1
|
Qiu L, Fang R, Jia Y, Xiong H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li C, Guo H, Liu L. The allelic mutation of NBS-LRR gene causes premature senescence in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112395. [PMID: 39842697 DOI: 10.1016/j.plantsci.2025.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Premature senescence has a significant impact on the yield and quality of wheat crops. The process is controlled by multiple and intricate genetic pathways and regulatory elements, whereby the discovery of additional mutants provides important insights into the molecular basis of this important trait. Here, we developed a premature senescence wheat mutant je0874, its leaves started to show yellow before heading stage; with plant growth and development, the degree of yellowing worsened rapidly, and chlorophyll content in flag leaf was reduced by 93.8 % at 15 days after heading, all other leaves became dryness at the grain filling stage. In the mutant, the reactive oxygen species (ROS) and its metabolites increased up to 34.8-47.3 %, while activities of ROS scavenging enzymes were reduced by 62.7-96.7 %. Premature senescence resulted in a reduction of thousand grain weight by over 50 %. Genetic analysis showed the mutation of senescence was controlled by a single recessive gene, and target gene was finely mapped to a 338 kb region of the long arm of chromosome 2D. This region contained a total of 6 annotated genes, while only gene TraesFLD2D01G513900 carried a SNP mutation. The gene contained an NBS-LRR domain, we named it Taps1. Allelic mutants of Taps1 exhibited a lesion mimic phenotype, and the mutant allele resulted in cell death in tobacco, which represent a novel gene controlling wheat senescence. Two haplotypes were identified in 180 accessions, which did not lead to cell death. These results contribute to increase our understanding of the regulation of premature plant senescence.
Collapse
Affiliation(s)
- Lin Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China; Institute of Crop resources, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rongmin Fang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Center of Space Mutagenesis for Crop Improvement, Beijing, China.
| |
Collapse
|
2
|
Luo Y, Huang X, Sha A, He J, Chen X, Xiao W, Peng L, Zou L, Liu B, Li Q. Analysis of growth physiological changes and metabolome of highland barley seedlings under cadmium (II) stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125664. [PMID: 39805469 DOI: 10.1016/j.envpol.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent. Additionally, the malondialdehyde (MDA) content and superoxide dismutase activity increased significantly, indicating that the seedlings were affected by oxidative stress. In addition, Cd(II) stress also significantly affected the accumulation of metabolites in highland barley seedlings, resulting in an increase in lipids and lipid molecules, organic heterocyclic compounds, and phenylpropanoids. Cd(II) stress also significantly interfered with phenylalanine metabolism, fructose and mannose metabolism, amino acid, sugar, and nucleotide sugar metabolism, and biosynthetic metabolic pathways of isoquinoline alkaloids. The increase in Cd(II) stress also resulted in elevated levels of soluble sugars, soluble proteins, and proline as defense mechanisms against the stress. Overall, barley has a very good ability to resist adversity, and the mechanism of barley's resistance to adversity has not been deeply investigated. Therefore, in this paper, we systematically investigated the stress resistance mechanism of barley to cadmium stress and found that the growth physiology and metabolism of barley seedlings were significantly affected by cadmium stress. Differential changes in metabolites and enrichment of metabolic pathways may be the main mechanisms for barley seedlings to cope with Cd(II) stress. This provides direction for selecting better varieties of barley.
Collapse
Affiliation(s)
- Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xian Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kim SH, Yoon J, Kim H, Lee SJ, Paek NC. Rice Basic Helix-Loop-Helix 079 (OsbHLH079) Delays Leaf Senescence by Attenuating ABA Signaling. RICE (NEW YORK, N.Y.) 2023; 16:60. [PMID: 38093151 PMCID: PMC10719235 DOI: 10.1186/s12284-023-00673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Leaf senescence represents the final phase of leaf development and is characterized by a highly organized degenerative process involving the active translocation of nutrients from senescing leaves to growing tissues or storage organs. To date, a large number of senescence-associated transcription factors (sen-TFs) have been identified that regulate the initiation and progression of leaf senescence. Many of these TFs, including NAC (NAM/ATAF1/2/CUC2), WRKY, and MYB TFs, have been implicated in modulating the expression of downstream senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs) under the control of phytohormones. However, the involvement of basic helix-loop-helix (bHLH) TFs in leaf senescence has been less investigated. Here, we show that OsbHLH079 delays both natural senescence and dark-induced senescence: Overexpression of OsbHLH079 led to a stay-green phenotype, whereas osbhlh079 knockout mutation displayed accelerated leaf senescence. Similar to other sen-TFs, OsbHLH079 showed a gradual escalation in expression as leaves underwent senescence. During this process, the mRNA levels of SAGs and CDGs remained relatively low in OsbHLH079 overexpressors, but increased sharply in osbhlh079 mutants, suggesting that OsbHLH079 negatively regulates the transcription of SAGs and CDGs under senescence conditions. Additionally, we found that OsbHLH079 delays ABA-induced senescence. Subsequent RT-qPCR and dual-luciferase reporter assays revealed that OsbHLH079 downregulates the expression of ABA signaling genes, such as OsABF2, OsABF4, OsABI5, and OsNAP. Taken together, these results demonstrate that OsbHLH079 functions in delaying leaf yellowing by attenuating the ABA responses.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Xu J, Wang C, Wang F, Liu Y, Li M, Wang H, Zheng Y, Zhao K, Ji Z. PWL1, a G-type lectin receptor-like kinase, positively regulates leaf senescence and heat tolerance but negatively regulates resistance to Xanthomonas oryzae in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2525-2545. [PMID: 37578160 PMCID: PMC10651159 DOI: 10.1111/pbi.14150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Plant leaf senescence, caused by multiple internal and environmental factors, has an important impact on agricultural production. The lectin receptor-like kinase (LecRLK) family members participate in plant development and responses to biotic and abiotic stresses, but their roles in regulating leaf senescence remain elusive. Here, we identify and characterize a rice premature withered leaf 1 (pwl1) mutant, which exhibits premature leaf senescence throughout the plant life cycle. The pwl1 mutant displayed withered and whitish leaf tips, decreased chlorophyll content, and accelerated chloroplast degradation. Map-based cloning revealed an amino acid substitution (Gly412Arg) in LOC_Os03g62180 (PWL1) was responsible for the phenotypes of pwl1. The expression of PWL1 was detected in all tissues, but predominantly in tillering and mature leaves. PWL1 encodes a G-type LecRLK with active kinase and autophosphorylation activities. PWL1 is localized to the plasma membrane and can self-associate, mainly mediated by the plasminogen-apple-nematode (PAN) domain. Substitution of the PAN domain significantly diminished the self-interaction of PWL1. Moreover, the pwl1 mutant showed enhanced reactive oxygen species (ROS) accumulation, cell death, and severe DNA fragmentation. RNA sequencing analysis revealed that PWL1 was involved in the regulation of multiple biological processes, like carbon metabolism, ribosome, and peroxisome pathways. Meanwhile, interfering of biological processes induced by the PWL1 mutation also enhanced heat sensitivity and resistance to bacterial blight and bacterial leaf streak with excessive accumulation of ROS and impaired chloroplast development in rice. Natural variation analysis indicated more variations in indica varieties, and the vast majority of japonica varieties harbour the PWL1Hap1 allele. Together, our results suggest that PWL1, a member of LecRLKs, exerts multiple roles in regulating plant growth and development, heat-tolerance, and resistance to bacterial pathogens.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Rice Research, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yapei Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Man Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongjie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Zhang W, Zhang Z, Chen Q, Wang Z, Song W, Yang K, Xin M, Hu Z, Liu J, Peng H, Lai J, Guo W, Ni Z, Sun Q, Du J, Yao Y. Mutation of a highly conserved amino acid in RPM1 causes leaf yellowing and premature senescence in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:254. [PMID: 38006406 DOI: 10.1007/s00122-023-04499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
KEY MESSAGE A point mutation of RPM1 triggers persistent immune response that induces leaf premature senescence in wheat, providing novel information of immune responses and leaf senescence. Leaf premature senescence in wheat (Triticum aestivum L.) is one of the most common factors affecting the plant's development and yield. In this study, we identified a novel wheat mutant, yellow leaf and premature senescence (ylp), which exhibits yellow leaves and premature senescence at the heading and flowering stages. Consistent with the yellow leaves phenotype, ylp had damaged and collapsed chloroplasts. Map-based cloning revealed that the phenotype of ylp was caused by a point mutation from Arg to His at amino acid 790 in a plasma membrane-localized protein resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). The point mutation triggered excessive immune responses and the upregulation of senescence- and autophagy-associated genes. This work provided the information for understanding the molecular regulatory mechanism of leaf senescence, and the results would be important to analyze which mutations of RPM1 could enable plants to obtain immune activation without negative effects on plant growth.
Collapse
Affiliation(s)
- Wenjia Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wanjun Song
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kai Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Xie Z, Zhang Q, Xia C, Dong C, Li D, Liu X, Kong X, Zhang L. Identification of the early leaf senescence gene ELS3 in bread wheat (Triticum aestivum L.). PLANTA 2023; 259:5. [PMID: 37994951 DOI: 10.1007/s00425-023-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.
Collapse
Affiliation(s)
- Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
8
|
Wang Y, Teng Z, Li H, Wang W, Xu F, Sun K, Chu J, Qian Y, Loake GJ, Chu C, Tang J. An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger cell death in rice. PLANT COMMUNICATIONS 2023; 4:100459. [PMID: 36203361 PMCID: PMC10030324 DOI: 10.1016/j.xplc.2022.100459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 05/04/2023]
Abstract
A key event that follows pathogen recognition by a resistance (R) protein containing an NB-ARC (nucleotide-binding adaptor shared by Apaf-1, R proteins, and Ced-4) domain is hypersensitive response (HR)-type cell death accompanied by accumulation of reactive oxygen species and nitric oxide. However, the integral mechanisms that underlie this process remain relatively opaque. Here, we show that a gain-of-function mutation in the NB-ARC protein RLS1 (Rapid Leaf Senescence 1) triggers high-light-dependent HR-like cell death in rice. The RLS1-mediated defense response is largely independent of salicylic acid accumulation, NPR1 (Nonexpressor of Pathogenesis-Related Gene 1) activity, and RAR1 (Required for Mla12 Resistance 1) function. A screen for suppressors of RLS1 activation identified RMC (Root Meander Curling) as essential for the RLS1-activated defense response. RMC encodes a cysteine-rich receptor-like secreted protein (CRRSP) and functions as an RLS1-binding partner. Intriguingly, their co-expression resulted in a change in the pattern of subcellular localization and was sufficient to trigger cell death accompanied by a decrease in the activity of the antioxidant enzyme APX1. Collectively, our findings reveal an NB-ARC-CRRSP signaling module that modulates oxidative state, the cell death process, and associated immunity responses in rice.
Collapse
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Teng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Institute of Genetics and Developmental Biology and National Center for Plant Gene Research (Beijing), Chinese Academy of Sciences, Beijing 100101, China
| | - Yangwen Qian
- Biogle Genome Editing Center, Changzhou 213125, China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Zhang C, Li N, Hu Z, Liu H, Hu Y, Tan Y, Sun Q, Liu X, Xiao L, Wang W, Wang R. Mutation of Leaf Senescence 1 Encoding a C2H2 Zinc Finger Protein Induces ROS Accumulation and Accelerates Leaf Senescence in Rice. Int J Mol Sci 2022; 23:ijms232214464. [PMID: 36430940 PMCID: PMC9696409 DOI: 10.3390/ijms232214464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Premature senescence of leaves causes a reduced yield and quality of rice by affecting plant growth and development. The regulatory mechanisms underlying early leaf senescence are still unclear. The Leaf senescence 1 (LS1) gene encodes a C2H2-type zinc finger protein that is localized to both the nucleus and cytoplasm. In this study, we constructed a rice mutant named leaf senescence 1 (ls1) with a premature leaf senescence phenotype using CRISPR/Cas9-mediated editing of the LS1 gene. The ls1 mutants exhibited premature leaf senescence and reduced chlorophyll content. The expression levels of LS1 were higher in mature or senescent leaves than that in young leaves. The contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were significantly increased and catalase (CAT) activity was remarkably reduced in the ls1 plants. Furthermore, a faster decrease in pigment content was detected in mutants than that in WT upon induction of complete darkness. TUNEL and staining experiments indicated severe DNA degradation and programmed cell death in the ls1 mutants, which suggested that excessive ROS may lead to leaf senescence and cell death in ls1 plants. Additionally, an RT-qPCR analysis revealed that most senescence-associated and ROS-scavenging genes were upregulated in the ls1 mutants compared with the WT. Collectively, our findings revealed that LS1 might regulate leaf development and function, and that disruption of LS1 function promotes ROS accumulation and accelerates leaf senescence and cell death in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhongxiao Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Qiannan Sun
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiqin Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Correspondence: (W.W.); (R.W.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (W.W.); (R.W.)
| |
Collapse
|
10
|
Ren D, Xie W, Xu Q, Hu J, Zhu L, Zhang G, Zeng D, Qian Q. LSL1 controls cell death and grain production by stabilizing chloroplast in rice. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2148-2161. [PMID: 35960419 DOI: 10.1007/s11427-022-2152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Lesion mutants can be valuable tools to reveal the interactions between genetic factors and environmental signals and to improve grain production. Here we identified a rice (Oryza sativa) mutant, lesion spotleaf1 (lsl1), which produces necrotic leaf lesions throughout its life cycle. LSL1 encodes a protein of unknown function and belongs to a grass-specific clade. The lesion phenotype of the lsl1 mutant was sharply induced by shading, and its detached leaves incubated in 6-benzylamino purine similarly formed lesions in the dark. In addition, the lsl1 mutant exhibited reactive oxygen species accumulation and cell death. The terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) and comet assays revealed that the lsl1 mutant contained severe DNA damage, resulting in reduced grain yield and quality. RNA sequencing, gene expression, and protein activity analyses indicate that LSL1 is required for chloroplast function. Furthermore, LSL1 interacts with PsaD and PAP10 to form a regulatory module that functions in chlorophyll synthesis and chloroplast development to maintain redox balance. Our results reveal that LSL1 maintains chloroplast structure, redox homeostasis, and DNA stability, and plays important roles in the interaction between genetic factors and environmental signals and in regulating grain size and quality.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Wei Xie
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Modern Agriculture, Zhejiang A&F University, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Modern Agriculture, Zhejiang A&F University, Hangzhou, 310006, China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
11
|
Yan J, Fang Y, Xue D. Advances in the Genetic Basis and Molecular Mechanism of Lesion Mimic Formation in Rice. PLANTS 2022; 11:plants11162169. [PMID: 36015472 PMCID: PMC9412831 DOI: 10.3390/plants11162169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Plant lesion mutation usually refers to the phenomenon of cell death in green tissues before senescence in the absence of external stress, and such mutants also show enhanced resistance to some plant pathogens. The occurrence of lesion mimic mutants in rice is affected by gene mutation, reactive oxygen species accumulation, an uncontrolled programmed cell death system, and abiotic stress. At present, many lesion mimic mutants have been identified in rice, and some genes have been functionally analyzed. This study reviews the occurrence mechanism of lesion mimic mutants in rice. It analyzes the function of rice lesion mimic mutant genes to elucidate the molecular regulation pathways of rice lesion mimic mutants in regulating plant disease resistance.
Collapse
|
12
|
Sun J, Liang W, Ye S, Chen X, Zhou Y, Lu J, Shen Y, Wang X, Zhou J, Yu C, Yan C, Zheng B, Chen J, Yang Y. Whole-Transcriptome Analysis Reveals Autophagy Is Involved in Early Senescence of zj-es Mutant Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:899054. [PMID: 35720578 PMCID: PMC9204060 DOI: 10.3389/fpls.2022.899054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Senescence is a necessary stage of plant growth and development, and the early senescence of rice will lead to yield reduction and quality decline. However, the mechanisms of rice senescence remain obscure. In this study, we characterized an early-senescence rice mutant, designated zj-es (ZheJing-early senescence), which was derived from the japonica rice cultivar Zhejing22. The mutant zj-es exhibited obvious early-senescence phenotype, such as collapsed chloroplast, lesions in leaves, declined fertility, plant dwarf, and decreased agronomic traits. The ZJ-ES gene was mapped in a 458 kb-interval between the molecular markers RM5992 and RM5813 on Chromosome 3, and analysis suggested that ZJ-ES is a novel gene controlling rice early senescence. Subsequently, whole-transcriptome RNA sequencing was performed on zj-es and its wild-type rice to dissect the underlying molecular mechanism for early senescence. Totally, 10,085 differentially expressed mRNAs (DEmRNAs), 1,253 differentially expressed lncRNAs (DElncRNAs), and 614 differentially expressed miRNAs (DEmiRNAs) were identified, respectively, in different comparison groups. Based on the weighted gene co-expression network analysis (WGCNA), the co-expression turquoise module was found to be the key for the occurrence of rice early senescence. Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 14 lncRNAs possibly regulated 16 co-expressed mRNAs through 8 miRNAs, and enrichment analysis showed that most of the DEmRNAs and the targets of DElncRNAs and DEmiRNAs were involved in reactive oxygen species (ROS)-triggered autophagy-related pathways. Further analysis showed that, in zj-es, ROS-related enzyme activities were markedly changed, ROS were largely accumulated, autophagosomes were obviously observed, cell death was significantly detected, and lesions were notably appeared in leaves. Totally, combining our results here and the remaining research, we infer that ROS-triggered autophagy induces the programmed cell death (PCD) and its coupled early senescence in zj-es mutant rice.
Collapse
Affiliation(s)
- Jia Sun
- College of Life Science, Fujian A&F University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianfei Lu
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Ying Shen
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
13
|
Wang C, Li T, Liu Q, Li L, Feng Z, Yu S. Characterization and Functional Analysis of GhNAC82, A NAM Domain Gene, Coordinates the Leaf Senescence in Upland Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1491. [PMID: 35684264 PMCID: PMC9182992 DOI: 10.3390/plants11111491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the process of growth and development, cotton exhibits premature senescence under various abiotic stresses, impairing yield and fiber quality. NAC (NAM, ATAF1,2, and CUC2) protein widely distributed in land plants, play the critical role in responding to abiotic stress and regulating leaf senescence. We have identified and functional analyzed a NAM domain gene GhNAC82 in upland cotton, it was located on the A11 chromosome 4,921,702 to 4,922,748 bp, only containing one exon. The spatio-temporal expression pattern analysis revealed that it was highly expressed in root, torus, ovule and fiber development stage. The results of qRT-PCR validated that GhNAC82 negatively regulated by salt stress, drought stress, H2O2 stress, IAA treatment, and ethylene treatment, positively regulated by the ABA and MeJA treatment. Moreover, heterologous overexpression of GhNAC82 results in leaf premature senescence and delays root system development in Arabidopsis thaliana. The phenotype of delayed-senescence was performed after silencing GhNAC82 by VIGS in premature cotton. Taken together, GhNAC82 was involved in different abiotic stress pathways and play important roles in negatively regulating leaf premature senescence.
Collapse
Affiliation(s)
- Chenlei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| |
Collapse
|
14
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|
15
|
Low Light/Darkness as Stressors of Multifactor-Induced Senescence in Rice Plants. Int J Mol Sci 2021; 22:ijms22083936. [PMID: 33920407 PMCID: PMC8069932 DOI: 10.3390/ijms22083936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Leaf senescence, as an integral part of the final development stage for plants, primarily remobilizes nutrients from the sources to the sinks in response to different stressors. The premature senescence of leaves is a critical challenge that causes significant economic losses in terms of crop yields. Although low light causes losses of up to 50% and affects rice yield and quality, its regulatory mechanisms remain poorly elucidated. Darkness-mediated premature leaf senescence is a well-studied stressor. It initiates the expression of senescence-associated genes (SAGs), which have been implicated in chlorophyll breakdown and degradation. The molecular and biochemical regulatory mechanisms of premature leaf senescence show significant levels of redundant biomass in complex pathways. Thus, clarifying the regulatory mechanisms of low-light/dark-induced senescence may be conducive to developing strategies for rice crop improvement. This review describes the recent molecular regulatory mechanisms associated with low-light response and dark-induced senescence (DIS), and their effects on plastid signaling and photosynthesis-mediated processes, chloroplast and protein degradation, as well as hormonal and transcriptional regulation in rice.
Collapse
|
16
|
Zheng Y, Xu J, Wang F, Tang Y, Wei Z, Ji Z, Wang C, Zhao K. Mutation Types of CYP71P1 Cause Different Phenotypes of Mosaic Spot Lesion and Premature Leaf Senescence in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:641300. [PMID: 33833770 PMCID: PMC8021961 DOI: 10.3389/fpls.2021.641300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants (LMMs) are ideal materials for studying programmed cell death and defense response in plants. Here we report investigations on two LMMs (msl-1 and msl-2) from the indica rice cultivar JG30 treated by ethyl methyl sulfone. Both of the mutants showed similar mosaic spot lesions at seedling stage, but they displayed different phenotypes along with development of the plants. At tillering stage, larger orange spots appeared on leaves of msl-2, while only small reddish-brown spots exhibit on leaves of msl-1. At heading stage, the msl-2 plants were completely dead, while the msl-1 plants were still alive even if showed apparent premature senility. For both the mutants, the mosaic spot lesion formation was induced by light; DAB and trypan blue staining showed a large amount of hydrogen peroxide accumulated at the lesion sites, accompanied by a large number of cell death. Consequently, reactive oxygen species were enriched in leaves of the mutants; SOD and CAT activities in the scavenging enzyme system were decreased compared with the wild type. In addition, degraded chloroplasts, decreased photosynthetic pigment content, down-regulated expression of genes associated with chloroplast synthesis/photosynthesis and up-regulated expression of genes related to senescence were detected in the mutants, but the abnormality of msl-2 was more serious than that of msl-1 in general. Genetic analysis and map-based cloning revealed that the lesion mimic and premature senescence traits of both the mutants were controlled by recessive mutated alleles of the SL (Sekiguchi lesion) gene, which encodes the CYP71P1 protein belonging to cytochrome P450 monooxygenase family. The difference of mutation sites and mutation types (SNP-caused single amino acid change and SNP-caused early termination of translation) led to the different phenotypes in severity between msl-1 and msl-2. Taken together, this work revealed that the CYP71P1 is involved in regulation of both premature senescence and cell death in rice, and its different mutation sites and mutation types could cause different phenotypes in terms of severity.
Collapse
Affiliation(s)
- Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Rice Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
18
|
Yang S, Fang G, Zhang A, Ruan B, Jiang H, Ding S, Liu C, Zhang Y, Jaha N, Hu P, Xu Z, Gao Z, Wang J, Qian Q. Rice EARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. BMC PLANT BIOLOGY 2020; 20:393. [PMID: 32847519 PMCID: PMC7449006 DOI: 10.1186/s12870-020-02610-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. RESULTS In this study, an early senescence 2 (es2) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. CONCLUSIONS The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.
Collapse
Affiliation(s)
- Shenglong Yang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Guonan Fang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Anpeng Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Noushin Jaha
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Zhengjin Xu
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Jiayu Wang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
19
|
Najeeb S, Ali J, Mahender A, Pang Y, Zilhas J, Murugaiyan V, Vemireddy LR, Li Z. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2020; 40:10. [PMID: 31975784 PMCID: PMC6944268 DOI: 10.1007/s11032-019-1090-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/12/2019] [Indexed: 05/09/2023]
Abstract
An attempt was made in the current study to identify the main-effect and co-localized quantitative trait loci (QTLs) for germination and early seedling growth traits under low-temperature stress (LTS) conditions in rice. The plant material used in this study was an early backcross population of 230 introgression lines (ILs) in BCIF7 generation derived from the Weed Tolerant Rice-1 (WTR-1) (as the recipient) and Haoannong (HNG) (as the donor). Genetic analyses of LTS tolerance revealed a total of 27 main-effect quantitative trait loci (M-QTLs) mapped on 12 chromosomes. These QTLs explained more than 10% of phenotypic variance (PV), and average PV of 12.71% while employing 704 high-quality SNP markers. Of these 27 QTLs distributed on 12 chromosomes, 11 were associated with low-temperature germination (LTG), nine with low-temperature germination stress index (LTGS), five with root length stress index (RLSI), and two with biomass stress index (BMSI) QTLs, shoot length stress index (SLSI) and root length stress index (RLSI), seven with seed vigor index (SVI), and single QTL with root length (RL). Among them, five significant major QTLs (qLTG(I) 1 , qLTGS(I) 1-2 , qLTG(I) 5 , qLTGS(I) 5 , and qLTG(I) 7 ) mapped on chromosomes 1, 5, and 7 were associated with LTG and LTGS traits and the PV explained ranged from 16 to 23.3%. The genomic regions of these QTLs were co-localized with two to six QTLs. Most of the QTLs were growth stage-specific and found to harbor QTLs governing multiple traits. Eight chromosomes had more than four QTLs and were clustered together and designated as promising LTS tolerance QTLs (qLTTs), as qLTT 1 , qLTT 2 , qLTT 3 , qLTT 5 , qLTT 6 , qLTT 8 , qLTT 9 , and qLTT 11 . A total of 16 putative candidate genes were identified in the major M-QTLs and co-localized QTL regions distributed on different chromosomes. Overall, these significant genomic regions of M-QTLs are responsible for multiple traits and this suggested that these could serve as the best predictors of LTS tolerance at germination and early seedling growth stages. Furthermore, it is necessary to fine-map these regions and to find functional markers for marker-assisted selection in rice breeding programs for cold tolerance.
Collapse
Affiliation(s)
- S. Najeeb
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Science & Technology (SKAUST), Khudwani, Kashmir 190025 India
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Y.L. Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 People’s Republic of China
| | - J. Zilhas
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - V. Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, 53012 Bonn, Germany
| | - Lakshminarayana R. Vemireddy
- Department of Genetics and Plant Breeding, Sri Venkateswara Agricultural College, Acharya NG Ranga Agricultural University, Tirupati, Andhra Pradesh 517502 India
| | - Z. Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 People’s Republic of China
| |
Collapse
|
20
|
Zhou D, Li T, Yang Y, Qu Z, Ouyang L, Jiang Z, Lin X, Zhu C, Peng L, Fu J, Peng X, Bian J, Tang W, Xu J, He H. OsPLS4 Is Involved in Cuticular Wax Biosynthesis and Affects Leaf Senescence in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:782. [PMID: 32595674 PMCID: PMC7300252 DOI: 10.3389/fpls.2020.00782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
Leaf senescence is one of the most common factors that affects the growth and yield of rice. Although numerous genes affecting leaf senescence have been identified, few involved in cuticular wax synthesis have been described for rice premature leaf senescence. Here, we cloned and characterized Premature Leaf Senescence 4 (PLS4) in rice (Oryza sativa), which encodes a putative 3-oxoacyl-reductase in the fatty acid biosynthetic pathway. Subcellular localization of OsPLS4 was observed in the chloroplast. A single nucleotide substitution in OsPLS4 reduced leaf cuticular wax, and the expression levels of most wax biosynthesis-associated genes were downregulated. TEM showed chloroplast development were defective in the pls4 mutant. Further investigation revealed that the chlorophyll (Chl) content was reduced in the pls4 mutant compared with the WT and that the photosynthesis rate was lower, which caused ROS dramatic accumulation at the heading stage. These results confirmed premature leaf senescence in pls4 plants. Cold treatment indicated that the mutant was more sensitive than the WT was to cold stress. Together, all the above results indicate that the OsPLS4 mutation affects cuticular wax biosynthesis and chloroplast development in rice, causing reduced cuticular wax and premature leaf senescence.
Collapse
Affiliation(s)
- Dahu Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ting Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ziyang Qu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Liyuan Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Wenbang Tang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Haohua He
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
21
|
Kamal NM, Gorafi YSA, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. Int J Mol Sci 2019; 20:E5837. [PMID: 31757070 PMCID: PMC6928793 DOI: 10.3390/ijms20235837] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The yield losses in cereal crops because of abiotic stress and the expected huge losses from climate change indicate our urgent need for useful traits to achieve food security. The stay-green (SG) is a secondary trait that enables crop plants to maintain their green leaves and photosynthesis capacity for a longer time after anthesis, especially under drought and heat stress conditions. Thus, SG plants have longer grain-filling period and subsequently higher yield than non-SG. SG trait was recognized as a superior characteristic for commercially bred cereal selection to overcome the current yield stagnation in alliance with yield adaptability and stability. Breeding for functional SG has contributed in improving crop yields, particularly when it is combined with other useful traits. Thus, elucidating the molecular and physiological mechanisms associated with SG trait is maybe the key to defeating the stagnation in productivity associated with adaptation to environmental stress. This review discusses the recent advances in SG as a crucial trait for genetic improvement of the five major cereal crops, sorghum, wheat, rice, maize, and barley with particular emphasis on the physiological consequences of SG trait. Finally, we provided perspectives on future directions for SG research that addresses present and future global challenges.
Collapse
Affiliation(s)
- Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Agricultural Research Corporation, Wad-Medani P.O. Box 126, Sudan
| | - Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Agricultural Research Corporation, Wad-Medani P.O. Box 126, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, Khartoum P.O. Box 6096, Sudan;
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
| |
Collapse
|
22
|
Gallardo K, Besson A, Klein A, Le Signor C, Aubert G, Henriet C, Térézol M, Pateyron S, Sanchez M, Trouverie J, Avice JC, Larmure A, Salon C, Balzergue S, Burstin J. Transcriptional Reprogramming of Pea Leaves at Early Reproductive Stages. FRONTIERS IN PLANT SCIENCE 2019; 10:1014. [PMID: 31440268 PMCID: PMC6693388 DOI: 10.3389/fpls.2019.01014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Pea (Pisum sativum L.) is an important source of dietary proteins. Nutrient recycling from leaves contributes to the accumulation of seed proteins and is a pivotal determinant of protein yields in this grain legume. The aim of this study was to unveil the transcriptional regulations occurring in pea leaves before the sharp decrease in chlorophyll breakdown. As a prelude to this study, a time-series analysis of 15N translocation at the whole plant level was performed, which indicated that nitrogen recycling among organs was highly dynamic during this period and varied depending on nitrate availability. Leaves collected on vegetative and reproductive nodes were further analyzed by transcriptomics. The data revealed extensive transcriptome changes in leaves of reproductive nodes during early seed development (from flowering to 14 days after flowering), including an up-regulation of genes encoding transporters, and particularly of sulfate that might sustain sulfur metabolism in leaves of the reproductive part. This developmental period was also characterized by a down-regulation of cell wall-associated genes in leaves of both reproductive and vegetative nodes, reflecting a shift in cell wall structure. Later on, 27 days after flowering, genes potentially switching the metabolism of leaves toward senescence were pinpointed, some of which are related to ribosomal RNA processing, autophagy, or transport systems. Transcription factors differentially regulated in leaves between stages were identified and a gene co-expression network pointed out some of them as potential regulators of the above-mentioned biological processes. The same approach was conducted in Medicago truncatula to identify shared regulations with this wild legume species. Altogether the results give a global view of transcriptional events in leaves of legumes at early reproductive stages and provide a valuable resource of candidate genes that could be targeted by reverse genetics to improve nutrient remobilization and/or delay catabolic processes leading to senescence.
Collapse
Affiliation(s)
- Karine Gallardo
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Alicia Besson
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Anthony Klein
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Charlotte Henriet
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Morgane Térézol
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Pateyron
- IPS2, Institute of Plant Sciences Paris-Saclay (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Myriam Sanchez
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jacques Trouverie
- Normandie Université, Institut National de la Recherche Agronomique, Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale et Agronomie, SFR Normandie Végétal FED 4277, Caen, France
| | - Jean-Christophe Avice
- Normandie Université, Institut National de la Recherche Agronomique, Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale et Agronomie, SFR Normandie Végétal FED 4277, Caen, France
| | - Annabelle Larmure
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
23
|
Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel. PLoS One 2019; 14:e0219274. [PMID: 31283792 PMCID: PMC6613685 DOI: 10.1371/journal.pone.0219274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022] Open
Abstract
Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese landraces are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.
Collapse
|
24
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
25
|
Tang J, Bassham DC. Autophagy in crop plants: what's new beyond Arabidopsis? Open Biol 2018; 8:180162. [PMID: 30518637 PMCID: PMC6303781 DOI: 10.1098/rsob.180162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we review recent progress on understanding autophagy in crops and discuss potential future research directions.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
26
|
Xu X, Chen Z, Shi YF, Wang HM, He Y, Shi L, Chen T, Wu JL, Zhang XB. Functional inactivation of OsGCNT induces enhanced disease resistance to Xanthomonas oryzae pv. oryzae in rice. BMC PLANT BIOLOGY 2018; 18:264. [PMID: 30382816 PMCID: PMC6211509 DOI: 10.1186/s12870-018-1489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Spotted-leaf mutants are important to reveal programmed cell death and defense-related pathways in rice. We previously characterized the phenotype performance of a rice spotted-leaf mutant spl21 and narrowed down the causal gene locus spl21(t) to an 87-kb region in chromosome 12 by map-based cloning. RESULT We showed that a single base substitution from A to G at position 836 in the coding sequence of Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT), effectively mutating Tyr to Cys at position 279 in the translated protein sequence, was responsible for the spotted-leaf phenotype as it could be rescued by functional complementation. Compared to the wild type IR64, the spotted-leaf mutant spl21 exhibited loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence associated genes, which indicated that OsGCNT regulates premature leaf senescence. Moreover, the enhanced resistance to the bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae, up-regulation of pathogenesis-related genes and increased level of jasmonate which suggested that OsGCNT is a negative regulator of defense response in rice. OsGCNT was expressed constitutively in the leaves, sheaths, stems, roots, and panicles, and OsGCNT-GFP was localized to the Golgi apparatus. High throughput RNA sequencing analysis provided further evidence for the biological effects of loss of OsGCNT function on cell death, premature leaf senescence and enhanced disease resistance in rice. Thus, we demonstrated that the novel OsGCNT regulated rice innate immunity and immunity-associated leaf senescence probably by changing the jasmonate metabolic pathway. CONCLUSIONS These results reveal that a novel gene Oryza sativa beta-1,6-N-acetylglucosaminyl transferase (OsGCNT) is responsible for the spotted-leaf mutant spl21, and OsGCNT acts as a negative-regulator mediating defense response and immunity-associated premature leaf senescence probably by activating jasmonate signaling pathway.
Collapse
Affiliation(s)
- Xia Xu
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zheng Chen
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yong-feng Shi
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hui-mei Wang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yan He
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lei Shi
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Ting Chen
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-li Wu
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiao-bo Zhang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
27
|
Genetic and Physio-Biochemical Characterization of a Novel Premature Senescence Leaf Mutant in Rice ( Oryza sativa L.). Int J Mol Sci 2018; 19:ijms19082339. [PMID: 30096885 PMCID: PMC6122088 DOI: 10.3390/ijms19082339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Premature senescence greatly affects the yield production and the grain quality in plants, although the molecular mechanisms are largely unknown. Here, we identified a novel rice premature senescence leaf 85 (psl85) mutant from ethyl methane sulfonate (EMS) mutagenesis of cultivar Zhongjian100 (the wild-type, WT). The psl85 mutant presented a distinct dwarfism and premature senescence leaf phenotype, starting from the seedling stage to the mature stage, with decreasing level of chlorophyll and degradation of chloroplast, declined photosynthetic capacity, increased content of malonaldehyde (MDA), upregulated expression of senescence-associated genes, and disrupted reactive oxygen species (ROS) scavenging system. Moreover, endogenous abscisic acid (ABA) level was significantly increased in psl85 at the late aging phase, and the detached leaves of psl85 showed more rapid chlorophyll deterioration than that of WT under ABA treatment, indicating that PSL85 was involved in ABA-induced leaf senescence. Genetic analysis revealed that the premature senescence leaf phenotype was controlled by a single recessive nuclear gene which was finally mapped in a 47 kb region on the short arm of chromosome 7, covering eight candidate open reading frames (ORFs). No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and cloning and functional analysis of the gene is currently underway.
Collapse
|
28
|
Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q, Cao Z, Zhao C, Cheng S, Cao L. Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:877-891. [PMID: 29901843 DOI: 10.1111/tpj.13995] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 05/24/2023]
Abstract
Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2 O2 ) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence-associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O-methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild-type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild-type rice. Moreover, overexpression of OsMTS1 in the wild-type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production.
Collapse
Affiliation(s)
- Yongbo Hong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sittipun Sinumporn
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ping Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhaoyun Cao
- Rice Product Quality Supervision and Inspection Centre, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chunde Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
29
|
Fernandes LDS, Royaert S, Corrêa FM, Mustiga GM, Marelli JP, Corrêa RX, Motamayor JC. Mapping of a Major QTL for Ceratocystis Wilt Disease in an F1 Population of Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:155. [PMID: 29491879 PMCID: PMC5817064 DOI: 10.3389/fpls.2018.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/29/2018] [Indexed: 05/31/2023]
Abstract
Cacao is an important crop, its beans are key raw materials for the chocolate and cosmetic industries. Ceratocystis wilt of cacao (CWC) caused by Ceratocystis cacaofunesta is a lethal disease for the crop. Therefore, the selection of resistant cacao varieties is one of the viable ways to minimize losses in cacao production. In this paper, we described the identification of a major QTL associated with CWC in an F1 mapping population from a cross between a resistant, "TSH 1188," and a susceptible genotype, "CCN 51." A set of 266 trees were genotyped using 3,526 single nucleotide polymorphic markers and then multiple QTL mapping analyses were performed. Two QTLs were identified on chromosomes IV and VI. The major QTL was located at 20 cM from the top position of chromosome VI, accounting for more than 60% of the phenotypic variation. The favorable allele T1, with haplotype GTT, came from the "TSH 1188" parent. It was evident that the haplotype combination T1C2 on chromosome VI was the most significant for resistance, since 93% of resistant trees had this haplotype. The major QTL converged to a genomic region of 739.4 kb that harbored nine candidate genes, including two major classes of resistance genes, which would make them the primary candidates involved in the resistance to CWC. The haplotypes detected are now used to improve the efficiency and precision of the selection of resistant trees in cacao breeding.
Collapse
Affiliation(s)
| | - Stefan Royaert
- Statistics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Fábio M. Corrêa
- Statistics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Ronan X. Corrêa
- Statistics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
30
|
Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 2018; 50:285-296. [DOI: 10.1038/s41588-018-0040-0] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
|
31
|
Identification and Comparative Analysis of Premature Senescence Leaf Mutants in Rice (Oryza sativa L.). Int J Mol Sci 2018; 19:ijms19010140. [PMID: 29301377 PMCID: PMC5796089 DOI: 10.3390/ijms19010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
Premature leaf senescence negatively impacts the grain yield in the important monocot rice (Oryza sativa L.); to understand the molecular mechanism we carried out a screen for mutants with premature senescence leaves in a mutant bank generated by ethyl methane sulfonate (EMS) mutagenesis of elite indica rice ZhongJian100. Five premature senescence leaf (psl15, psl50, psl89, psl117 and psl270) mutants were identified with distinct yellowish phenotypes on leaves starting from the tillering stage to final maturation. Moreover, these mutants exhibited significantly increased malonaldehyde content, decreased chlorophyll content, reduced numbers of chloroplast and grana thylakoid, altered photosynthetic ability and expression of photosynthesis-related genes. Furthermore, the expression of senescence-related indicator OsI57 was significantly up-regulated in four mutants. Histochemical analysis indicated that cell death and reactive oxygen species (ROS) accumulation occurred in the mutants with altered activities of ROS scavenging enzymes. Both darkness and abscisic acid (ABA) treatments could induce leaf senescence and resulted in up- or down-regulation of ABA metabolism-related genes in the mutants. Genetic analysis indicated that all the premature senescence leaf mutants were controlled by single non-allelic recessive genes. The data suggested that mechanisms underlying premature leaf senescence are likely different among the mutants. The present study would facilitate us to further fine mapping, cloning and functional characterization of the corresponding genes mediating the premature leaf senescence in rice.
Collapse
|
32
|
Abstract
As a representative form of plant senescence, leaf senescence has received the most attention during the last two decades. In this chapter we summarize the initiation of leaf senescence by various internal and external signals, the progression of senescence including switches in gene expression, as well as changes at the biochemical and cellular levels during leaf senescence. Impacts of leaf senescence in agriculture and genetic approaches that have been used in manipulating leaf senescence of crop plants are discussed.
Collapse
Affiliation(s)
- Akhtar Ali
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.,Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
33
|
Wang M, Zhang T, Peng H, Luo S, Tan J, Jiang K, Heng Y, Zhang X, Guo X, Zheng J, Cheng Z. Rice Premature Leaf Senescence 2, Encoding a Glycosyltransferase (GT), Is Involved in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2018; 9:560. [PMID: 29755498 PMCID: PMC5932172 DOI: 10.3389/fpls.2018.00560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 05/06/2023]
Abstract
Premature leaf senescence (PLS), which has a significant impact on yield, is caused by various underlying mechanisms. Glycosyltransferases, which function in glycosyl transfer from activated nucleotides to aglycones, are involved in diverse biological processes, but their roles in rice leaf senescence remain elusive. Here, we isolated and characterized a leaf senescence-related gene from the Premature Leaf Senescent mutant (pls2). The mutant phenotype began with leaf yellowing at tillering and resulted in PLS during the reproductive stage. Leaf senescence was associated with an increase in hydrogen peroxide (H2O2) content accompanied with pronounced decreases in net photosynthetic rate, stomatal conductance, and transpiration rate. Map-based cloning revealed that a mutation in LOC_Os03g15840 (PLS2), a putative glycosyltransferase- encoding gene, was responsible for the defective phenotype. PLS2 expression was detected in all tissues surveyed, but predominantly in leaf mesophyll cells. Subcellular localization of the PLS2 was in the endoplasmic reticulum. The pls2 mutant accumulated higher levels of sucrose together with decreased expression of sucrose metabolizing genes compared with wild type. These data suggested that the PLS2 allele is essential for normal leaf senescence and its mutation resulted in PLS.
Collapse
Affiliation(s)
- Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhang
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juejie Tan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaifeng Jiang
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Yueqin Heng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakui Zheng
- Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
- *Correspondence: Jiakui Zheng, Zhijun Cheng,
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiakui Zheng, Zhijun Cheng,
| |
Collapse
|
34
|
Leng Y, Ye G, Zeng D. Genetic Dissection of Leaf Senescence in Rice. Int J Mol Sci 2017; 18:E2686. [PMID: 29232920 PMCID: PMC5751288 DOI: 10.3390/ijms18122686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/04/2022] Open
Abstract
Leaf senescence, the final stage of leaf development, is a complex and highly regulated process that involves a series of coordinated actions at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. In the last decade, the use of mutants with different levels of leaf senescence phenotypes has led to the cloning and functional characterizations of a few genes, which has greatly improved the understanding of genetic mechanisms underlying leaf senescence. In this review, we summarize the recent achievements in the genetic mechanisms in rice leaf senescence.
Collapse
Affiliation(s)
- Yujia Leng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
35
|
Wang S, Lei C, Wang J, Ma J, Tang S, Wang C, Zhao K, Tian P, Zhang H, Qi C, Cheng Z, Zhang X, Guo X, Liu L, Wu C, Wan J. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:899-913. [PMID: 28199670 PMCID: PMC5441852 DOI: 10.1093/jxb/erx001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lesion-mimic mutants are useful to dissect programmed cell death and defense-related pathways in plants. Here we identified a new rice lesion-mimic mutant, spotted leaf 33 (spl33) and cloned the causal gene by a map-based cloning strategy. SPL33 encodes a eukaryotic translation elongation factor 1 alpha (eEF1A)-like protein consisting of a non-functional zinc finger domain and three functional EF-Tu domains. spl33 exhibited programmed cell death-mediated cell death and early leaf senescence, as evidenced by analyses of four histochemical markers, namely H2O2 accumulation, cell death, callose accumulation and TUNEL-positive nuclei, and by four indicators, namely loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence-associated genes. Defense responses were induced in the spl33 mutant, as shown by enhanced resistance to both the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae and by up-regulation of defense response genes. Transcriptome analysis of the spl33 mutant and its wild type provided further evidence for the biological effects of loss of SPL33 function in cell death, leaf senescence and defense responses in rice. Detailed analyses showed that reactive oxygen species accumulation may be the cause of cell death in the spl33 mutant, whereas uncontrolled activation of multiple innate immunity-related receptor genes and signaling molecules may be responsible for the enhanced disease resistance observed in spl33. Thus, we have demonstrated involvement of an eEF1A-like protein in programmed cell death and provided a link to defense responses in rice.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Cailin Lei
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jiulin Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jian Ma
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Chunlian Wang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Kaijun Zhao
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Peng Tian
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Huan Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyan Qi
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zhijun Cheng
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Xiuping Guo
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Linglong Liu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanyin Wu
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jianmin Wan
- Institute of Crop Science, Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci Rep 2017; 7:41846. [PMID: 28139777 PMCID: PMC5282590 DOI: 10.1038/srep41846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Leaf senescence is a complex biological process and defense responses play vital role for rice development, their molecular mechanisms, however, remain elusive in rice. We herein reported a rice mutant spotted leaf 32 (spl32) derived from a rice cultivar 9311 by radiation. The spl32 plants displayed early leaf senescence, identified by disintegration of chloroplasts as cellular evidence, dramatically decreased contents of chlorophyll, up-regulation of superoxide dismutase enzyme activity and malondialdehyde, as physiological characteristic, and both up-regulation of senescence-induced STAY GREEN gene and senescence-associated transcription factors, and down-regulation of photosynthesis-associated genes, as molecular indicators. Positional cloning revealed that SPL32 encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). Compared to wild type, enzyme activity of GOGAT was significantly decreased, and free amino acid contents, particularly for glutamate and glutamine, were altered in spl32 leaves. Moreover, the mutant was subjected to uncontrolled oxidative stress due to over-produced reactive oxygen species and damaged scavenging pathways, in accordance with decreased photorespiration rate. Besides, the mutant showed higher resistance to Xanthomonas oryzae pv. Oryzae than its wild type, coupled with up-regulation of four pathogenesis-related marker genes. Taken together, our results highlight Fd-GOGAT is associated with the regulation of leaf senescence and defense responses in rice.
Collapse
|
37
|
Lin Y, Tan L, Zhao L, Sun X, Sun C. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:971-982. [PMID: 27357911 DOI: 10.1111/jipb.12487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 05/05/2023]
Abstract
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 gene had a single-nucleotide substitution (G→A) at the splice site of the 10th intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of RLS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.
Collapse
Affiliation(s)
- Yanhui Lin
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lei Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
38
|
Huang QN, Shi YF, Zhang XB, Song LX, Feng BH, Wang HM, Xu X, Li XH, Guo D, Wu JL. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:12-28. [PMID: 26040493 PMCID: PMC5049647 DOI: 10.1111/jipb.12372] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 05/20/2023]
Abstract
A premature senescence and death 128 (psd128) mutant was isolated from an ethyl methane sulfonate-induced rice IR64 mutant bank. The premature senescence phenotype appeared at the six-leaf stage and the plant died at the early heading stage. psd128 exhibited impaired chloroplast development with significantly reduced photosynthetic ability, chlorophyll and carotenoid contents, root vigor, soluble protein content and increased malonaldehyde content. Furthermore, the expression of senescence-related genes was significantly altered in psd128. The mutant trait was controlled by a single recessive nuclear gene. Using map-based strategy, the mutation Oryza sativa cell division cycle 48 (OsCDC48) was isolated and predicted to encode a putative AAA-type ATPase with 809 amino-acid residuals. A single base substitution at position C2347T in psd128 resulted in a premature stop codon. Functional complementation could rescue the mutant phenotype. In addition, RNA interference resulted in the premature senescence and death phenotype. OsCDC48 was expressed constitutively in the root, stem, leaf and panicle. Subcellular analysis indicated that OsCDC48:YFP fusion proteins were located both in the cytoplasm and nucleus. OsCDC48 was highly conserved with more than 90% identity in the protein levels among plant species. Our results indicated that the impaired function of OsCDC48 was responsible for the premature senescence and death phenotype.
Collapse
Affiliation(s)
- Qi-Na Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yong-Feng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao-Bo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li-Xin Song
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- School of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bao-Hua Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao-Hong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dan Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
39
|
Wang Z, Wang Y, Hong X, Hu D, Liu C, Yang J, Li Y, Huang Y, Feng Y, Gong H, Li Y, Fang G, Tang H, Li Y. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:973-87. [PMID: 25399020 PMCID: PMC4321554 DOI: 10.1093/jxb/eru456] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 (-) and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice.
Collapse
Affiliation(s)
- Zhaohai Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Ya Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Xiao Hong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Daoheng Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Yang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Yunqing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Hubei, 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Hubei, 430072, China
| | - Hanyu Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Yang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Gen Fang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China State Key Laboratory of Genetic Engineering, Metabolomics Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|
40
|
OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 2014; 111:10013-8. [PMID: 24951508 DOI: 10.1073/pnas.1321568111] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has long been established that premature leaf senescence negatively impacts the yield stability of rice, but the underlying molecular mechanism driving this relationship remains largely unknown. Here, we identified a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). PS1 encodes a plant-specific NAC (no apical meristem, Arabidopsis ATAF1/2, and cup-shaped cotyledon2) transcriptional activator, Oryza sativa NAC-like, activated by apetala3/pistillata (OsNAP). Overexpression of OsNAP significantly promoted senescence, whereas knockdown of OsNAP produced a marked delay of senescence, confirming the role of this gene in the development of rice senescence. OsNAP expression was tightly linked with the onset of leaf senescence in an age-dependent manner. Similarly, ChIP-PCR and yeast one-hybrid assays demonstrated that OsNAP positively regulates leaf senescence by directly targeting genes related to chlorophyll degradation and nutrient transport and other genes associated with senescence, suggesting that OsNAP is an ideal marker of senescence onset in rice. Further analysis determined that OsNAP is induced specifically by abscisic acid (ABA), whereas its expression is repressed in both aba1 and aba2, two ABA biosynthetic mutants. Moreover, ABA content is reduced significantly in ps1-D mutants, indicating a feedback repression of OsNAP on ABA biosynthesis. Our data suggest that OsNAP serves as an important link between ABA and leaf senescence. Additionally, reduced OsNAP expression leads to delayed leaf senescence and an extended grain-filling period, resulting in a 6.3% and 10.3% increase in the grain yield of two independent representative RNAi lines, respectively. Thus, fine-tuning OsNAP expression should be a useful strategy for improving rice yield in the future.
Collapse
|
41
|
Wang B, Chen Y, Guo B, Kabir MR, Yao Y, Peng H, Xie C, Zhang Y, Sun Q, Ni Z. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.). Mol Genet Genomics 2014; 289:501-12. [PMID: 24585212 DOI: 10.1007/s00438-014-0821-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1113-23. [DOI: 10.1007/s11427-013-4565-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/26/2013] [Indexed: 01/24/2023]
|
43
|
Gao Y, Xu H, Shen Y, Wang J. Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. PLANT MOLECULAR BIOLOGY 2013; 81:363-78. [PMID: 23322175 DOI: 10.1007/s11103-013-0009-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/31/2012] [Indexed: 05/11/2023]
Abstract
The endosperm plays an important role in seed formation and germination, especially in rice (Oryza sativa). We used a high-throughput sequencing technique (RNA-Seq) to reveal the molecular mechanisms involved in rice endosperm development. Three cDNA libraries were taken from rice endosperm at 3, 6 and 10 days after pollination (DAP), which resulted in the detection of 21,596, 20,910 and 19,459 expressed gens, respectively. By ERANGE, we identified 10,371 differentially expressed genes (log(2)Ratio ≥1, FDR ≤0.001). The results were compared against three public databases (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and MapMan) in order to annotate the gene descriptions, associate them with gene ontology terms and to assign each to pathways. A large number of genes related to ribosomes, the spliceosome and oxidative phosphorylation were found to be expressed in the early and middle stages. Plant hormone, galactose metabolism and carbon fixation related genes showed a significant increase in expression at the middle stage, whereas genes for defense against disease or response to stress as well as genes for starch/sucrose metabolism were strongly expressed during the later stages of endosperm development. Interestingly, most metabolic pathways were down-regulated between 3 and 10 DAP except for those involved in the accumulation of material, such as starch/sucrose and protein metabolism. We also identified the expression of 1,118 putative transcription factor genes in endosperm development. The RNA-Seq results provide further systematic understanding of rice endosperm development at a fine scale and a foundation for future studies.
Collapse
Affiliation(s)
- Yi Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | |
Collapse
|
44
|
Wu XY, Kuai BK, Jia JZ, Jing HC. Regulation of leaf senescence and crop genetic improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:936-52. [PMID: 23131150 DOI: 10.1111/jipb.12005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence can impact crop production by either changing photosynthesis duration, or by modifying the nutrient remobilization efficiency and harvest index. The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning, two things that are intrinsically coupled with leaf senescence. In this review, we consider the functionality of a leaf as a function of leaf age, and divide a leaf's life into three phases: the functionality increasing phase at the early growth stage, the full functionality phase, and the senescence and functionality decreasing phase. A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence. Four categories of genes contribute to crop production: those which regulate (I) the speed and transition of early leaf growth, (II) photosynthesis rate, (III) the onset and (IV) the progression of leaf senescence. Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context. We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Wu
- The Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|