1
|
Solorio-Rodriguez SA, Wu D, Boyadzhiev A, Christ C, Williams A, Halappanavar S. A Systematic Genotoxicity Assessment of a Suite of Metal Oxide Nanoparticles Reveals Their DNA Damaging and Clastogenic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:743. [PMID: 38727337 PMCID: PMC11085103 DOI: 10.3390/nano14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Metal oxide nanoparticles (MONP/s) induce DNA damage, which is influenced by their physicochemical properties. In this study, the high-throughput CometChip and micronucleus (MicroFlow) assays were used to investigate DNA and chromosomal damage in mouse lung epithelial cells induced by nano and bulk sizes of zinc oxide, copper oxide, manganese oxide, nickel oxide, aluminum oxide, cerium oxide, titanium dioxide, and iron oxide. Ionic forms of MONPs were also included. The study evaluated the impact of solubility, surface coating, and particle size on response. Correlation analysis showed that solubility in the cell culture medium was positively associated with response in both assays, with the nano form showing the same or higher response than larger particles. A subtle reduction in DNA damage response was observed post-exposure to some surface-coated MONPs. The observed difference in genotoxicity highlighted the mechanistic differences in the MONP-induced response, possibly influenced by both particle stability and chemical composition. The results highlight that combinations of properties influence response to MONPs and that solubility alone, while playing an important role, is not enough to explain the observed toxicity. The results have implications on the potential application of read-across strategies in support of human health risk assessment of MONPs.
Collapse
Affiliation(s)
- Silvia Aidee Solorio-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Callum Christ
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (D.W.); (A.B.); (C.C.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
2
|
Caipa Garcia AL, Kucab JE, Al-Serori H, Beck RSS, Bellamri M, Turesky RJ, Groopman JD, Francies HE, Garnett MJ, Huch M, Drost J, Zilbauer M, Arlt VM, Phillips DH. Tissue Organoid Cultures Metabolize Dietary Carcinogens Proficiently and Are Effective Models for DNA Adduct Formation. Chem Res Toxicol 2024; 37:234-247. [PMID: 38232180 PMCID: PMC10880098 DOI: 10.1021/acs.chemrestox.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.
Collapse
Affiliation(s)
- Angela L. Caipa Garcia
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Jill E. Kucab
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Halh Al-Serori
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Rebekah S. S. Beck
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - Madjda Bellamri
- Department
of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Turesky
- Department
of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Groopman
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | | | | | - Meritxell Huch
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jarno Drost
- Princess
Máxima Center for Pediatric Oncology, Oncode Institute, 3584
CS Utrecht, The Netherlands
| | - Matthias Zilbauer
- Department
of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, U.K.
| | - Volker M. Arlt
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| | - David H. Phillips
- Department
of Analytical, Environmental and Forensic Sciences, School of Cancer
& Pharmaceutical Sciences, King’s
College London, London SE1 9NH, U.K.
| |
Collapse
|
3
|
Guth S, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Steinberg P, Vieths S, Wätjen W, Eisenbrand G. Evaluation of the genotoxic potential of acrylamide: Arguments for the derivation of a tolerable daily intake (TDI value). Food Chem Toxicol 2023; 173:113632. [PMID: 36708862 DOI: 10.1016/j.fct.2023.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.
Collapse
Affiliation(s)
- Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805 Krefeld, Germany.
| | | | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Karl-Heinz Engel
- Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, 3003, Bern, Switzerland.
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany; Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising, Germany.
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany.
| | - Michael Hellwig
- Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Bergstrasse 66, 01062, Dresden, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany.
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany.
| | - Alfonso Lampen
- University of Veterinary Medicine Hannover, Institute for Food Quality and Food Safety, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Box 657, 78457, Konstanz, Germany.
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany.
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Richard Stadler
- Institute of Food Safety and Analytical Sciences, Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, 26, Switzerland.
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | | |
Collapse
|
4
|
Caipa Garcia AL, Kucab JE, Al-Serori H, Beck RSS, Fischer F, Hufnagel M, Hartwig A, Floeder A, Balbo S, Francies H, Garnett M, Huch M, Drost J, Zilbauer M, Arlt VM, Phillips DH. Metabolic Activation of Benzo[ a]pyrene by Human Tissue Organoid Cultures. Int J Mol Sci 2022; 24:ijms24010606. [PMID: 36614051 PMCID: PMC9820386 DOI: 10.3390/ijms24010606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.
Collapse
Affiliation(s)
- Angela L. Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Jill E. Kucab
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Halh Al-Serori
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Rebekah S. S. Beck
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Franziska Fischer
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, The Netherlands
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- Correspondence:
| |
Collapse
|
5
|
Abstract
EFSA was requested to deliver a statement on a recent publication revisiting the evidence for genotoxicity of acrylamide (AA). The statement was prepared by a Working Group and was endorsed by the CONTAM Panel before its final approval. In interpreting the Terms of Reference, the statement considered the modes of action underlying the carcinogenicity of AA including genotoxic and non-genotoxic effects. Relevant publications since the 2015 CONTAM Panel Opinion on AA in food were reviewed. Several new studies reported positive results on the clastogenic and mutagenic properties of AA and its active metabolite glycidamide (GA). DNA adducts of GA were induced by AA exposure in experimental animals and have also been observed in humans. In addition to the genotoxicity of AA, there is evidence for both secondary DNA oxidation via generation of reactive oxygen species and for non-genotoxic effects which may contribute to carcinogenesis by AA. These studies extend the information assessed by the CONTAM Panel in its 2015 Opinion, and support its conclusions. That Opinion applied the margin of exposure (MOE) approach, as recommended in the EFSA Guidance for substances that are both genotoxic and carcinogenic, for risk characterisation of the neoplastic effects of AA. Based on the new data evaluated, the MOE approach is still considered appropriate, and an update of the 2015 Opinion is not required at the present time.
Collapse
|