1
|
Zhao Y, Liu Y, Zhang F, Wang ZY, Mysore KS, Wen J, Zhou C. The long noncoding RNA LAL contributes to salinity tolerance by modulating LHCB1s' expression in Medicago truncatula. Commun Biol 2024; 7:289. [PMID: 38459083 PMCID: PMC10923924 DOI: 10.1038/s42003-024-05953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.
Collapse
Affiliation(s)
- Yang Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Yafei Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Feiran Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China.
| |
Collapse
|
2
|
He Z, Lan Y, Zhou X, Yu B, Zhu T, Yang F, Fu LY, Chao H, Wang J, Feng RX, Zuo S, Lan W, Chen C, Chen M, Zhao X, Hu K, Chen D. Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100717. [PMID: 37715446 PMCID: PMC10873878 DOI: 10.1016/j.xplc.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The plant genome produces an extremely large collection of long noncoding RNAs (lncRNAs) that are generally expressed in a context-specific manner and have pivotal roles in regulation of diverse biological processes. Here, we mapped the transcriptional heterogeneity of lncRNAs and their associated gene regulatory networks at single-cell resolution. We generated a comprehensive cell atlas at the whole-organism level by integrative analysis of 28 published single-cell RNA sequencing (scRNA-seq) datasets from juvenile Arabidopsis seedlings. We then provided an in-depth analysis of cell-type-related lncRNA signatures that show expression patterns consistent with canonical protein-coding gene markers. We further demonstrated that the cell-type-specific expression of lncRNAs largely explains their tissue specificity. In addition, we predicted gene regulatory networks on the basis of motif enrichment and co-expression analysis of lncRNAs and mRNAs, and we identified putative transcription factors orchestrating cell-type-specific expression of lncRNAs. The analysis results are available at the single-cell-based plant lncRNA atlas database (scPLAD; https://biobigdata.nju.edu.cn/scPLAD/). Overall, this work demonstrates the power of integrative single-cell data analysis applied to plant lncRNA biology and provides fundamental insights into lncRNA expression specificity and associated gene regulation.
Collapse
Affiliation(s)
- Zhaohui He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yangming Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bianjiong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liang-Yu Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Rong-Xu Feng
- Zhejiang Zhoushan High School, Zhoushan 316099, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H. LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response. HORTICULTURE RESEARCH 2023; 10:uhad234. [PMID: 38156284 PMCID: PMC10753412 DOI: 10.1093/hr/uhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
With the advent of advanced sequencing technologies, non-coding RNAs (ncRNAs) are increasingly pivotal and play highly regulated roles in the modulation of diverse aspects of plant growth and stress response. This includes a spectrum of ncRNA classes, ranging from small RNAs to long non-coding RNAs (lncRNAs). Notably, among these, lncRNAs emerge as significant and intricate components within the broader ncRNA regulatory networks. Here, we categorize ncRNAs based on their length and structure into small RNAs, medium-sized ncRNAs, lncRNAs, and circle RNAs. Furthermore, the review delves into the detailed biosynthesis and origin of these ncRNAs. Subsequently, we emphasize the diverse regulatory mechanisms employed by lncRNAs that are located at various gene regions of coding genes, embodying promoters, 5'UTRs, introns, exons, and 3'UTR regions. Furthermore, we elucidate these regulatory modes through one or two concrete examples. Besides, lncRNAs have emerged as novel central components that participate in phase separation processes. Moreover, we illustrate the coordinated regulatory mechanisms among lncRNAs, miRNAs, and siRNAs with a particular emphasis on the central role of lncRNAs in serving as sponges, precursors, spliceosome, stabilization, scaffolds, or interaction factors to bridge interactions with other ncRNAs. The review also sheds light on the intriguing possibility that some ncRNAs may encode functional micropeptides. Therefore, the review underscores the emergent roles of ncRNAs as potent regulatory factors that significantly enrich the regulatory network governing plant growth, development, and responses to environmental stimuli. There are yet-to-be-discovered roles of ncRNAs waiting for us to explore.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Liu Y, Zhu QF, Li WY, Chen P, Xue J, Yu Y, Feng YZ. The Pivotal Role of Noncoding RNAs in Flowering Time Regulation. Genes (Basel) 2023; 14:2114. [PMID: 38136936 PMCID: PMC10742506 DOI: 10.3390/genes14122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Noncoding RNAs constitute a substantial portion of the transcriptome and play pivotal roles in plant growth and development. Among these processes, flowering stands out as a crucial trait, ensuring reproductive success and seed set, and is meticulously controlled by genetic and environmental factors. With remarkable advancements in the identification and characterization of noncoding RNAs in plants, it has become evident that noncoding RNAs are intricately linked to the regulation of flowering time. In this article, we present an overview of the classification of plant noncoding RNAs and delve into their functions in the regulation of flowering time. Furthermore, we review their molecular mechanisms and their involvement in flowering pathways. Our comprehensive review enhances the understanding of how noncoding RNAs contribute to the regulation of flowering time and sheds light on their potential implications in crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| | - Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| |
Collapse
|
5
|
Li C, Lai X, Yu X, Xiong Z, Chen J, Lang X, Feng H, Wan X, Liu K. Plant long noncoding RNAs: Recent progress in understanding their roles in growth, development, and stress responses. Biochem Biophys Res Commun 2023; 671:270-277. [PMID: 37311264 DOI: 10.1016/j.bbrc.2023.05.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Long noncoding RNA (lncRNA) transcripts are longer than 200 nt and are not translated into proteins. LncRNAs function in a wide variety of processes in plants and animals, but, perhaps because of their lower expression and conservation levels, plant lncRNAs had attracted less attention than protein-coding mRNAs. Now, recent studies have made remarkable progress in identifying lncRNAs and understanding their functions. In this review, we discuss a number of lncRNAs that have important functions in growth, development, reproduction, responses to abiotic stresses, and regulation of disease and insect resistance in plants. Additionally, we describe the known mechanisms of action of plant lncRNAs according to their origins within the genome. This review thus provides a guide for identifying and functionally characterizing new lncRNAs in plants.
Collapse
Affiliation(s)
- Chunmei Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xuanyue Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhiwen Xiong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jie Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingxuan Lang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Haotian Feng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaorong Wan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Kai Liu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
6
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
7
|
Wang Y, Fan Y, Fan D, Zhou X, Jiao Y, Deng XW, Zhu D. The noncoding RNA HIDDEN TREASURE 1 promotes phytochrome B-dependent seed germination by repressing abscisic acid biosynthesis. THE PLANT CELL 2023; 35:700-716. [PMID: 36423345 PMCID: PMC9940872 DOI: 10.1093/plcell/koac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Light is a major environmental factor for seed germination. Red light-activated phytochrome B (phyB) promotes seed germination by modulating the dynamic balance of two phytohormones, gibberellic acid (GA) and abscisic acid (ABA). How phyB modulates ABA biosynthesis after perceiving a light signal is not yet well understood. Here, we identified the noncoding RNA HIDDEN TREASURE 1 (HID1) as a repressor of ABA biosynthesis acting downstream of phyB during Arabidopsis thaliana seed germination. Loss of HID1 function led to delayed phyB-dependent seed germination. Photoactivated phyB promoted the accumulation of HID1 in the radicle within 48 h of imbibition. Our transcriptomics analysis showed that HID1 and phyB co-regulate the transcription of a common set of genes involved in ABA and GA metabolism. Through a forward genetic screen, we identified three ABA biosynthesis genes, ABA DEFICIENT 1 (ABA1), ABA2, and ABA3, as suppressors of HID1. We further demonstrated that HID1 directly inhibits the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED9), a gene encoding a key rate-limiting enzyme of ABA biosynthesis. HID1 interacts with ARABIDOPSIS TRITHORAX-RELATED7 (ATXR7), an H3K4me3 methyltransferase, inhibiting its occupancy and H3K4me3 modification at the NCED9 locus. Our study reveals a nuclear mechanism of phyB signaling transmitted through HID1 to control the internal homeostasis of ABA and GA, which gradually optimizes the transcriptional network during seed germination.
Collapse
Affiliation(s)
- Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yangyang Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - De Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xiaoli Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuntong Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Shen E, Zou J, Bao J, Zhu QH. Editorial: The roles of ncRNAs in the genome evolution and cross-kingdom regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1133096. [PMID: 36818837 PMCID: PMC9936233 DOI: 10.3389/fpls.2023.1133096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Enhui Shen
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
- Center for Bioinformatics and Big Data Technology, The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian-Hao Zhu
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
9
|
Wang Y, Deng XW, Zhu D. From molecular basics to agronomic benefits: Insights into noncoding RNA-mediated gene regulation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2290-2308. [PMID: 36453685 DOI: 10.1111/jipb.13420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The development of plants is largely dependent on their growth environment. To better adapt to a particular habitat, plants have evolved various subtle regulatory mechanisms for altering gene expression. Non coding RNAs (ncRNAs) constitute a major portion of the transcriptomes of eukaryotes. Various ncRNAs have been recognized as important regulators of the expression of genes involved in essential biological processes throughout the whole life cycles of plants. In this review, we summarize the current understanding of the biogenesis and contributions of small nucle olar RNA (snoRNA)- and regulatory long non coding RNA (lncRNA)-mediated gene regulation in plant development and environmental responses. Many regulatory ncRNAs appear to be associated with increased yield, quality and disease resistance of various species and cultivars. These ncRNAs may potentially be used as genetic resources for improving agronomic traits and for molecular breeding. The challenges in understanding plant ncRNA biology and the possibilities to make better use of these valuable gene resources in the future are discussed in this review.
Collapse
Affiliation(s)
- Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 2022; 219:1261-1271. [DOI: 10.1016/j.ijbiomac.2022.08.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
|
11
|
The Arabidopsis DREAM complex antagonizes WDR5A to modulate histone H3K4me2/3 deposition for a subset of genome repression. Proc Natl Acad Sci U S A 2022; 119:e2206075119. [PMID: 35759663 PMCID: PMC9271193 DOI: 10.1073/pnas.2206075119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The master transcriptional repressor DREAM (dimerization partner, RB-like, E2F and multivulval class B) complex regulates the cell cycle in eukaryotes, but much remains unknown about how it transmits repressive signals on chromatin to the primary transcriptional machinery (e.g., RNA polymerase II [Pol II]). Through a forward genetic screen, we identified BTE1 (barrier of transcription elongation 1), a plant-specific component of the DREAM complex. The subsequent characterization demonstrated that DREAM complex containing BTE1 antagonizes the activity of Complex Proteins Associated with Set1 (COMPASS)-like complex to repress H3K4me3 occupancy and inhibits Pol II elongation at DREAM target genes. We showed that BTE1 is recruited to chromatin at the promoter-proximal regions of target genes by E2F transcription factors. DREAM target genes exhibit characteristic enrichment of H2A.Z and H3K4me2 modification on chromatin. We further showed that BTE1 directly interacts with WDR5A, a core component of COMPASS-like complex, repressing WDR5A chromatin binding and the elongation of transcription on DREAM target genes. H3K4me3 is known to correlate with the Pol II transcription activation and promotes efficient elongation. Thus, our study illustrates a transcriptional repression mechanism by which the DREAM complex dampens H3K4me3 deposition at a set of genes through its interaction with WDR5A.
Collapse
|
12
|
Xu D, Yuan W, Fan C, Liu B, Lu MZ, Zhang J. Opportunities and Challenges of Predictive Approaches for the Non-coding RNA in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:890663. [PMID: 35498708 PMCID: PMC9048598 DOI: 10.3389/fpls.2022.890663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Dong Xu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
13
|
Sharma Y, Sharma A, Madhu, Shumayla, Singh K, Upadhyay SK. Long Non-Coding RNAs as Emerging Regulators of Pathogen Response in Plants. Noncoding RNA 2022; 8:4. [PMID: 35076574 PMCID: PMC8788567 DOI: 10.3390/ncrna8010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that contain more than 200 nucleotides that play important roles in plant survival in response to different stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the level of transcription and post-transcription. Emerging information from computational biology and functional characterization of some of them has revealed their diverse mechanisms of action and possible roles in biological processes such as flowering time, reproductive organ development, as well as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in biotic stress response due to the limited availability of knowledge in this domain. We have discussed the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further, considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we have highlighted the importance of lncRNAs against pathogen responses and the progress in plant research to develop a better understanding of their functions and molecular mechanisms.
Collapse
Affiliation(s)
- Yashraaj Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Madhu
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Santosh Kumar Upadhyay
- Department of Botany, Panjab University, Chandigarh 160014, India; (Y.S.); (A.S.); (M.); (S.)
| |
Collapse
|
14
|
Zhou Y, Zhu G, Wang Y, He Z, Zhou W. A Comparative Transcriptional Landscape of Two Castor Cultivars Obtained by Single-Molecule Sequencing Comparative Analysis. Front Genet 2021; 12:749340. [PMID: 34733316 PMCID: PMC8558441 DOI: 10.3389/fgene.2021.749340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Castor (Ricinus communis L.) is an important non-edible oilseed crop. Lm-type female strains and normal amphiprotic strains are important castor cultivars, and are mainly different in their inflorescence structures and leaf shapes. To better understand the mechanisms underlying these differences at the molecular level, we performed a comparative transcriptional analysis. Materials and Methods: Full-length transcriptome sequencing and short-read RNA sequencing were employed. Results: A total of 76,068 and 44,223 non-redundant transcripts were obtained from high-quality transcripts of Lm-type female strains and normal amphiprotic strains, respectively. In Lm-type female strains and normal amphiprotic strains, 51,613 and 20,152 alternative splicing events were found, respectively. There were 13,239 transcription factors identified from the full-length transcriptomes. Comparative analysis showed a great variety of gene expression of common and unique transcription factors between the two cultivars. Meanwhile, a functional analysis of the isoforms was conducted. The full-length sequences were used as a reference genome, and a short-read RNA sequencing analysis was performed to conduct differential gene analysis. Furthermore, the function of DEGs were performed to annotation analysis. Conclusion: The results revealed considerable differences and expression diversity between the two cultivars, well beyond what was reported in previous studies and likely reflecting the differences in architecture between these two cultivars.
Collapse
Affiliation(s)
- Yaxing Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| | - Guoli Zhu
- Tongliao Academy of Agricultural Science, Tongliao, China
| | - Yun Wang
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| | - Zhibiao He
- Tongliao Academy of Agricultural Science, Tongliao, China
| | - Wei Zhou
- Agricultural College of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
15
|
Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021; 9:671698. [PMID: 34447743 PMCID: PMC8383295 DOI: 10.3389/fcell.2021.671698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles’ proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Mehali Mitra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Pinaki Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| |
Collapse
|
16
|
Cui G, Zhao M, Tan H, Wang Z, Meng M, Sun F, Zhang C, Xi Y. RNA Sequencing Reveals Dynamic Carbohydrate Metabolism and Phytohormone Signaling Accompanying Post-mowing Regeneration of Forage Winter Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:664933. [PMID: 34394136 PMCID: PMC8358837 DOI: 10.3389/fpls.2021.664933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Winter wheat (Triticum aestivum L.) is used as fresh green winter forage worldwide, and its ability to regenerate after mowing determines whether it can be used for forage production; however, the molecular mechanism of regeneration is poorly understood. This study identified long-chain coding and non-coding RNAs in the wheat cultivar "XN9106," which is cultivated for forage and grain production separately in winter and summer, and analyzed their function during post-mowing regeneration. The results showed that the degradation of carbohydrate plays an important role in regeneration, as demonstrated by decreased carbohydrate content. The increased gene expression of enzymes including β-amylase, β-fructofuranosidase, sucrose synthase, sucrose-6-phosphate synthase, trehalose-6-phosphate synthase, and trehalose-6-phosphate phosphatase in mowed seedlings suggests regeneration is fueled by degraded carbohydrates that provide energy and carbon skeletons for the Krebs cycle and amino acid synthesis. The decreased auxin content relieved the inhibition of cytokinin synthesis, that controls the transition from cell division to cell expansion and stimulates cell expansion and differentiation during the cell expansion phase, and eventually accelerate post-mowing regeneration of seedlings. Additionally, differentially expressed long-chain non-coding RNAs (lncRNAs) might participate in the regulation of gene expression related to carbohydrate metabolism and hormone signal transduction. This study demonstrated the responses of key mRNAs and lncRNAs during post-mowing regeneration of winter wheat and revealed the importance of carbohydrate and hormone during regeneration, providing valuable information for genetic improvement of forage wheat.
Collapse
Affiliation(s)
- Guibin Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Mei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Hongbin Tan
- Shaanxi Province Seed Industry Group Co., Ltd., Xi’an, China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Min Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| |
Collapse
|
17
|
Wu S, Wang Y, Wang J, Li X, Li J, Ye K. Profiling of RNA ribose methylation in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:4104-4119. [PMID: 33784398 PMCID: PMC8053127 DOI: 10.1093/nar/gkab196] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic rRNAs and snRNAs are decorated with abundant 2′-O-methylated nucleotides (Nm) that are predominantly synthesized by box C/D snoRNA-guided enzymes. In the model plant Arabidopsis thaliana, C/D snoRNAs have been well categorized, but there is a lack of systematic mapping of Nm. Here, we applied RiboMeth-seq to profile Nm in cytoplasmic, chloroplast and mitochondrial rRNAs and snRNAs. We identified 111 Nm in cytoplasmic rRNAs and 19 Nm in snRNAs and assigned guide for majority of the detected sites using an updated snoRNA list. At least four sites are directed by guides with multiple specificities as shown in yeast. We found that C/D snoRNAs frequently form extra pairs with nearby sequences of methylation sites, potentially facilitating the substrate binding. Chloroplast and mitochondrial rRNAs contain five almost identical methylation sites, including two novel sites mediating ribosomal subunit joining. Deletion of FIB1 or FIB2 gene reduced the accumulation of C/D snoRNA and rRNA methylation with FIB1 playing a bigger role in methylation. Our data reveal the comprehensive 2′-O-methylation maps for Arabidopsis rRNAs and snRNAs and would facilitate study of their function and biosynthesis.
Collapse
Affiliation(s)
- Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilong Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ouyang W, Cao Z, Xiong D, Li G, Li X. Decoding the plant genome: From epigenome to 3D organization. J Genet Genomics 2020; 47:425-435. [PMID: 33023833 DOI: 10.1016/j.jgg.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a three-dimensional (3D) structure, which has functional implications in DNA replication, DNA repair, and transcriptional regulation. Over the past decades, research on plant functional genomics and epigenomics has made great progress, with thousands of genes cloned and molecular mechanisms of diverse biological processes elucidated. Recently, 3D genome research has gradually attracted great attention of many plant researchers. Herein, we briefly review the progress in genomic and epigenomic research in plants, with a focus on Arabidopsis and rice, and summarize the currently used technologies and advances in plant 3D genome organization studies. We also discuss the relationships between one-dimensional linear genome sequences, epigenomic states, and the 3D chromatin architecture. This review provides basis for future research on plant 3D genomics.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Resources and Environment, Henan University of Engineering, Zhengzhou, 451191, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Shi Y, Chen J, Hou X. Similarities and Differences of Photosynthesis Establishment Related mRNAs and Novel lncRNAs in Early Seedlings (Coleoptile/Cotyledon vs. True Leaf) of Rice and Arabidopsis. Front Genet 2020; 11:565006. [PMID: 33093843 PMCID: PMC7506105 DOI: 10.3389/fgene.2020.565006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022] Open
Abstract
Photosynthesis uses sunlight and carbon dioxide to produce biomass that is vital to all life on earth. In seed plants, leaf is the main organ for photosynthesis and production of organic nutrients. The seeds are mobilized to fuel post-germination seedling growth until seedling photosynthesis can be efficiently established. However, the photosynthesis and metabolism in the early growth and development have not been studied systematically and are still largely unknown. In this study, we used two model plants, rice (Oryza sativa L.; monocotyledonous) and Arabidopsis (Arabidopsis thaliana; dicotyledonous) to determine the similarities and differences in photosynthesis in cotyledons and true leaves during the early developmental stages. The photosynthesis-related genes and proteins, and chloroplast functions were determined through RNA-seq, real-time PCR, western blotting and chlorophyll fluorescence analysis. We found that in rice, the photosynthesis established gradually from coleoptile (cpt), incomplete leaf (icl) to first complete leaf (fcl); whereas, in Arabidopsis, photosynthesis well-developed in cotyledon, and the photosynthesis-related genes and proteins expressed comparably in cotyledon (cot), first true leaf (ftl) and second true leaf (stl). Additionally, we attempted to establish an mRNA-lncRNA signature to explore the similarities and differences in photosynthesis establishment between the two species, and found that DEGs, including encoding mRNAs and novel lncRNAs, related to photosynthesis in three stages have considerable differences between rice and Arabidopsis. Further GO and KEGG analysis systematically revealed the similarities and differences of expression styles of photosystem subunits and assembly factors, and starch and sucrose metabolisms between cotyledons and true leaves in the two species. Our results help to elucidate the gene functions of mRNA-lncRNA signatures.
Collapse
Affiliation(s)
- Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jian Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Hamid R, Jacob F, Marashi H, Rathod V, Tomar RS. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 2020; 112:3354-3364. [PMID: 32574832 DOI: 10.1016/j.ygeno.2020.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023]
Abstract
Cytoplasmic male sterility is a well-proven mechanism for cotton hybrid production. Long non-coding RNAs belong to a class of transcriptional regulators that function in multiple biological processes. The cDNA libraries from the flower buds of the cotton CGMS, it's restorer (Rf) and maintainer lines were sequenced using high throughput NGS technique. A total of 1531 lncRNAs showed significant differential expression patterns between these three lines. Functional analysis of the co-expression network of lncRNA-mRNA using gene ontology vouchsafes that, lncRNAs play a crucial role in cytoplasmic male sterility and fertility restoration through pollen development, INO80 complex, development of anther wall tapetum, chromatin remodeling, and histone modification. Additionally, 94 lncRNAs were identified as putative precursors of 49 miRNAs. qRT-PCR affirms the concordance of expression pattern to RNA-seq data. These findings divulge the lncRNA driven miRNA-mediated regulation of gene expression profiling superintended for a better understanding of the CMS mechanisms of cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | - Feba Jacob
- Centre for plant biotechnology and molecular biology, Kerala agricultural university, Thrissur, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Visha Rathod
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
21
|
Zhang Y, Wu X, Yuan L. Distinct non-coding RNAs confer root-dependent sense transgene-induced post-transcriptional gene silencing and nitrogen-dependent post-transcriptional regulation to AtAMT1;1 transcripts in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:823-837. [PMID: 31901180 DOI: 10.1111/tpj.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
High-affinity ammonium uptake in roots mediate by AMT1-type ammonium transporters, which are tightly controlled at multiple regulatory levels for adapting various nitrogen availability. For Arabidopsis AtAMT1;1 gene, in addition to the transcriptional and post-translational controls, an organ-dependent and N-dependent post-transcriptional regulation was suggested as an additional regulatory step for fine tuning ammonium uptake, but the underlying mechanisms remain to be elucidated. Here, we showed that degradation of AtAMT1;1 transcript in roots of Pro35s:AtAMT1;1-transformed atamt1;1-1 Arabidopsis plants resulted from RDR6-dependent sense transgene-induced post-transcriptional gene silencing (S-PTGS). The siRNAs for S-PTGS may derive from the aberrant RNA, of which the production was co-determined by sequence feature and excessive expression of AtAMT1;1. Switching to the expression of AtAMT1;1 driven by ProAtUBQ10 or of AtAMT1;1 mutated at two siRNA-targeted hotspots reduced AtAMT1;1-specific siRNAs and overcame S-PTGS in roots. In roots of these lines, however, the steady-state transcript levels of AtAMT1;1 still significantly decreased under conditions of N-sufficiency compared with N-deficiency, confirming a N-dependent post-transcriptional regulatory manner. A crucial role of the 207-bp 3'-end sequence of AtAMT1;1 was further demonstrated by N-dependent accumulation of chimeric-AtAMT1;1 transcript in T-DNA insertion lines and of GFP-tagged chimeric-AtAMT1;1 transcript in transgenic lines. A novel non-coding RNA (ncRNA), which was highly abundant in N-sufficient roots, may target the above-identified 3'-end region for the degrading AtAMT1;1 transcript. This degradation could be prevented by a mutation on the AtAMT1;1 transcript at a potential cleavage site (+1458). These results suggested two distinct mechanisms of regulating AtAMT1;1 mRNA turnover by ncRNA for strictly control of ammonium uptake in roots.
Collapse
Affiliation(s)
- Yongjian Zhang
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiangyu Wu
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
22
|
Liu ZW, Zhao N, Su YN, Chen SS, He XJ. Exogenously overexpressed intronic long noncoding RNAs activate host gene expression by affecting histone modification in Arabidopsis. Sci Rep 2020; 10:3094. [PMID: 32080227 PMCID: PMC7033118 DOI: 10.1038/s41598-020-59697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Involvement of long non-coding RNAs (lncRNAs) in the regulation of gene expression in cis has been well studied in eukaryotes but relatively little is known whether and how lncRNAs affect gene expression in tans. In Arabidopsis thaliana, COLDAIR, a previously reported lncRNA, is produced from the first intron of FLOWERING LOCUS C (FLC), which encodes a repressor of flowering time. Our results indicated that the exogenously overexpressed COLDAIR enhances the expression of FLC in trans, resulting in a late-flowering phenotype. In 35S-COLDAIR lines, the enhanced expression of FLC is correlated with the down-regulation of the repressive histone mark H3K27me3 and with the up-regulation of the active histone mark H3K4me3 at the FLC chromatin. Furthermore, we demonstrated that overexpression of intronic lncRNAs from several other H3K27me3-enriched MADS-box genes also activates the expression of their host genes. This study suggests that the involvement of overexpressed intronic lncRNAs in gene activation may be conserved in H3K27me3-enriched genes in eukaryotes.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 10084, Beijing, China.
| |
Collapse
|
23
|
Liu F, Xu Y, Chang K, Li S, Liu Z, Qi S, Jia J, Zhang M, Crawford NM, Wang Y. The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:117-131. [PMID: 31264223 DOI: 10.1111/nph.16038] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 05/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulators in many plant biological processes. However, it remains unknown whether lncRNAs can respond to nitrate or function in nitrate regulation. We detected 695 lncRNAs, 480 known and 215 novel, in Arabidopsis seedling roots; six showed altered expression in response to nitrate treatment, among which T5120 showed the highest induction. Overexpression of T5120 in Arabidopsis promoted the response to nitrate, enhanced nitrate assimilation and improved biomass and root development. Biochemical and molecular analyses revealed that NLP7, a master nitrate regulatory transcription factor, directly bound to the nitrate-responsive cis-element (NRE)-like motif of the T5120 promoter and activated T5120 transcription. In addition, T5120 partially restored the nitrate signalling and assimilation phenotypes of nlp7 mutant, suggesting that T5120 is involved in NLP7-mediated nitrate regulation. Interestingly, the expression of T5120 was regulated by the nitrate sensor NRT1.1. Therefore, T5120 is modulated by NLP7 and NRT1.1 to regulate nitrate signalling. Our work reveals a new regulatory mechanism in which lncRNA T5120 functions in nitrate regulation, providing new insights into the nitrate signalling network. Importantly, lncRNA T5120 can promote nitrate assimilation and plant growth to improve nitrogen use efficiency.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yiran Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kexin Chang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuna Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhiguang Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jingbo Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Min Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
24
|
Genome-Wide Profiling of Polyadenylation Events in Maize Using High-Throughput Transcriptomic Sequences. G3-GENES GENOMES GENETICS 2019; 9:2749-2760. [PMID: 31239292 PMCID: PMC6686930 DOI: 10.1534/g3.119.400196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyadenylation is an essential post-transcriptional modification of eukaryotic transcripts that plays critical role in transcript stability, localization, transport, and translational efficiency. About 70% genes in plants contain alternative polyadenylation (APA) sites. Despite availability of vast amount of sequencing data, to date, a comprehensive map of the polyadenylation events in maize is not available. Here, 9.48 billion RNA-Seq reads were analyzed to characterize 95,345 Poly(A) Clusters (PAC) in 23,705 (51%) maize genes. Of these, 76% were APA genes. However, most APA genes (55%) expressed a dominant PAC rather than favoring multiple PACs equally. The lincRNA genes with PACs were significantly longer in length than the genes without any PAC and about 48% genes had APA sites. Heterogeneity was observed in 52% of the PACs supporting the imprecise nature of the polyadenylation process. Genomic distribution revealed that the majority of the PACs (78%) were located in the genic regions. Unlike previous studies, large number of PACs were observed in the intergenic (n = 21,264), 5′-UTR (735), CDS (2,542), and the intronic regions (12,841). The CDS and introns with PACs were longer in length than without PACs, whereas intergenic PACs were more often associated with transcripts that lacked annotated 3′-UTRs. Nucleotide composition around PACs demonstrated AT-richness and the common upstream motif was AAUAAA, which is consistent with other plants. According to this study, only 2,830 genes still maintained the use of AAUAAA motif. This large-scale data provides useful insights about the gene expression regulation and could be utilized as evidence to validate the annotation of transcript ends.
Collapse
|
25
|
|
26
|
Revealing the dominant long noncoding RNAs responding to the infection with Colletotrichum gloeosporioides in Hevea brasiliensis. Biol Direct 2019; 14:7. [PMID: 30987641 PMCID: PMC6466799 DOI: 10.1186/s13062-019-0235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Background Rubber tree (Hevea brasiliensis) acts as an important tropic economic crop and rubber tree anthracnose, mainly caused by Colletotrichum gloeosporioides, is one of the most common fungal disease, which leads to serious loss of rubber production. Therefore, the investigation on disease resistance is of great worldwide significance. In the past decades, substantial progress has been made on coding gene families related with plant disease resistance. However, in rubber tree, whether the disease resistance mechanism involves noncoding RNAs, especially long noncoding RNAs (lncRNAs), still remains poorly understood. Results Here, we modeled the development of H. brasiliensis leaf samples inoculated with C. gloeosporioides at divergent stages, explored to identify the expressed ncRNAs by RNA-seq, and investigated the dominant lncRNAs responding to the infection, through constructing a co-expressed network systematically. On the dominant lncRNAs, we explored the potential functional role of lncRNA11254 recruiting the transcription factor, and that lncRNA11041 and lncRNA11205 probably stimulate the accumulation of corresponding disease responsive miRNAs, and further modulate the expressions of target genes, accompanying with experimental examination. Conclusions Take together, computational analyses in silico and experimental evidences in our research collectively revealed the responsive roles of dominant lncRNAs to the pathogen. The results will provide new perspectives to unveil the plant disease resistance mechanisms, and will presumably provide a new theoretical basis and candidate prognostic markers for the optimization and innovation of genetic breeding for rubber tree. Reviewers This article was reviewed by Ryan McGinty and Roland Huber. Electronic supplementary material The online version of this article (10.1186/s13062-019-0235-z) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Abstract
Long non-coding RNAs (lncRNAs) exert a multitude of functions in regulating numerous biological processes. Recent studies have uncovered a growing number of lncRNAs within the plant genome. These molecules show striking tissue-specific expression patterns, suggesting that they exert regulatory functions in the growth and development processes of plants. Plant reproductive development is tightly regulated by both environmental and endogenous factors. As plant reproductive development is a crucial aspect of crop breeding, lncRNAs that modulate reproductive development are now particularly worth regarding. Here, we summarize findings that implicate lncRNAs in the control of plant reproductive development, especially in flowering control. Additionally, we elaborate on the regulation mechanisms of lncRNAs, tools for research on their function and mechanism, and potential directions of future research.
Collapse
|
28
|
LncRNA expression profile and ceRNA analysis in tomato during flowering. PLoS One 2019; 14:e0210650. [PMID: 30653557 PMCID: PMC6336255 DOI: 10.1371/journal.pone.0210650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/29/2018] [Indexed: 11/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play essential regulatory roles in various developmental processes and stress responses. However, the functions of lncRNAs during the flowering period of tomato are largely unknown. To explore the lncRNA profiles and functions during flowering in tomato, we performed strand-specific paired-end RNA sequencing of tomato leaves, flowers and roots, with three biological replicates. We identified 10919 lncRNAs including 248 novel lncRNAs, of which 65 novel lncRNAs were significantly differentially expressed (DE) in the flowers, leaves, and roots. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify the cis target gene of DE lncRNAs. The results showed that the lncRNAs might play an important role in the growth, development, and apoptosis of flowering tomato plant by regulating the formation of intima in flower tissues, binding to various molecules, influencing metabolic pathways, and inducing apoptosis. Moreover, we identified the interaction between 32, 78, and 397 kinds of miRNAs, lncRNAs, and mRNAs. The results suggest that the lncRNAs can regulate the expression of mRNA during flowering period in tomato by forming competitive endogenous RNA, and further regulate various biological metabolism pathways in tomato.
Collapse
|
29
|
Li Y, Wu C, Liu C, Yu J, Duan X, Fan W, Wang J, Zhang X, Yan G, Li T, Zhang K. Functional identification of lncRNAs in sweet cherry ( Prunus avium) pollen tubes via transcriptome analysis using single-molecule long-read sequencing. HORTICULTURE RESEARCH 2019; 6:135. [PMID: 31814988 PMCID: PMC6885045 DOI: 10.1038/s41438-019-0218-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/27/2019] [Accepted: 10/27/2019] [Indexed: 05/05/2023]
Abstract
Sweet cherry (Prunus avium) is a popular fruit with high nutritional value and excellent flavor. Although pollen plays an important role in the double fertilization and subsequent fruit production of this species, little is known about its pollen tube transcriptome. In this study, we identified 16,409 transcripts using single-molecule sequencing. After filtering 292 transposable elements, we conducted further analyses including mRNA classification, gene function prediction, alternative splicing (AS) analysis, and long noncoding RNA (lncRNA) identification to gain insight into the pollen transcriptome. The filtered transcripts could be matched with 3,438 coding region sequences from the sweet cherry genome. GO and KEGG analyses revealed complex biological processes during pollen tube elongation. A total of 2043 AS events were predicted, 7 of which were identified in different organs, such as the leaf, pistil and pollen tube. Using BLASTnt and the Coding-Potential Assessment Tool (CPAT), we distinguished a total of 284 lncRNAs, among which 154 qualified as natural antisense transcripts (NATs). As the NATs could be the reverse complements of coding mRNA sequences, they might bind to coding sequences. Antisense transfection assays showed that the NATs could regulate the expression levels of their complementary sequences and even affect the growth conditions of pollen tubes. In summary, this research characterizes the transcripts of P. avium pollen and lays the foundation for elucidating the physiological and biochemical mechanisms underlying sexual reproduction in the male gametes of this species.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Wenqi Fan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| |
Collapse
|
30
|
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved mechanisms which allow them to adapt to abiotic stresses through alterations in gene expression and metabolism. In recent years, studies have investigated the role of long noncoding RNA (lncRNA) in regulating gene expression in plants and characterized their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications, and RNA-RNA interactions. Genome-wide transcriptome analyses have identified various types of noncoding RNAs (ncRNAs) that respond to abiotic stress. These ncRNAs are in addition to the well-known housekeeping ncRNAs, such as rRNAs, tRNAs, snoRNAs, and snRNAs. In this review, recent research pertaining to the role of lncRNAs in the response of plants to abiotic stress is summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Saitama, Japan.
| |
Collapse
|
31
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
32
|
Schon MA, Kellner MJ, Plotnikova A, Hofmann F, Nodine MD. NanoPARE: parallel analysis of RNA 5' ends from low-input RNA. Genome Res 2018; 28:1931-1942. [PMID: 30355603 PMCID: PMC6280765 DOI: 10.1101/gr.239202.118] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
Diverse RNA 5′ ends are generated through both transcriptional and post-transcriptional processes. These important modes of gene regulation often vary across cell types and can contribute to the diversification of transcriptomes and thus cellular differentiation. Therefore, the identification of primary and processed 5′ ends of RNAs is important for their functional characterization. Methods have been developed to profile either RNA 5′ ends from primary transcripts or the products of RNA degradation genome-wide. However, these approaches either require high amounts of starting RNA or are performed in the absence of paired gene-body mRNA-seq data. This limits current efforts in RNA 5′ end annotation to whole tissues and can prevent accurate RNA 5′ end classification due to biases in the data sets. To enable the accurate identification and precise classification of RNA 5′ ends from standard and low-input RNA, we developed a next-generation sequencing-based method called nanoPARE and associated software. By integrating RNA 5′ end information from nanoPARE with gene-body mRNA-seq data from the same RNA sample, our method enables the identification of transcription start sites at single-nucleotide resolution from single-cell levels of total RNA, as well as small RNA-mediated cleavage events from at least 10,000-fold less total RNA compared to conventional approaches. NanoPARE can therefore be used to accurately profile transcription start sites, noncapped RNA 5′ ends, and small RNA targeting events from individual tissue types. As a proof-of-principle, we utilized nanoPARE to improve Arabidopsis thaliana RNA 5′ end annotations and quantify microRNA-mediated cleavage events across five different flower tissues.
Collapse
Affiliation(s)
- Michael A Schon
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Max J Kellner
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Alexandra Plotnikova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Falko Hofmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
33
|
Lin Y, Jiang L, Chen Q, Li Y, Zhang Y, Luo Y, Zhang Y, Sun B, Wang X, Tang H. Comparative Transcriptome Profiling Analysis of Red- and White-Fleshed Strawberry (Fragaria�ananassa) Provides New Insight into the Regulation of the Anthocyanin Pathway. PLANT & CELL PHYSIOLOGY 2018; 59:1844-1859. [PMID: 29800352 DOI: 10.1093/pcp/pcy098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 05/07/2023]
Abstract
Anthocyanins are water-soluble pigments in plants. They confer both economic and healthy profits for humans. To gain a deeper insight into the regulation of anthocyanin biosynthesis in octoploid strawberry (Fragaria�ananassa; Fa), a widely consumed economically important fruit, we performed comparative transcriptomic analysis of red- and white-fleshed strawberry cultivars in two ripening stages. In total, 365,455 non-redundant transcripts were assembled from the RNA sequencing (RNAseq) data. Of this collection, 377 were annotated as putative anthocyanin-related transcripts. Differential expression analysis revealed that 57 anthocyanin biosynthesis transcripts were down-regulated, and 89 transcription factors (TFs) were either down- or up-regulated under anthocyanin deficiency. Additionally, amongst the 50,601 putative long non-coding RNAs (lncRNAs) identified here, 68 lncRNAs were differentially expressed and co-expressed with differentially expressed anthocyanin-related mRNAs; 2,070 co-expressing lncRNA-mRNA pairs were generated. Expression profile analysis revealed that it was the limited expression of FaF3'H (flavonoid 3'-hydroxylase) that blocked the cyanidin 3-glucoside accumulation in the two investigated strawberry cultivars. This was further supported by a transient overexpression experiment with FaMYB10. The down-regulated lncRNAs might participate in anthocyanin regulation by acting as targets for microRNAs (miRNAs). The level of competitive intensity in miRNA and lncRNA for the same mRNA targets was probably lower in the white-fleshed strawberries, which can release the repression effect of the mRNAs in red-fleshed strawberry as a result. This study for the first time presents lncRNAs related to anthocyanins in strawberries, provides new insights into the anthocyanin regulatory network and also lays the foundation for identifying new anthocyanin regulators in strawberry.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yali Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Wang M, Zhao W, Gao L, Zhao L. Genome-wide profiling of long non-coding RNAs from tomato and a comparison with mRNAs associated with the regulation of fruit ripening. BMC PLANT BIOLOGY 2018; 18:75. [PMID: 29728060 PMCID: PMC5935960 DOI: 10.1186/s12870-018-1300-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in multiple biological processes in both mammals and plants. There is growing evidence that they are associated with development; but their expression and regulation during fruit ripening in the model plant tomato (Solanum lycopersicum) has yet to be described. RESULTS Following integration of 134 RNA-seq data sets, we identified 79,322 putative lncRNAs, consisting of 70,635 lincRNAs, 8085 antisense non-coding RNAs (ancRNAs) and 602 sense lncRNAs (slncRNAs). lncRNAs had specific features that are distinct from mRNAs, including tissue-specificity, and shorter and fewer exons. Notably, more than 5000 of the novel lincRNAs were found to be expressed across the mature green (MG), breaker (BR) and breaker plus 7 days (BR + 7) developmental stages. The differently expressed lincRNAs had different DNA methylation profiles from the mRNAs. CONCLUSIONS Integrating transcriptome datasets and genome-wide screening enabled the identification of a comprehensive set of tomato lncRNAs. Here, we found that the lncRNAs DNA methylation profiles were different from those of mRNAs. This will help future investigation of lncRNA function, especially for the dissection of the molecular mechanisms involved in the regulation of fruit development.
Collapse
MESH Headings
- DNA Methylation
- Fruit/genetics
- Fruit/growth & development
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Genome, Plant/genetics
- Genome, Plant/physiology
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Transcriptome
Collapse
Affiliation(s)
- Minghui Wang
- BRC Bioinformatics Facility Cornell University, Ithaca, 14850 USA
| | - Weihua Zhao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lei Gao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lingxia Zhao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
35
|
Liu X, Li D, Zhang D, Yin D, Zhao Y, Ji C, Zhao X, Li X, He Q, Chen R, Hu S, Zhu L. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. THE NEW PHYTOLOGIST 2018; 218:774-788. [PMID: 29411384 DOI: 10.1111/nph.15023] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/25/2017] [Indexed: 05/20/2023]
Abstract
Natural antisense long noncoding RNAs (lncRNAs) are widespread in many organisms. However, their biological functions remain largely unknown, particularly in plants. We report the identification and characterization of an endogenous lncRNA, TWISTED LEAF (TL), which is transcribed from the opposite strand of the R2R3 MYB transcription factor gene locus, OsMYB60, in rice (Oryza sativa). TL and OsMYB60 were found to be coexpressed in many different tissues, and the expression level of TL was higher than that of OsMYB60. Downregulation of TL by RNA interference (RNAi) and overexpression of OsMYB60 resulted in twisted leaf blades in transgenic rice. The expression level of OsMYB60 was significantly increased in TL-RNAi transgenic plants. This suggests that TL may play a cis-regulatory role on OsMYB60 in leaf morphological development. We also determined that the antisense transcription suppressed the sense gene expression by mediating chromatin modifications. We further discovered that a C2H2 transcription factor, OsZFP7, is an OsMYB60 binding partner and involved in leaf development. Taken together, these findings reveal that the cis-natural antisense lncRNA plays a critical role in maintaining leaf blade flattening in rice. Our study uncovers a regulatory mechanism of lncRNA in plant leaf development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Donglei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengjun Ji
- Department of Ecology, Peking University, Beijing, 100871, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
36
|
van Wonterghem M, Thieffry A, Boyd M, Bornholdt J, Brodersen P. A new class of genic nuclear RNA species in Arabidopsis. FEBS Lett 2018; 592:631-643. [PMID: 29355922 DOI: 10.1002/1873-3468.12981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/01/2018] [Accepted: 01/16/2018] [Indexed: 11/07/2022]
Abstract
Targeting of ArabidopsisPHABULOSA (PHB) mRNA by miR166 has been implicated in gene body methylation at the PHB locus. We report that the PHB locus produces an array of stable nuclear RNA species that are neither polyadenylated nor capped. Their biogenesis requires neither RNA polymerases IV/V nor miR166-guided cleavage. The PHB RNAs are insensitive to mutation of nuclear RNA decay pathways and are conserved in several Brassicaceae species, suggesting functional relevance. Similar RNA species are also produced by another body-methylated locus encoding the miR414 target eIF2. Our data reveal the existence of a new class of genic nuclear RNA species.
Collapse
Affiliation(s)
| | - Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Mette Boyd
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
37
|
Štorchová H. The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants. Int J Mol Sci 2017; 18:E2429. [PMID: 29144434 PMCID: PMC5713397 DOI: 10.3390/ijms18112429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The interactions between mitochondria and nucleus substantially influence plant development, stress response and morphological features. The prominent example of a mitochondrial-nuclear interaction is cytoplasmic male sterility (CMS), when plants produce aborted anthers or inviable pollen. The genes responsible for CMS are located in mitochondrial genome, but their expression is controlled by nuclear genes, called fertility restorers. Recent explosion of high-throughput sequencing methods enabled to study transcriptomic alterations in the level of non-coding RNAs under CMS biogenesis. We summarize current knowledge of the role of nucleus encoded regulatory non-coding RNAs (long non-coding RNA, microRNA as well as small interfering RNA) in CMS. We also focus on the emerging data of non-coding RNAs encoded by mitochondrial genome and their possible involvement in mitochondrial-nuclear interactions and CMS development.
Collapse
Affiliation(s)
- Helena Štorchová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic.
| |
Collapse
|
38
|
Arabidopsis noncoding RNA modulates seedling greening during deetiolation. SCIENCE CHINA-LIFE SCIENCES 2017; 61:199-203. [DOI: 10.1007/s11427-017-9187-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/16/2017] [Indexed: 01/21/2023]
|
39
|
Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M. Non-coding RNAs and Their Roles in Stress Response in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:301-312. [PMID: 29017967 PMCID: PMC5673675 DOI: 10.1016/j.gpb.2017.01.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/04/2017] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
Eukaryotic genomes encode thousands of non-coding RNAs (ncRNAs), which play crucial roles in transcriptional and post-transcriptional regulation of gene expression. Accumulating evidence indicates that ncRNAs, especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as key regulatory molecules in plant stress responses. In this review, we have summarized the current progress on the understanding of plant miRNA and lncRNA identification, characteristics, bioinformatics tools, and resources, and provided examples of mechanisms of miRNA- and lncRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Meng
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Oxana B Dobrovolskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160. Sci Bull (Beijing) 2017; 62:470-475. [PMID: 36659255 DOI: 10.1016/j.scib.2017.03.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 01/21/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in the regulation of multiple biological processes via diverse manners, one of which is functioning as endogenous target mimics (eTMs) to modulate microRNAs (miRNAs) by competing for their targets. Previously, we have predicted one lncRNA (osa-eTM160) as an endogenous repressor of osa-miR160 and validated the target mimicry ability of osa-eTM160 for ath-miR160 in Arabidopsis thaliana, yet the functions of osa-eTM160 in rice remain obscure. Here, we demonstrated that osa-eTM160 attenuated the repression of osa-miR160 on osa-ARF18 mRNAs during early anther developmental stages through the target mimicry manner, therefore to regulate rice seed setting and seed size. These findings revealed the roles of osa-eTM160 in rice, and indicated that lncRNAs with eTM functions may serve as temporal regulators to modulate the effects of miRNAs at specific developmental stages.
Collapse
|
41
|
Bhatia G, Goyal N, Sharma S, Upadhyay SK, Singh K. Present Scenario of Long Non-Coding RNAs in Plants. Noncoding RNA 2017; 3:16. [PMID: 29657289 PMCID: PMC5831932 DOI: 10.3390/ncrna3020016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh-160014, India.
| | - Neetu Goyal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh-160014, India.
| | - Shailesh Sharma
- National Agri-Food Biotechnology Institute, C-127, Industrial Area, S.A.S. Nagar, Phase 8, Mohali 160071, Punjab, India.
| | | | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh-160014, India.
| |
Collapse
|
42
|
Kerr SC, Gaiti F, Beveridge CA, Tanurdzic M. De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes. BMC Genomics 2017; 18:221. [PMID: 28253862 PMCID: PMC5335751 DOI: 10.1186/s12864-017-3577-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The decision for a bud to grow into a branch is a key regulatory process affecting plant architecture. In order to study molecular processes regulating axillary bud outgrowth in the model plant garden pea (Pisum sativum), we sequenced the axillary bud transcriptome and performed de novo transcriptome assembly. RESULTS We assembled a pea axillary bud transcriptome into 81,774 transcripts comprised of 194,067 isoforms. This new pea transcriptome resource is both comprehensive and representative, as shown by comparison to other available pea sequence resources. Over half of the transcriptome could be annotated based on sequence homology to Arabidopsis thaliana proteins, while almost one quarter of the isoforms were identified as putative long non-coding RNAs (lncRNAs). This transcriptome will be useful in studies of pea buds because it includes genes expressed specifically in buds which are not represented in other transcriptome studies. We also investigated the impact of a short time collection series on gene expression. Differential gene expression analysis identified 142 transcripts changing within the short 170 min time frame that the buds were harvested within. Thirty-three of these transcripts are implicated in diurnal fluctuations in other flowering plants, while the remaining transcripts include 31 putative lncRNA. Further investigation of the differentially expressed transcripts found an enrichment of genes involved in post-transcriptional regulation, including RNA processing and modification, as well as genes involved in fatty acid biosynthesis and oxidative phosphorylation. CONCLUSIONS We have sequenced and assembled a high quality pea bud transcriptome containing both coding and non-coding RNA transcripts that will be useful for further studies into axillary bud outgrowth. Over the short sample collection time frame of just 170 min, we identified differentially expressed coding and non-coding RNA, some of which are implicated in diurnal regulation, highlighting the utility of our transcriptome resource in identifying gene expression changes and informing future experimental designs.
Collapse
Affiliation(s)
- Stephanie C. Kerr
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| | - Federico Gaiti
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| | - Christine A. Beveridge
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| | - Milos Tanurdzic
- The University of Queensland, School of Biological Sciences, St Lucia, QLD 4072 Australia
| |
Collapse
|
43
|
Abstract
The eukaryotic genomes are pervasively transcribed. In addition to protein-coding RNAs, thousands of long noncoding RNAs (lncRNAs) modulate key molecular and biological processes. Most lncRNAs are found in the nucleus and associate with chromatin, but lncRNAs can function in both nuclear and cytoplasmic compartments. Emerging work has found that many lncRNAs regulate gene expression and can affect genome stability and nuclear domain organization both in plant and in the animal kingdom. Here, we describe the major plant lncRNAs and how they act, with a focus on research in Arabidopsis thaliana and our emerging understanding of lncRNA functions in serving as molecular sponges and decoys, functioning in regulation of transcription and silencing, particularly in RNA-directed DNA methylation, and in epigenetic regulation of flowering time.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
44
|
Abstract
Plants must adapt to multiple biotic and abiotic stresses ; thus, sensing and responding to environmental signals is imperative for their survival. Moreover, understanding these responses is imperative for efforts to improve plant yield and consistency. Regulation of transcript levels is a key aspect of the plant response to environmental signals. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years with the advance of high-throughput sequencing technologies. As important biological regulators, lncRNAs have been implicated in a wide range of developmental processes and diseases in animals. However, knowledge of the role that lncRNAs play in plant stress tolerance remains limited. Here, we review recent studies on the identification, characteristics, classification, and biological functions of lncRNAs in response to various stresses, including bacterial pathogens, excess light, drought, salinity, hypoxia, extreme temperatures, and nitrogen/phosphate deficiency. We also discuss possible directions for future research.
Collapse
|
45
|
Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis. Proc Natl Acad Sci U S A 2016; 113:11967-11972. [PMID: 27708161 DOI: 10.1073/pnas.1614852113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ribosome production in eukaryotes requires the complex and precise coordination of several hundred assembly factors, including many small nucleolar RNAs (snoRNAs). However, at present, the distinct role of key snoRNAs in ribosome biogenesis remains poorly understood in higher plants. Here we report that a previously uncharacterized C (RUGAUGA)/D (CUGA) type snoRNA, HIDDEN TREASURE 2 (HID2), acts as an important regulator of ribosome biogenesis through a snoRNA-rRNA interaction. Nucleolus-localized HID2 is actively expressed in Arabidopsis proliferative tissues, whereas defects in HID2 cause a series of developmental defects reminiscent of ribosomal protein mutants. HID2 associates with the precursor 45S rRNA and promotes the efficiency and accuracy of pre-rRNA processing. Intriguingly, disrupting HID2 in Arabidopsis appears to impair the integrity of 27SB, a key pre-rRNA intermediate that generates 25S and 5.8S rRNA and is known to be vital for the synthesis of the 60S large ribosomal subunit and also produces an imbalanced ribosome profile. Finally, we demonstrate that the antisense-box of HID2 is both functionally essential and highly conserved in eukaryotes. Overall, our study reveals the vital and possibly conserved role of a snoRNA in monitoring the efficiency of pre-rRNA processing during ribosome biogenesis.
Collapse
|
46
|
Qu G, Kruszka K, Plewka P, Yang SY, Chiou TJ, Jarmolowski A, Szweykowska-Kulinska Z, Echeverria M, Karlowski WM. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics 2015; 16:1009. [PMID: 26607788 PMCID: PMC4660826 DOI: 10.1186/s12864-015-2221-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Background In the past few decades, non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression in eukaryotes. Most studies of ncRNAs in plants have focused on the identification of silencing microRNAs (miRNAs) and small interfering RNAs (siRNAs). Another important family of ncRNAs that has been well characterized in plants is the small nucleolar RNAs (snoRNAs) and the related small Cajal body-specific RNAs (scaRNAs). Both target chemical modifications of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). In plants, the snoRNA genes are organized in clusters, transcribed by RNA Pol II from a common promoter and subsequently processed into mature molecules. The promoter regions of snoRNA polycistronic genes in plants are highly enriched in two conserved cis-regulatory elements (CREs), Telo-box and Site II, which coordinate the expression of snoRNAs and ribosomal protein coding genes throughout the cell cycle. Results In order to identify novel ncRNA genes, we have used the snoRNA Telo-box/Site II motifs combination as a functional promoter indicator to screen the Arabidopsis genome. The predictions generated by this process were tested by detailed exploration of available RNA-Seq and expression data sets and experimental validation. As a result, we have identified several snoRNAs, scaRNAs and 'orphan' snoRNAs. We also show evidence for 16 novel ncRNAs that lack similarity to any reported RNA family. Finally, we have identified two dicistronic genes encoding precursors that are processed to mature snoRNA and miRNA molecules. We discuss the evolutionary consequences of this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes. Conclusions We present an alternative computational approach for non-coding RNA detection. Instead of depending on sequence or structure similarity in the whole genome screenings, we have explored the properties of promoter regions of well-characterized ncRNAs. Interestingly, besides expected ncRNAs predictions we were also able to recover single precursor arrangement for snoRNA-miRNA. Accompanied by analyses performed on rice sequences, we conclude that such arrangement might have interesting functional and evolutionary consequences and discuss this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2221-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ge Qu
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd. Sec. 2, Taipei, 115, Taiwan.
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128 Academia Rd. Sec. 2, Taipei, 115, Taiwan.
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.
| | - Manuel Echeverria
- Faculté des Sciences, Université de Perpignan via Domitia, 52, Av Paul Alduy, Perpignan, 66860, France.
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
47
|
Chekanova JA. Long non-coding RNAs and their functions in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:207-16. [PMID: 26342908 DOI: 10.1016/j.pbi.2015.08.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/18/2023]
Abstract
Eukaryotic genomes encode thousands of long noncoding RNAs (lncRNAs), which play important roles in essential biological processes. Although lncRNAs function in the nuclear and cytoplasmic compartments, most of them occur in the nucleus, often in association with chromatin. Indeed, many lncRNAs have emerged as key regulators of gene expression and genome stability. Emerging evidence also suggests that lncRNAs may contribute to the organization of nuclear domains. This review briefly summarizes the major types of eukaryotic lncRNAs and provides examples of their mechanisms of action, with focus on plant lncRNAs, mainly in Arabidopsis thaliana, and describes current advances in our understanding of the mechanisms of lncRNA action and the roles of lncRNAs in RNA-dependent DNA methylation and in the regulation of flowering time.
Collapse
Affiliation(s)
- Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
48
|
Functions of plants long non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:155-62. [PMID: 26112461 DOI: 10.1016/j.bbagrm.2015.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
49
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
50
|
Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 2014; 111:10359-64. [PMID: 24982146 DOI: 10.1073/pnas.1409457111] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Seedling photomorphogenesis is a sophisticated developmental process that is controlled by both the transcriptional and posttranscriptional regulation of gene expression. Here, we identify an Arabidopsis noncoding RNA, designated hidden treasure 1 (HID1), as a factor promoting photomorphogenesis in continuous red light (cR). We show that HID1 acts through phytochrome-interacting factor 3 (PIF3), which encodes a basic helix-loop-helix transcription factor known to be a key repressor of photomorphogenesis. Knockdown of HID1 in hid1 mutants leads to a significant increase in the expression of PIF3, which in turn drives the development of elongated hypocotyls in cR. We identified two major stem-loops in HID1 that are essential for its modulation of hypocotyl growth in cR-grown seedlings. Furthermore, our data reveal that HID1 is assembled into large nuclear protein-RNA complex(es) and that it associates with the chromatin of the first intron of PIF3 to repress its transcription. Strikingly, phylogenetic analysis reveals that many land plants have conserved homologs of HID1 and that its rice homolog can rescue the mutant phenotype when expressed in Arabidopsis hid1 mutants. We thus concluded that HID1 is a previously uncharacterized noncoding RNA whose function represents another layer of regulation in the precise control of seedling photomorphogenesis.
Collapse
|