1
|
Scaletti C, Pratesi S, Bellando Randone S, Di Pietro L, Campochiaro C, Annunziato F, Matucci Cerinic M. The B-cells paradigm in systemic sclerosis: an update on pathophysiology and B-cell-targeted therapies. Clin Exp Immunol 2025; 219:uxae098. [PMID: 39498828 PMCID: PMC11754866 DOI: 10.1093/cei/uxae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024] Open
Abstract
Systemic sclerosis (SSc) is considered a rare autoimmune disease in which there are alterations of both the innate and adaptive immune response resulting in the production of autoantibodies. Abnormalities of the immune system compromise the normal function of blood vessels leading to a vasculopathy manifested by Raynaud's phenomenon, an early sign of SSc . As a consequence of this reactive picture, the disease can evolve leading to tissue fibrosis. Several SSc-specific autoantibodies are currently known and are associated with specific clinical manifestations and prognosis. Although the pathogenetic role of these autoantibodies is still unclear, their production by B cells and plasma cells suggests the importance of these cells in the development of SSc. This review narratively examines B-cell dysfunctions and their role in the pathogenesis of SSc and discusses B-cell-targeted therapies currently used or potentially useful for the management of end-organ complications.
Collapse
Affiliation(s)
- Cristina Scaletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sara Pratesi
- Flow Cytometry Diagnostic Center and Immunotherapy, University Hospital Careggi, Florence, Italy
| | - Silvia Bellando Randone
- Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Florence, and Scleroderma Unit, University Hospital Careggi, Florence, Italy
| | - Linda Di Pietro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, University Hospital Careggi, Florence, Italy
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Teske N, Fett N. Recent Advances in Treatment of Systemic Sclerosis and Morphea. Am J Clin Dermatol 2024; 25:213-226. [PMID: 38087156 DOI: 10.1007/s40257-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
Systemic sclerosis (SSc) and morphea are autoimmune sclerosing diseases that cause significant morbidity, and in the case of SSc, mortality. The pathogenesis of both SSc and morphea share vascular dysfunction, auto-reactive T cells and Th2-associated cytokines, such as interleukin 4, and overproduction of transforming growth factor beta (TGFβ). TGFβ stimulates fibroblast collagen and extra-cellular matrix production. Although morphea and SSc have similar pathogenic pathways and histological findings, they are distinct diseases. Recent advances in treatment of morphea, skin sclerosis in SSc, and interstitial lung disease in SSc are focused on targeting known pathogenic pathways.
Collapse
Affiliation(s)
- Noelle Teske
- Department of Dermatology, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, OR, 97239, USA
| | - Nicole Fett
- Department of Dermatology, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Chasov V, Zmievskaya E, Ganeeva I, Gilyazova E, Davletshin D, Khaliulin M, Kabwe E, Davidyuk YN, Valiullina A, Rizvanov A, Bulatov E. Immunotherapy Strategy for Systemic Autoimmune Diseases: Betting on CAR-T Cells and Antibodies. Antibodies (Basel) 2024; 13:10. [PMID: 38390871 PMCID: PMC10885098 DOI: 10.3390/antib13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic autoimmune diseases (SAIDs), such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and rheumatoid arthritis (RA), are fully related to the unregulated innate and adaptive immune systems involved in their pathogenesis. They have similar pathogenic characteristics, including the interferon signature, loss of tolerance to self-nuclear antigens, and enhanced tissue damage like necrosis and fibrosis. Glucocorticoids and immunosuppressants, which have limited specificity and are prone to tolerance, are used as the first-line therapy. A plethora of novel immunotherapies have been developed, including monoclonal and bispecific antibodies, and other biological agents to target cellular and soluble factors involved in disease pathogenesis, such as B cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Many of these have shown encouraging results in clinical trials. CAR-T cell therapy is considered the most promising technique for curing autoimmune diseases, with recent successes in the treatment of SLE and SSc. Here, we overview novel therapeutic approaches based on CAR-T cells and antibodies for targeting systemic autoimmune diseases.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuriy N Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
4
|
Saeki T, Nishiyama H, Kimura H, Usuda H, Furukawa K. Successful Rituximab Therapy for Skin Sclerosis and Myositis in a Patient With Systemic Sclerosis, Myositis and Sjögren's Syndrome Associated With Autoimmune Polyendocrine Syndrome Type 2. Cureus 2023; 15:e45831. [PMID: 37881380 PMCID: PMC10593914 DOI: 10.7759/cureus.45831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Autoimmune polyendocrine (or polyglandular) syndrome (APS) is a relatively rare clinical condition characterized by functional impairment of multiple endocrine glands due to loss of immune tolerance. APS is broadly categorized as rare monogenic forms, such as autoimmune polyendocrine syndrome type 1 (APS-1), and a more common polygenic variety, autoimmune polyendocrine syndrome type 2 (APS-2). Although many autoimmune conditions including autoimmune rheumatic diseases can develop in APS-2, systemic sclerosis or myositis as a complication is quite rare and no treatment strategy has yet been established. A 25-year-old man who had been diagnosed as having type 1 diabetes developed finger stiffness. Although the subjective symptoms were relatively mild, extensive examinations including various autoantibodies, hormones and biopsy of the skin and minor salivary glands revealed that he had APS-2 (type 1 diabetes and autoimmune thyroid disease) accompanied by systemic sclerosis, myositis and Sjögren's syndrome. Rituximab therapy was initiated for the progressive skin sclerosis, and this resulted in significant alleviation of both the sclerosis and the myositis. In APS, early diagnosis and immunomodulatory therapy may arrest the autoimmune process before irreversible organ damage has occurred. This case report suggests that rituximab may be a promising therapy for autoimmune rheumatic diseases associated with APS-2.
Collapse
Affiliation(s)
- Takako Saeki
- Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, JPN
| | | | - Haruna Kimura
- Dermatology, Nagaoka Red Cross Hospital, Nagaoka, JPN
| | | | - Kazuo Furukawa
- Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, JPN
| |
Collapse
|