriptional knockdown T-DNA insertion was found in a key MLG synthesis gene, Cellulose synthase-like F6 (CslF6) and this mutant was found to be 2.1 times more sensitive to isoxaben than wild-type plants. CONCLUSION These data suggest that the composition and compensatory response of grass cell walls may be a factor in conferring tolerance to group 21 CBIs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chad Brabham
- Department of Horticulture, University of Kentucky, Lexington, KY, USA
| | - Jozsef Stork
- Department of Horticulture, University of Kentucky, Lexington, KY, USA
| | - Michael Barrett
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
de Castro M, Martínez-Rubio R, Acebes JL, Encina A, Fry SC, García-Angulo P. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:475-495. [PMID: 28474461 DOI: 10.1111/jipb.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 μM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose.
Collapse
Affiliation(s)
- María de Castro
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Romina Martínez-Rubio
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - José L Acebes
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Penélope García-Angulo
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| |
Collapse
|
10
|
Largo-Gosens A, Encina A, de Castro M, Mélida H, Acebes JL, García-Angulo P, Álvarez JM. Early habituation of maize (Zea mays) suspension-cultured cells to 2,6-dichlorobenzonitrile is associated with the enhancement of antioxidant status. PHYSIOLOGIA PLANTARUM 2016; 157:193-204. [PMID: 26612685 DOI: 10.1111/ppl.12411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize-cultured cells with a reduced amount of cellulose (∼20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short-term exposure to DCB of non-habituated maize-cultured cells induced a substantial increase in oxidative damage. Concomitantly, short-term treated cells presented an increase in class III peroxidase and glutathione S-transferase activities and total glutathione content. Maize cells habituated to 0.3-1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S-transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB-habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 μM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize-cultured cells.
Collapse
Affiliation(s)
- Asier Largo-Gosens
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - María de Castro
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, E-28223, Spain
| | - José L Acebes
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Penélope García-Angulo
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| | - Jesús M Álvarez
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, E-24071, Spain
| |
Collapse
|
11
|
Mélida H, Largo-Gosens A, Novo-Uzal E, Santiago R, Pomar F, García P, García-Angulo P, Acebes JL, Álvarez J, Encina A. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:357-72. [PMID: 25735403 DOI: 10.1111/jipb.12346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/25/2015] [Indexed: 05/23/2023]
Abstract
Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.
Collapse
Affiliation(s)
- Hugo Mélida
- Plant Physiology Laboratory, Faculty of Biological and Environmental Sciences, University of León, E-24071 León, Spain; Centre for Plant Biotechnology and Genomics (CBGP), Politechnical University of Madrid, E-28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
de Castro M, Miller JG, Acebes JL, Encina A, García-Angulo P, Fry SC. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:373-387. [PMID: 25611087 DOI: 10.1111/jipb.12331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [(3)H]arabinose, and traced the distribution of (3)H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [(3)H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [(3)H]xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of (3)H-hemicelluloses ([(3)H]xylans and [(3)H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls' cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells' reduced capacity to integrate arabinoxylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly.
Collapse
Affiliation(s)
- María de Castro
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh, EH9 3JH, UK; Laboratory of Plant Physiology, Faculty of Biological and Environmental Sciences, University of Léon, E-24071, León, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Cui X. Cellular dynamics: seeing is believing. MOLECULAR PLANT 2013; 6:239-241. [PMID: 23345611 DOI: 10.1093/mp/sst016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|