1
|
Boye C, Nirmalan S, Ranjbaran A, Luca F. Genotype × environment interactions in gene regulation and complex traits. Nat Genet 2024; 56:1057-1068. [PMID: 38858456 PMCID: PMC11492161 DOI: 10.1038/s41588-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease.
Collapse
Affiliation(s)
- Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Shreya Nirmalan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Ali Ranjbaran
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, US.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, US.
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
2
|
Vanchin B, Sol M, Gjaltema RAF, Brinker M, Kiers B, Pereira AC, Harmsen MC, Moonen JRAJ, Krenning G. Reciprocal regulation of endothelial-mesenchymal transition by MAPK7 and EZH2 in intimal hyperplasia and coronary artery disease. Sci Rep 2021; 11:17764. [PMID: 34493753 PMCID: PMC8423795 DOI: 10.1038/s41598-021-97127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is a form of endothelial dysfunction wherein endothelial cells acquire a mesenchymal phenotype and lose endothelial functions, which contributes to the pathogenesis of intimal hyperplasia and atherosclerosis. The mitogen activated protein kinase 7 (MAPK7) inhibits EndMT and decreases the expression of the histone methyltransferase Enhancer-of-Zeste homologue 2 (EZH2), thereby maintaining endothelial quiescence. EZH2 is the catalytic subunit of the Polycomb Repressive Complex 2 that methylates lysine 27 on histone 3 (H3K27me3). It is elusive how the crosstalk between MAPK7 and EZH2 is regulated in the endothelium and if the balance between MAPK7 and EZH2 is disturbed in vascular disease. In human coronary artery disease, we assessed the expression levels of MAPK7 and EZH2 and found that with increasing intima/media thickness ratio, MAPK7 expression decreased, whereas EZH2 expression increased. In vitro, MAPK7 activation decreased EZH2 expression, whereas endothelial cells deficient of EZH2 had increased MAPK7 activity. MAPK7 activation results in increased expression of microRNA (miR)-101, a repressor of EZH2. This loss of EZH2 in turn results in the increased expression of the miR-200 family, culminating in decreased expression of the dual-specificity phosphatases 1 and 6 who may repress MAPK7 activity. Transfection of endothelial cells with miR-200 family members decreased the endothelial sensitivity to TGFβ1-induced EndMT. In endothelial cells there is reciprocity between MAPK7 signaling and EZH2 expression and disturbances in this reciprocal signaling associate with the induction of EndMT and severity of human coronary artery disease.
Collapse
Affiliation(s)
- Byambasuren Vanchin
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands.,Department of Cardiology, School of Medicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar, 14210, Mongolia
| | - Marloes Sol
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Rutger A F Gjaltema
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Marja Brinker
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Bianca Kiers
- Laboratory of Genetics and Molecular Cardiology (LIM13), Heart Institute (InCor), University of São Paulo, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology (LIM13), Heart Institute (InCor), University of São Paulo, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Jan-Renier A J Moonen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands.,Department of Pediatric Cardiology, Center for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (CA40), 9713GZ, Groningen, The Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
3
|
Sánchez-Fdez A, Re-Louhau MF, Rodríguez-Núñez P, Ludeña D, Matilla-Almazán S, Pandiella A, Esparís-Ogando A. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol 2021; 5:78. [PMID: 34404896 PMCID: PMC8371118 DOI: 10.1038/s41698-021-00218-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Despite advances in its treatment, lung cancer still represents the most common and lethal tumor. Because of that, efforts to decipher the pathophysiological actors that may promote lung tumor generation/progression are being made, with the final aim of establishing new therapeutic options. Using a transgenic mouse model, we formerly demonstrated that the sole activation of the MEK5/ERK5 MAPK route had a pathophysiological role in the onset of lung adenocarcinomas. Given the prevalence of that disease and its frequent dismal prognosis, our findings opened the possibility of targeting the MEK5/ERK5 route with therapeutic purposes. Here we have explored such possibility. We found that increased levels of MEK5/ERK5 correlated with poor patient prognosis in lung cancer. Moreover, using genetic as well as pharmacological tools, we show that targeting the MEK5/ERK5 route is therapeutically effective in lung cancer. Not only genetic disruption of ERK5 by CRISPR/Cas9 caused a relevant inhibition of tumor growth in vitro and in vivo; such ERK5 deficit augmented the antitumoral effect of agents normally used in the lung cancer clinic. The clinical correlation studies together with the pharmacological and genetic results establish the basis for considering the targeting of the MEK5/ERK5 route in the therapy for lung cancer.
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - María Florencia Re-Louhau
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Rodríguez-Núñez
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dolores Ludeña
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Sofía Matilla-Almazán
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - Atanasio Pandiella
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - Azucena Esparís-Ogando
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Network Research (CIBERONC), Salamanca, Spain.
| |
Collapse
|
4
|
Tesser-Gamba F, Paolillo AT, Del Giúdice Paniago M, Petrilli AS, Seixas Alves MT, Garcia Filho RJ, Toledo SRC. MAPK7 variants related to prognosis and chemotherapy response in osteosarcoma. Ann Diagn Pathol 2020; 46:151482. [PMID: 32145682 DOI: 10.1016/j.anndiagpath.2020.151482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Osteosarcoma (OS) is a class of cancer originating from the bone, affecting mainly children and young adults. Our previous study showed that MAPK7 gene overexpression was significantly associated with tumor progression, poor treatment response, and worse overall survival, suggesting that MAPK7 could play an important role in OS tumorigenesis. We have investigated if MAPK7 overexpression was a result of any genomic changes in OS tumor specimens. We identified five SNPs (Single Nucleotide Polymorphism) previously described in databases, dbSNP and COSMIC, and identified two single nucleotide substitution not yet described. We found, in prechemotherapy specimens, a significant association of MAPK7 rs2233072G allele variant with metastasis at diagnosis and relapse (0.0909 and 0.0455, respectively). In post-chemotherapy, rs1054206GG specimen's genotype was associated with osteoblastic histological type (P= 0.0249) and presented decreased MAPK7 gene expression when compared with pre-chemotherapy specimens of same patients (P = 0.0095). Interestingly, it was observed some SNPs genotype exchange after chemotherapy. Our data indicated that MAPK7 gene expression associated with genotype exchange after chemotherapy, and these SNPs associated with important clinical parameters might be a valuable indicator for predicting in OS.
Collapse
Affiliation(s)
- Francine Tesser-Gamba
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil; Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, SP, Brazil.
| | - Alini Trujillo Paolillo
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil; Federal University of São Paulo, Department of Clinical and Experimental Oncology, São Paulo, SP, Brazil.
| | - Mario Del Giúdice Paniago
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil.
| | - Antonio Sergio Petrilli
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil.
| | - Maria Teresa Seixas Alves
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil; Federal University of São Paulo, Department of Pathology, São Paulo, SP, Brazil.
| | - Reynaldo Jesus Garcia Filho
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil; Federal University of São Paulo, Department of Orthopedic Surgery and Traumatology, São Paulo, SP, Brazil.
| | - Sílvia Regina Caminada Toledo
- Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, Department of Pediatrics, São Paulo, SP, Brazil; Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, SP, Brazil; Federal University of São Paulo, Department of Clinical and Experimental Oncology, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Wang S, Cui Z, Li H, Li J, Lv X, Yang Z, Gao M, Bi Y, Zhang Z, Zhou B, Yin Z. LncRNA NEAT1 polymorphisms and lung cancer susceptibility in a Chinese Northeast Han Population: A case-control study. Pathol Res Pract 2019; 215:152723. [DOI: 10.1016/j.prp.2019.152723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/26/2019] [Indexed: 01/23/2023]
|
6
|
Xue Z, Wang J, Yu W, Li D, Zhang Y, Wan F, Kou X. Biochanin A protects against PM 2.5-induced acute pulmonary cell injury by interacting with the target protein MEK5. Food Funct 2019; 10:7188-7203. [PMID: 31608342 DOI: 10.1039/c9fo01382b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epidemiological studies have shown that exposure to ambient fine particulate matter (PM2.5) is associated with an increased risk for cardiopulmonary diseases. The MEK5/ERK5 and NF-κB signaling pathways are closely related to the regulation of acute pulmonary cell injury (APCI) and may play an important role in the underlying pathophysiological mechanisms. Related studies have shown that Biochanin A (BCA) effectively interferes with APCI, but the underlying mechanism through which this occurs is not fully understood. Previously, based on proteomic and bioinformatic research, we found the indispensable role of MEK5 in mediating remission effects of BCA against PM2.5-induced lung toxicity. Therefore, using A549 adenocarcinoma human alveolar basal epithelial cells (A549 cells), we combined western blot and qRT-PCR to study the protective signaling pathways induced by BCA, indicating that MEK5/ERK5 and NF-κB are both involved in mediating APCI in response to PM2.5, and MEK5/ERK5 positively activated NF-κB and its downstream cellular regulatory factors. BCA significantly suppressed PM2.5-induced upregulation of MEK5/ERK5 expression and phosphorylation and activation of NF-κB. Furthermore, due to the specificity of the MEK5/ERK5 protein structure, the binding sites and binding patterns of BCA and MEK5 were analyzed using molecular docking correlation techniques, which showed that there are stable hydrogen bonds between BCA and the PB1 domain of MEK5 as well as its kinase domain. BCA forms a stable complex with MEK5, which has potential effects on MEKK2/3-MEK5-ERK5 ternary interactions, p62/αPKC-mediated NF-κB regulation, and inhibition of MEK5 target protein phosphorylation. Therefore, our study suggests that MEK5 is an important regulator of intracellular signaling of APCI in response to PM2.5 exposure. BCA may exert anti-APCI activity by targeting MEK5 to inhibit activation of the MEK5/ERK5/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Wancong Yu
- Tianjin Academy of Agricultural Science, 300381, Tianjin, China
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Fang Wan
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China.
| |
Collapse
|
7
|
Liu L, Qiu F, Chen J, Wu D, Nong Q, Zhou Y, Lu J. Functional Polymorphism in the MSI1 Gene Promoter Confers a Decreased Risk of Lung Cancer in Chinese by Reducing MSI1 Expression. Curr Genomics 2018; 19:375-383. [PMID: 30065613 PMCID: PMC6030856 DOI: 10.2174/1389202919666171128151544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/12/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Musashi1 (MSI1) is a characteristic stem cell marker that regulates the balance between cell self-renewal and differentiation. Evidence has identified MSI1 as a pivotal oncogenic regulator in diverse malignancies. However, little evidence uncovers the role of genetic variations of MSI1 gene in cancer etiology. Objective: The aim of this study was to investigate the association between genetic variants in the MSI1 gene and lung cancer risk. Methods: Based on a two-stage retrospective study with a total of 1559 patients with lung cancer and 1667 healthy controls, we evaluated the relevance between three putative functional SNPs in the MSI1 promoter (i.e., -2696T>C[rs7959801], -2297T>C[rs3742038] and -1081C>T[rs34570155]) and lung cancer risk. Results: We found that the SNP rs7959801T>C was significantly associated with lung cancer susceptibility. Compared to those with rs7959801TT wild-genotype, individuals with CT/CC variant genotypes exerted consistently beneficial roles in lung cancer risk in the discovery set (adjusted odd ratios [OR] = 0.67; 95% confidence interval [CI] = 0.57-0.80), and in the validation set (OR=0.69; 95%CI=0.54-0.88). Functional assays indicated that the allele transformation from T to C in rs7959801 of MSI1 gene arrestingly decreased its transcription activity in vitro. Furthermore, the expression levels of MSI1 were significantly lower in the patients with CT/CC variants than in those who were with TT genotype. Conclusion: Our findings suggested that the rs7959801T>C polymorphism in the MSI1 promoter conferred a decreased risk to lung cancer by reducing the expression of MSI1 and it may be a promising indicator for lung cancer predisposition.
Collapse
Affiliation(s)
- Lin Liu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Fuman Qiu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Jiansong Chen
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Di Wu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Qingqing Nong
- Department of Environmental Health, Guangxi Medical University, 22 Shuangyong road, Nanning530021, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 199 Renai road, Suzhou215123, China
| | - Jiachun Lu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| |
Collapse
|
8
|
Garelnabi M, Taylor-Smith LM, Bielska E, Hall RA, Stones D, May RC. Quantifying donor-to-donor variation in macrophage responses to the human fungal pathogen Cryptococcus neoformans. PLoS One 2018; 13:e0194615. [PMID: 29596441 PMCID: PMC5875765 DOI: 10.1371/journal.pone.0194615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
Cryptococcosis remains the leading cause of fungal meningitis worldwide, caused primarily by the pathogen Cryptococcus neoformans. Symptomatic cryptococcal infections typically affect immunocompromised patients. However, environmental exposure to cryptococcal spores is ubiquitous and most healthy individuals are thought to harbor infections from early childhood onwards that are either resolved, or become latent. Since macrophages are a key host cell for cryptococcal infection, we sought to quantify the extent of individual variation in this early phagocyte response within a small cohort of healthy volunteers with no reported immunocompromising conditions. We show that rates of both intracellular fungal proliferation and non-lytic expulsion (vomocytosis) are remarkably variable between individuals. However, we demonstrate that neither gender, in vitro host inflammatory cytokine profiles, nor polymorphisms in several key immune genes are responsible for this variation. Thus the data we present serve to quantify the natural variation in macrophage responses to this important human pathogen and will hopefully provide a useful "benchmark" for the research community.
Collapse
Affiliation(s)
- Mariam Garelnabi
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Leanne M. Taylor-Smith
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rebecca A. Hall
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Daniel Stones
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C. May
- Institute of Microbiology & Infection and the School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Gilbert AS, Seoane PI, Sephton-Clark P, Bojarczuk A, Hotham R, Giurisato E, Sarhan AR, Hillen A, Velde GV, Gray NS, Alessi DR, Cunningham DL, Tournier C, Johnston SA, May RC. Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. SCIENCE ADVANCES 2017; 3:e1700898. [PMID: 28835924 PMCID: PMC5559206 DOI: 10.1126/sciadv.1700898] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Vomocytosis, or nonlytic extrusion, is a poorly understood process through which macrophages release live pathogens that they have failed to kill back into the extracellular environment. Vomocytosis is conserved across vertebrates and occurs with a diverse range of pathogens, but to date, the host signaling events that underpin expulsion remain entirely unknown. We use a targeted inhibitor screen to identify the MAP kinase ERK5 as a critical suppressor of vomocytosis. Pharmacological inhibition or genetic manipulation of ERK5 activity significantly raises vomocytosis rates in human macrophages, whereas stimulation of the ERK5 signaling pathway inhibits vomocytosis. Lastly, using a zebrafish model of cryptococcal disease, we show that reducing ERK5 activity in vivo stimulates vomocytosis and results in reduced dissemination of infection. ERK5 therefore represents the first host signaling regulator of vomocytosis to be identified and a potential target for the future development of vomocytosis-modulating therapies.
Collapse
Affiliation(s)
- Andrew S. Gilbert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paula I. Seoane
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Aleksandra Bojarczuk
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Richard Hotham
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emanuele Giurisato
- Division of Molecular and Clinical Cancer, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Adil R. Sarhan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Amy Hillen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven–University of Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven–University of Leuven, Leuven, Belgium
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, SGM 628, Boston, MA 02115, USA
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Debbie L. Cunningham
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Cathy Tournier
- Division of Molecular and Clinical Cancer, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Simon A. Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
10
|
Liu F, Zhang H, Song H. Upregulation of MEK5 by Stat3 promotes breast cancer cell invasion and metastasis. Oncol Rep 2017; 37:83-90. [PMID: 27878304 DOI: 10.3892/or.2016.5256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023] Open
Abstract
Mitogen extracellular-signal-regulated kinase kinase 5 (MEK5) plays an important role in promoting cell proliferation and tumorigenesis. The aberrant expression of MEK5 has been reported in various malignant diseases including cancers of breast, prostate, lung, colorectal and brain. However, the function and regulation of MEK5 signaling pathway are ambiguous and remain elusive with respect to its oncogenic roles in various cancers, especially in the regulation of the initiation and progression of cancer invasion and metastasis. Ectopic expression of MEK5 or knockdown of MEK5 by shRNA with in vitro cell based models demonstrated the role of MEK5 in regulation of epithelial mesenchymal transition (EMT) and breast cancer invasion and metastasis. Here, we show that MEK5 upregulated by Stat3 promotes breast cancer cell invasion through EMT. Further study demonstrated that Stat3 could bind to promoter region of MEK5 and enhanced MEK5 transcription and expression. In addition, the phosphorylation of MEK5 significantly increased in breast cancer cells corresponding to metastatic capability of breast cancer cells. The depletion of MEK5 by shRNA significantly decreased breast cancer invasion. Ectopic expression of MEK5 could confer non-invasive breast cancer cells to become invasion capable cells. Moreover, the phosphorylation of Erk5, a MEK5-regulated downstream kinase, was also upregulated consistent with the increased level of active MEK5. Our studies provide insights into a molecular mechanism by which MEK5 transcriptionally upregulated by Stat3 augments breast cancer cell EMT, which subsequently enhances cancer cell invasion and metastasis. This finding may suggest that Stat3 and MEK5/Erk5 pathways could be an effective therapeutic target for inhibition of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Fang Liu
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Zhang
- Shantou University Medical College Cancer Research Center, Shantou, Guangdong 515041, P.R. China
| | - Hui Song
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
11
|
Simões AES, Rodrigues CMP, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 2016; 21:1654-1663. [PMID: 27320690 DOI: 10.1016/j.drudis.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes. Accumulating evidence indicates the contribution of MEK5/ERK5 signalling to therapy resistance and the benefits of using MEK5/ERK5 inhibitory strategies in the treatment of human cancer. Here, we explore the major known contributions of MEK5/ERK5 signalling to the onset and progression of several types of cancer, and highlight the potential clinical relevance of targeting MEK5/ERK5 pathways.
Collapse
Affiliation(s)
- André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
12
|
Malhotra J, Sartori S, Brennan P, Zaridze D, Szeszenia-Dabrowska N, Świątkowska B, Rudnai P, Lissowska J, Fabianova E, Mates D, Bencko V, Gaborieau V, Stücker I, Foretova L, Janout V, Boffetta P. Effect of occupational exposures on lung cancer susceptibility: a study of gene-environment interaction analysis. Cancer Epidemiol Biomarkers Prev 2015; 24:570-9. [PMID: 25583949 DOI: 10.1158/1055-9965.epi-14-1143-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. METHODS We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. RESULTS Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. CONCLUSION Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. IMPACT Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Beata Świątkowska
- Department of Epidemiology, The Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Peter Rudnai
- National Institute of Environmental Health, Budapest, Hungary
| | - Jolanta Lissowska
- M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Eleonora Fabianova
- Department of Occupational Health, Specialized State Health Institute, Banska Bystrica, Slovakia
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Vladimir Bencko
- Institute of Hygiene and Epidemiology, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | | | - Isabelle Stücker
- Centre for Research in Epidemiology and Population Health, INSERM, Villejuif, France
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU Brno, Brno, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Cai L, Fu Y, Zhang Y. APE1 Asp148Glu polymorphism and lung cancer susceptibility. Tumour Biol 2014; 35:5237-44. [DOI: 10.1007/s13277-014-1681-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/22/2014] [Indexed: 02/02/2023] Open
|