1
|
Gerić M, Nanić L, Micek V, Novak Jovanović I, Gajski G, Rašić D, Orct T, Ljubojević M, Karaica D, Jurasović J, Vrhovac Madunić I, Peraica M, Sabolić I, de Andrade VM, Breljak D, Rubelj I. The Impact of Resveratrol and Melatonin on the Genome and Oxidative Status in Ageing Rats. Nutrients 2025; 17:1187. [PMID: 40218945 PMCID: PMC11990809 DOI: 10.3390/nu17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Given the growing challenges posed by an ageing population, particularly in Western countries, we aimed to investigate the potential geroprotective effects of resveratrol and melatonin in ageing rats. METHODS The animals were treated with these two compounds starting at 3 months of age and continuing until 1 year or 2 years of age. Using a multibiomarker approach, we assessed DNA damage, telomere length, and the oxidative status in their urine, liver, and kidneys. RESULTS Despite employing this experimental approach, our results did not provide conclusive evidence of geroprotective effects across the evaluated organs. However, we observed sex-dependent differences in response to treatment. CONCLUSIONS Given the high potency of these two compounds, further research is warranted to explore their incorporation into daily routines as a strategy to mitigate ageing-related effects.
Collapse
Affiliation(s)
- Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Novak Jovanović
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Division of Occupational and Environmental Health, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marija Ljubojević
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dean Karaica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Maja Peraica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Sabolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina–UNESC, Criciúma 88806-000, Brazil;
| | - Davorka Breljak
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
3
|
Mendes L, Queiroz M, Sena CM. Melatonin and Vascular Function. Antioxidants (Basel) 2024; 13:747. [PMID: 38929187 PMCID: PMC11200504 DOI: 10.3390/antiox13060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.
Collapse
Affiliation(s)
| | | | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Ramos E, Gil-Martín E, De Los Ríos C, Egea J, López-Muñoz F, Pita R, Juberías A, Torrado JJ, Serrano DR, Reiter RJ, Romero A. Melatonin as Modulator for Sulfur and Nitrogen Mustard-Induced Inflammation, Oxidative Stress and DNA Damage: Molecular Therapeutics. Antioxidants (Basel) 2023; 12:antiox12020397. [PMID: 36829956 PMCID: PMC9952307 DOI: 10.3390/antiox12020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to activation are not known, mustards are postulated as activators. In this regard, melatonin, through its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile make melatonin a suitable molecule to be a part of medical countermeasures against blister agents poisoning in the near future.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Cristóbal De Los Ríos
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - René Pita
- Chemical Defense Department, Chemical, Biological, Radiological, and Nuclear Defense School, Hoyo de Manzanares, 28240 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad Ejército del Aire, Cuartel General Ejército del Aire, 28008 Madrid, Spain
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943970
| |
Collapse
|
5
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
6
|
Martín Giménez VM, de las Heras N, Lahera V, Tresguerres JAF, Reiter RJ, Manucha W. Melatonin as an Anti-Aging Therapy for Age-Related Cardiovascular and Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:888292. [PMID: 35721030 PMCID: PMC9204094 DOI: 10.3389/fnagi.2022.888292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The concept of “aging” is defined as the set of gradual and progressive changes in an organism that leads to an increased risk of weakness, disease, and death. This process may occur at the cellular and organ level, as well as in the entire organism of any living being. During aging, there is a decrease in biological functions and in the ability to adapt to metabolic stress. General effects of aging include mitochondrial, cellular, and organic dysfunction, immune impairment or inflammaging, oxidative stress, cognitive and cardiovascular alterations, among others. Therefore, one of the main harmful consequences of aging is the development and progression of multiple diseases related to these processes, especially at the cardiovascular and central nervous system levels. Both cardiovascular and neurodegenerative pathologies are highly disabling and, in many cases, lethal. In this context, melatonin, an endogenous compound naturally synthesized not only by the pineal gland but also by many cell types, may have a key role in the modulation of multiple mechanisms associated with aging. Additionally, this indoleamine is also a therapeutic agent, which may be administered exogenously with a high degree of safety. For this reason, melatonin could become an attractive and low-cost alternative for slowing the processes of aging and its associated diseases, including cardiovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Vicente Lahera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, United States
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
- *Correspondence: Walter Manucha ;
| |
Collapse
|
7
|
Miguel FM, Picada JN, da Silva JB, Schemitt EG, Colares JR, Hartmann RM, Marroni CA, Marroni NP. Melatonin Attenuates Inflammation, Oxidative Stress, and DNA Damage in Mice with Nonalcoholic Steatohepatitis Induced by a Methionine- and Choline-Deficient Diet. Inflammation 2022; 45:1968-1984. [PMID: 35419738 DOI: 10.1007/s10753-022-01667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a disease with a high incidence worldwide, but its diagnosis and treatment are poorly managed. In this study, NASH pathophysiology and DNA damage biomarkers were investigated in mice with NASH treated and untreated with melatonin (MLT). C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet for 4 weeks to develop NASH. Melatonin was administered at 20 mg/kg during the last 2 weeks. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured, and hepatic tissue was dissected for histological analysis, evaluation of lipoperoxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as nuclear factor-erythroid 2 (Nrf2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and transforming growth factor beta (TGF-β) expression by immunohistochemistry. DNA damage was evaluated using Comet assay, while a micronucleus test in bone marrow was performed to assess the genomic instability associated with the disease. Melatonin decreased AST and ALT, liver inflammatory processes, balloonization, and fibrosis in mice with NASH, decreasing TNF-α, iNOS, and TGF-β, as well as oxidative stress, shown by reducing lipoperoxidation and intensifying Nrf2 expression. The SOD and GPx activities were increased, while CAT was decreased by treatment with MLT. Although the micronucleus frequency was not increased in mice with NASH, a protective effect on DNA was observed with MLT treatment in blood and liver tissues using Comet assay. As conclusions, MLT slows down the progression of NASH, reducing hepatic oxidative stress and inflammatory processes, inhibiting DNA damage via anti-inflammatory and antioxidant actions.
Collapse
Affiliation(s)
- Fabiano Moraes Miguel
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Avenida Farroupilha, 8001, CEP 92425900, Canoas, RS, Brazil.,Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Avenida Farroupilha, 8001, CEP 92425900, Canoas, RS, Brazil.
| | - Juliana Bondan da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Cellular and Molecular Biology Applied To Health, Lutheran University of Brazil, Avenida Farroupilha, 8001, CEP 92425900, Canoas, RS, Brazil
| | - Elizângela Gonçalves Schemitt
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Josieli Raskopf Colares
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Renata Minuzzo Hartmann
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil
| | - Cláudio Augusto Marroni
- Department of Gastroenterology and Hepatology, Postgraduate Program - Hepatology, Federal University of Health Sciences, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, 245, CEP 90050170, Porto Alegre, RS, Brazil
| | - Norma Possa Marroni
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP 90035003, Porto Alegre, RS, Brazil.,Postgraduate Program in Biological Sciences - Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500, RS, CEP 90050170, Porto Alegre, Brazil
| |
Collapse
|
8
|
Breljak D, Micek V, Gerić M, Gajski G, Oguić SK, Rašić D, Karaica D, Madunić IV, Ljubojević M, Orct T, Jurasović J, Jovanović IN, Peraica M, Nanić L, Rubelj I, Sabolić I. Long-term effects of melatonin and resveratrol on aging rats: A multi-biomarker approach. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503443. [PMID: 35483776 DOI: 10.1016/j.mrgentox.2022.503443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
Aging-related impaired body structure and functions may be, at least partially, caused by elevated oxidative stress. Melatonin (MEL) and resveratrol (RSV) may act as antioxidant and anti-aging compounds, but these actions in experimental animals and humans are controversial. Herein, a rat model of aging was used to study the long-term sex-related effects of MEL and RSV treatment on body mass and blood/plasma parameters of DNA damage, oxidative status (glutathione and malondialdehyde levels), and concentrations of sex hormones. Starting from the age of 3mo, for the next 9mo or 21mo male and female Wistar rats (n = 4-7 per group) were given water to drink (controls) or 0.1 % ethanol in water (vehicle), or MEL or RSV (each 10 mg/L vehicle). DNA damage in whole blood cells was tested by comet assay, whereas in plasma, glutathione, malondialdehyde, and sex hormones were determined by established methods. Using statistical analysis of data by ANOVA/Scheffe post hoc, we observed a similar sex- and aging-dependent rise of body mass in both sexes and drop of plasma testosterone in control and vehicle-treated male rats, whose pattern remained unaffected by MEL and RSV treatment. Compared with controls, all other parameters remained largely unchanged in aging and differently treated male and female rats. We concluded that the sex- and aging-related pattern of growth and various blood parameters in rats were not affected by the long-term treatment with MEL and RSV at the estimated daily doses (300-400 μg/kg b.m.) that exceed usual moderate consumption in humans.
Collapse
Affiliation(s)
- Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| | - Vedran Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Saša Kralik Oguić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Dubravka Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Ivana Novak Jovanović
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Maja Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| |
Collapse
|