1
|
Yeerkenbieke B, Li Y, Kiessling F, Lammers T, Vulpe C, Pallares RM. Understanding the action mechanisms and safety of nanoparticles with functional toxicogenomics. Nanomedicine (Lond) 2025:1-5. [PMID: 40567138 DOI: 10.1080/17435889.2025.2523733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2025] [Accepted: 06/19/2025] [Indexed: 06/28/2025] Open
Affiliation(s)
- Buerlan Yeerkenbieke
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
2
|
Thakur L, Garg L, Mohiuddin I, Singh R, Kaur V, Thakur N. A conjugated oligoelectrolyte for the recognition of uranyl ion in aqueous and soil samples via RGB method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125355. [PMID: 39492092 DOI: 10.1016/j.saa.2024.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The development of selective and practically applicable sensors for monitoring trace uranyl ions (UO22+) in an aqueous medium is the biggest challenge. This study presents the development of a conjugated oligoelectrolyte-based probe (COE) for the selective detection of UO22+ ions in water bodies. The COE is a water-soluble probe having an organic backbone with two ionic pendants at the terminal points. It changes its color to a dark yellow selectively in the presence of UO22+ ions. This visible change was integrated with a smartphone RGB color quantification method. The COE displayed an RGB chemo-dosimeter to selectively monitor UO22+ ions without interference from other metal ions. In the parallel experiment, COE displays a spectrofluorimetric emission signal at λems. = 525 nm (with λexc. = 420 nm), which exhibits quenching of signal when interacted with UO22+ ions. The limit of detection (LOD) is found to be 3.07 × 10-2 µM and 4.50 µM by spectrofluorimetric and RGB color value methods, respectively. 1H NMR and XPS analysis investigated the mode of interaction, and it suggested that the quenching of the emission signal was due to the interaction between the electron-rich azomethine site of COE and UO22+ ion. The smartphone-based RGB color analysis makes COE a potential probe with reduced operation time and offers a fresh approach for the immediate, real-time detection of UO22+ ions in aqueous and soil samples.
Collapse
Affiliation(s)
- Lalita Thakur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Lipika Garg
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Irshad Mohiuddin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| | - Varinder Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Nikhlesh Thakur
- Department of Zoology, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
3
|
Constantin M, Chioncel MF, Petrescu L, Vrancianu CO, Paun M, Cristian RE, Sidoroff M, Dionisie MV, Chifiriuc MC. From rock to living systems: Lanthanides toxicity and biological interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117494. [PMID: 39647373 DOI: 10.1016/j.ecoenv.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Since the discovery of lanthanides, the expanding range of applications and the growing demand for lanthanides in different aspects of life have escalated their dispersion in the environment, raising concerns about their impact on the living world. This review explores the interaction between lanthanides and different groups of living organisms (bacteria, algae, lichens, plants, invertebrates, and low vertebrates), reflecting the current state of scientific knowledge. We have aimed to provide a comprehensive overview of relevant studies, highlight existing gaps, and suggest potential areas for future research to enhance the understanding of this topic.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, Bucharest 060031, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania.
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania.
| | - Mihaela Paun
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Faculty of Administration and Business, University of Bucharest, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Manuela Sidoroff
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania
| | | | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| |
Collapse
|
4
|
Pallares RM, Abergel RJ. New insights into the toxicity of lanthanides with functional genomics. Toxicology 2024; 509:153967. [PMID: 39384009 DOI: 10.1016/j.tox.2024.153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
As the use of lanthanides increases in many industries, concerns regarding their impact on human health rise. However, until recently, the toxicological profile of these elements had been incompletely characterized, with most studies relying on biodistribution assessments and lethal dose determinations in different animal models. In the last few years, the f-element field has started to pivot towards other examination types that identify cellular and molecular mechanisms of toxicity in a high-throughput manner. Under this new paradigm, functional genomics techniques, which rely on genetically modified cells or model organisms with missing genes or proteins, are becoming fundamental to gain novel insights into the genetic and proteomic bases of lanthanide toxicity, as well as to identify potential therapeutic targets to minimize the harmful effects of the metals. This review aims to provide an updated perspective on current efforts using functional genomics to characterize the toxicity and biological impact of lanthanides and improve their safety in different industrial applications.
Collapse
Affiliation(s)
- Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Alonso P, Blas J, Amaro F, de Francisco P, Martín-González A, Gutiérrez JC. Cellular Response of Adapted and Non-Adapted Tetrahymena thermophila Strains to Europium Eu(III) Compounds. BIOLOGY 2024; 13:285. [PMID: 38785768 PMCID: PMC11117543 DOI: 10.3390/biology13050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
Europium is one of the most reactive lanthanides and humans use it in many different applications, but we still know little about its potential toxicity and cellular response to its exposure. Two strains of the eukaryotic microorganism model Tetrahymena thermophila were adapted to high concentrations of two Eu(III) compounds (EuCl3 or Eu2O3) and compared to a control strain and cultures treated with both compounds. In this ciliate, EuCl3 is more toxic than Eu2O3. LC50 values show that this microorganism is more resistant to these Eu(III) compounds than other microorganisms. Oxidative stress originated mainly by Eu2O3 is minimized by overexpression of genes encoding important antioxidant enzymes. The overexpression of metallothionein genes under treatment with Eu(III) compounds supports the possibility that this lanthanide may interact with the -SH groups of the cysteine residues from metallothioneins and/or displace essential cations of these proteins during their homeostatic function. Both lipid metabolism (lipid droplets fusing with europium-containing vacuoles) and autophagy are involved in the cellular response to europium stress. Bioaccumulation, together with a possible biomineralization to europium phosphate, seems to be the main mechanism of Eu(III) detoxification in these cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (P.A.); (J.B.); (F.A.); (P.d.F.); (A.M.-G.)
| |
Collapse
|
6
|
Nagarajan P, Cole I, Deng Q, Kuznetsov A, Oz T, Kujawska M. Experimental and theoretical studies of a novel europium decorated carbon nanotube material: investigation of cytotoxicity, electrocatalytic properties, and corrosion inhibition behaviour on Mg AZ31 alloy in 3.5% NaCl environment. NEW J CHEM 2024; 48:18768-18780. [DOI: 10.1039/d4nj03786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Leveraging rare-earth elements as one of the eco-friendly candidates to protect alloy coatings, this study performed the europium functionalization of carbon nanotubes (Eu–CNT) for magnesium alloy protection in the 3.5% NaCl medium.
Collapse
Affiliation(s)
| | - Ivan Cole
- School of Engineering, Royal Melbourne Institute of Technology, RMIT University, Melbourne, VIC 3000, Australia
| | - Qiushi Deng
- School of Engineering, Royal Melbourne Institute of Technology, RMIT University, Melbourne, VIC 3000, Australia
| | - Aleksey Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Av. Santa Maria 6400, Santiago, Chile
| | - Tuba Oz
- Department of Toxicology Poznan, University of Medical Sciences, Poznan, Poland
| | - Malgorzata Kujawska
- Department of Toxicology Poznan, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Shanks RMQ, Atta S, Stella NA, Sundar-Raj CV, Romanowski JE, Grewal AS, Shanks HQ, Mumper SM, Dhaliwal DK, Mammen A, Callaghan JD, Calvario RC, Romanowski EG, Kowalski RP, Zegans ME, Jhanji V. A rise in the frequency of lasR mutant Pseudomonas aeruginosa among keratitis isolates between 1993 and 2021. Front Cell Infect Microbiol 2023; 13:1286842. [PMID: 38029269 PMCID: PMC10651084 DOI: 10.3389/fcimb.2023.1286842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Pseudomonas aeruginosa causes vision threatening keratitis. The LasR transcription factor regulates virulence factors in response to the quorum sensing molecule N-3-oxo-dodecanoyl-L-homoserine lactone. P. aeruginosa isolates with lasR mutations are characterized by an iridescent high sheen phenotype caused by a build-up of 2-heptyl-4-quinolone. A previous study demonstrated 22% (n=101) of P. aeruginosa keratitis isolates from India between 2010 and 2016 were sheen positive lasR mutants, and the sheen phenotype correlated with worse clinical outcomes for patients. In this study, a longitudinal collection of P. aeruginosa keratitis isolates from Eastern North America were screened for lasR mutations by the sheen phenotype and sequencing of the lasR gene. Methods Keratitis isolates (n=399) were classified by sheen phenotype. The lasR gene was cloned from a subset of isolates, sequenced, and tested for loss of function or dominant-negative status based on an azocasein protease assay. A retrospective chart review compared outcomes of keratitis patients infected by sheen positive and negative isolates. Results A significant increase in sheen positive isolates was observed between 1993 and 2021. Extracellular protease activity was reduced among the sheen positive isolates and a defined lasR mutant. Cloned lasR alleles from the sheen positive isolates were loss of function or dominant negative and differed in sequence from previously reported ocular lasR mutant alleles. Retrospective analysis of patient information suggested significantly better visual outcomes for patients infected by sheen positive isolates. Discussion These results indicate an increase in lasR mutations among keratitis isolates in the United States and suggest that endemic lasR mutants can cause keratitis.
Collapse
Affiliation(s)
- Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah Atta
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chollapadi V. Sundar-Raj
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John E. Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Arman S. Grewal
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hazel Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonya M. Mumper
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Deepinder K. Dhaliwal
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alex Mammen
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jake D. Callaghan
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel C. Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Eric G. Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Regis P. Kowalski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael E. Zegans
- Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Vishal Jhanji
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
10
|
Pallares R, An DD, Hébert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe CD, Abergel RJ. Identifying Toxicity Mechanisms Associated with Early Lanthanide Exposure through Multidimensional Genome-Wide Screening. ACS OMEGA 2022; 7:34412-34419. [PMID: 36188298 PMCID: PMC9521019 DOI: 10.1021/acsomega.2c04045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides. Even though we identified substantially different behaviors for mid and late lanthanides, the toxicological profiles of early lanthanides remained elusive. Here, we overcome this gap by describing a multidimensional genome-wide toxicogenomic study for two early lanthanides, namely, lanthanum and praseodymium. We used Saccharomyces cerevisiae as a model system since its genome shares many biological pathways with humans. By performing functional analysis and protein-protein interaction network analysis, we identified the main genes and proteins that participate in the yeast response to counter metal harmful effects. Moreover, our analysis also highlighted key enzymes that are dysregulated by early lanthanides, inducing cytotoxicity. Several of these genes and proteins have human orthologues, indicating that they may also participate in the human response against the metals. By highlighting the key genes and proteins in lanthanide-induced toxicity, this work may contribute to the development of new prophylactic and therapeutic strategies against lanthanide harmful exposures.
Collapse
Affiliation(s)
- Roger
M. Pallares
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Dahlia D. An
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Solène Hébert
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alex Loguinov
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Michael Proctor
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Jonathan A. Villalobos
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kathleen A. Bjornstad
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chris J. Rosen
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chris D. Vulpe
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Maret W. The quintessence of metallomics: a harbinger of a different life science based on the periodic table of the bioelements. Metallomics 2022; 14:mfac051. [PMID: 35820043 PMCID: PMC9406523 DOI: 10.1093/mtomcs/mfac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
This year marks the 20th anniversary of the field of metallomics. As a landmark in time, it is an occasion to reflect on the past, present, and future of this integrated field of biometal sciences. A fundamental bias is one reason for having metallomics as a scientific discipline. The focus of biochemistry on the six non-metal chemical elements, collectively known with the acronym SPONCH (sulphur, phosphorus, oxygen, nitrogen, carbon, hydrogen), glosses over the fact that the lower quantities of many other elements have qualities that made them instrumental in the evolution of life and pivotal in numerous life processes. The metallome, alongside the genome, proteome, lipidome, and glycome, should be regarded as a fifth pillar of elemental-vis-à-vis molecular-building blocks in biochemistry. Metallomics as 'global approaches to metals in the biosciences' considers the biological significance of most chemical elements in the periodic table, not only the ones essential for life, but also the non-essential ones that are present in living matter-some at higher concentrations than the essential ones. The non-essential elements are bioactive with either positive or negative effects. Integrating the significance of many more chemical elements into the life sciences requires a transformation in learning and teaching with a focus on elemental biology in addition to molecular biology. It should include the dynamic interactions between the biosphere and the geosphere and how the human footprint is changing the ecology globally and exposing us to many additional chemical elements that become new bioelements.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Delineating toxicity mechanisms associated with MRI contrast enhancement through a multidimensional toxicogenomic profiling of gadolinium. Mol Omics 2022; 18:237-248. [PMID: 35040455 DOI: 10.1039/d1mo00267h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|