1
|
Almengló C, Caamaño P, Fraga M, Devesa J, Costoya JA, Arce VM. From neural stem cells to glioblastoma: A natural history of GBM recapitulated in vitro. J Cell Physiol 2021; 236:7390-7404. [PMID: 33959982 DOI: 10.1002/jcp.30409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Due to its aggressive and invasive nature glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, remains almost invariably lethal. Significant advances in the last several years have elucidated much of the molecular and genetic complexities of GBM. However, GBM exhibits a vast genetic variation and a wide diversity of phenotypes that have complicated the development of effective therapeutic strategies. This complex pathogenesis makes necessary the development of experimental models that could be used to further understand the disease, and also to provide a more realistic testing ground for potential therapies. In this report, we describe the process of transformation of primary mouse embryo astrocytes into immortalized cultures with neural stem cell characteristics, that are able to generate GBM when injected into the brain of C57BL/6 mice, or heterotopic tumours when injected IV. Overall, our results show that oncogenic transformation is the fate of NSC if cultured for long periods in vitro. In addition, as no additional hit is necessary to induce the oncogenic transformation, our model may be used to investigate the pathogenesis of gliomagenesis and to test the effectiveness of different drugs throughout the natural history of GBM.
Collapse
Affiliation(s)
- Cristina Almengló
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Pilar Caamaño
- Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Máximo Fraga
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Devesa
- Research and Development, Medical Center Foltra, Teo, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Víctor M Arce
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Hu LS, Wang L, Hawkins-Daarud A, Eschbacher JM, Singleton KW, Jackson PR, Clark-Swanson K, Sereduk CP, Peng S, Wang P, Wang J, Baxter LC, Smith KA, Mazza GL, Stokes AM, Bendok BR, Zimmerman RS, Krishna C, Porter AB, Mrugala MM, Hoxworth JM, Wu T, Tran NL, Swanson KR, Li J. Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma. Sci Rep 2021; 11:3932. [PMID: 33594116 PMCID: PMC7886858 DOI: 10.1038/s41598-021-83141-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA. .,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. .,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Jennifer M Eschbacher
- Department of Pathology, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Kyle W Singleton
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Pamela R Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Kamala Clark-Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Christopher P Sereduk
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Panwen Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Leslie C Baxter
- Department of Neuropsychology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Gina L Mazza
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Ashley M Stokes
- Department of Imaging Research, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Bernard R Bendok
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Richard S Zimmerman
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Chandan Krishna
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Alyx B Porter
- Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Maciej M Mrugala
- Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Joseph M Hoxworth
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Teresa Wu
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Nhan L Tran
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.,Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jing Li
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| |
Collapse
|
3
|
Neill SG, Hauenstein J, Li MM, Liu YJ, Luo M, Saxe DF, Ligon AH. Copy number assessment in the genomic analysis of CNS neoplasia: An evidence-based review from the cancer genomics consortium (CGC) working group on primary CNS tumors. Cancer Genet 2020; 243:19-47. [PMID: 32203924 DOI: 10.1016/j.cancergen.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The period from the 1990s to the 2010s has witnessed a burgeoning sea change in the practice of surgical neuropathology due to the incorporation of genomic data into the assessment of a range of central nervous system (CNS) neoplasms. This change has since matured into the adoption of genomic information into the definition of several World Health Organization (WHO)-established diagnostic entities. The data needed to accomplish the modern diagnosis of CNS neoplasia includes DNA copy number aberrations that may be assessed through a variety of mechanisms. Through a review of the relevant literature and professional practice guidelines, here we provide a condensed and scored overview of the most critical DNA copy number aberrations to assess for a selection of primary CNS neoplasms.
Collapse
Affiliation(s)
- Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Hauenstein
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Marilyn M Li
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Minjie Luo
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Debra F Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Azra H Ligon
- Department of Pathology, Center for Advanced Molecular Diagnostics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Zaman S, Hajiran A, Coba GA, Robinson T, Madanayake TW, Segarra DT, Chobrutskiy BI, Boyle TA, Zhou JM, Kim Y, Mulé JJ, Teer JK, Manley BJ. Aberrant Epidermal Growth Factor Receptor RNA Splice Products Are Among the Most Frequent Somatic Alterations in Clear Cell Renal Cell Carcinoma and Are Associated with a Poor Response to Immunotherapy. Eur Urol Focus 2019; 7:373-380. [PMID: 31901438 DOI: 10.1016/j.euf.2019.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Accumulating evidence suggests that alternative RNA splicing has an important role in cancer development and progression by driving the expression of a diverse array of RNA and protein isoforms from a handful of genes. However, our understanding of the clinical significance of cancer-specific RNA splicing in renal cell carcinoma (RCC) is limited. OBJECTIVE To characterize and validate a novel oncogene RNA splicing event discovered in patients with RCC and to correlate expression with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Using DNA and RNA sequencing, we identified a novel epidermal growth factor receptor (EGFR) splicing alteration (EGFR_pr20CTF) in RCC tumor tissue. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We confirmed the frequency and specificity of the EGFR_pr20CTF variant by analyzing cohorts of patients from our institution (n = 699) and The Cancer Genome Atlas (TCGA; n = 832). Furthermore, we analyzed its expression in tumor tissue and a human kidney cancer cell line using reverse transcriptase-polymerase chain reaction. Variant expression was also correlated with survival and response to systemic therapy. RESULTS AND LIMITATIONS EGFR_pr20CTF expression was identified in 71.7% (n = 71/99) of patients with RCC in our institutional cohort and in 56.7% (n = 279/492) of patients in the TCGA cohort. EGFR_pr20CTF was found to be specific to clear cell renal cell carcinoma (ccRCC), occurring in <0.2% of non-RCC tumors (n = 2/1091). High levels of EGFR_pr20CTF correlated with lower survival at 48 mo following immunotherapy (p = 0.036). The average survival in patients with high EGFR_pr20CTF expression was <16 mo. CONCLUSIONS The EGFR_pr20CTF RNA splice variant occurs frequently, is specific to patients with advanced ccRCC, and is associated with a poor response to immunotherapy. PATIENT SUMMARY Cancer-specific RNA alternative splicing may portend a poor prognosis in patients with advanced clear cell renal cell carcinoma. Further investigation will help clarify whether EGFR_pr20CTF can be used as a biomarker for this patient population.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ali Hajiran
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - George A Coba
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Timothy Robinson
- Department of Radiation Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Thushara W Madanayake
- Department of Radiation Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Daniel T Segarra
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Boris I Chobrutskiy
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Theresa A Boyle
- Department of Pathology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jun-Min Zhou
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - James J Mulé
- Immunology Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Integrated Mathematical Oncology Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
5
|
Aljohani HM, Aittaleb M, Furgason JM, Amaya P, Deeb A, Chalmers JJ, Bahassi EM. Genetic mutations associated with lung cancer metastasis to the brain. Mutagenesis 2019; 33:137-145. [PMID: 29474635 DOI: 10.1093/mutage/gey003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/28/2018] [Indexed: 12/30/2022] Open
Abstract
Approximately 90% of all cancer deaths arise from the metastatic spread of primary tumours. Of all the processes involved in carcinogenesis, local invasion and the formation of metastases are clinically the most relevant, but they are the least well understood at the molecular level. As a barrier to metastasis, cells normally undergo an apoptotic process known as 'anoikis', in circulation. The recent technological advances in the isolation and characterisation of rare circulating tumour cells (CTCs) will allow a better understanding of anoikis resistance. Detailed molecular and functional analyses of anoikis-resistant cells may provide insight into the biology of cancer metastasis and help identify novel targets for prevention of cancer dissemination. To uncover the molecular changes that govern the transition from a primary lung tumour to a secondary metastasis and specifically the mechanisms by which CTCs survive in circulation, we carried out whole genome sequencing (WGS) of normal lung, primary tumours and the corresponding brain metastases from five patients with progressive metastatic non-small-cell lung carcinoma. We also isolated CTCs from patients with metastatic cancer and subjected them to whole genome amplification and Sanger sequencing of genes of interest. While the primary tumours showed mutations in genes associated with cell adhesion and motility, brain metastases acquired mutations in adaptive, cytoprotective genes involved in response to cellular stress such as Keap-1, Nrf2 and P300, which are key players of the Keap1-Nrf2-ARE survival pathway. Nrf2 is a transcriptional factor that upon stress translocates into the nucleus, binds to the anti-oxidant response elements (ARE) and drives the expression of anti-oxidant genes. The identified mutations affect regulatory domains in all three proteins, suggesting a functional role in providing a survival advantage to CTCs in the peripheral blood allowing their dissemination to distant organs.
Collapse
Affiliation(s)
- Hashim M Aljohani
- Department of Internal Medicine, Division of Hematology and Oncology and UC Brain Tumor Center, Cincinnati, OH, USA.,Department of Molecular Genetics and Biochemistry, Cincinnati, OH, USA
| | - Mohamed Aittaleb
- Department of Internal Medicine, Division of Hematology and Oncology and UC Brain Tumor Center, Cincinnati, OH, USA
| | - John M Furgason
- Department of Internal Medicine, Division of Hematology and Oncology and UC Brain Tumor Center, Cincinnati, OH, USA.,Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Peter Amaya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Koffolt Lab, CBEC, Columbus, OH, USA
| | - Ayham Deeb
- Department of Internal Medicine, Division of Hematology and Oncology and UC Brain Tumor Center, Cincinnati, OH, USA
| | - Jeffery J Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Koffolt Lab, CBEC, Columbus, OH, USA
| | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology and Oncology and UC Brain Tumor Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Kwatra MM. A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma. Curr Cancer Drug Targets 2017; 17:290-296. [PMID: 28029074 DOI: 10.2174/1568009616666161227091522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is a deadly brain cancer, and all attempts to control it have failed so far. However, the future looks bright, as we now know the molecular landscape of GBM through the work of The Cancer Genome Atlas (TCGA) program. GBMs exhibit significant inter- and intratumoral heterogeneity, and to control this type of tumor, a personalized approach is required. One target, whose gene is amplified and mutated in a large number of GBMs, is the epidermal growth factor receptor (EGFR). But all attempts to target it have been unsuccessful. We attribute the reason for this failure to the molecular heterogeneity of EGFR in GBM, as well as to the poor brain penetration of previously tested EGFR-Tyrosine Kinase Inhibitors (EGFR-TKIs). In this review, we discuss the molecular heterogeneity of EGFR and provide rational preclinical and clinical guidelines for testing AZD9291, a third generation, irreversible EGFR-TKI with both a high affinity for EGFRvIII and excellent brain penetration.
Collapse
Affiliation(s)
- Madan M Kwatra
- Duke University Medical Center, Durham, P.O. Box 3094, NC 27710, United States
| |
Collapse
|
7
|
Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6:cells6020013. [PMID: 28574446 PMCID: PMC5492017 DOI: 10.3390/cells6020013] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the “rotation model”). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.
Collapse
|
8
|
Durable Response to Tyrosine Kinase Inhibitor Therapy in a Lung Cancer Patient Harboring Epidermal Growth Factor Receptor Tandem Kinase Domain Duplication. J Thorac Oncol 2016; 10:e97-9. [PMID: 26398831 DOI: 10.1097/jto.0000000000000586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Park AKJ, Francis JM, Park WY, Park JO, Cho J. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl-terminal deletion mutants. Oncotarget 2016; 6:8839-50. [PMID: 25826094 PMCID: PMC4496187 DOI: 10.18632/oncotarget.3559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations targeting the Epidermal Growth Factor Receptor (EGFR) gene have been strongly associated with cancer pathogenesis. The clinical effectiveness of EGFR targeted therapies, including small molecules directed against the kinase domain such as gefitinib, erlotinib and afatinib, have been proven successful in treating non-small cell lung cancer patients with tumors harboring EGFR kinase domain mutations. Recent large-scale genomic studies in glioblastoma and lung cancer have identified an additional class of oncogenic mutations caused by the intragenic deletion of carboxy-terminal coding regions. Here, we report that combinations of exonic deletions of exon 25 to 28 lead to the oncogenic activation of EGF receptor in the absence of ligand and consequent cellular transformation, indicating a significant role of C-terminal domain in modulating EGFR activation. Furthermore, we show that the oncogenic activity of the resulting C-terminal deletion mutants are efficiently inhibited by EGFR-targeted drugs including erlotinib, afatinib, dacomitinib as well as cetuximab, expanding the therapeutic rationale of cancer genome-based EGFR targeted approaches. Finally, in vivo and in vitro preclinical studies demonstrate that constitutive asymmetric dimerization in mutant EGFR is a key mechanism for oncogenic activation and tumorigenesis by C-terminal deletion mutants. Therefore, our data provide compelling evidence for oncogenic activation of C-terminal deletion mutants at the molecular level and we propose that C-terminal deletion status of EGFR can be considered as a potential genomic marker for EGFR-targeted therapy.
Collapse
Affiliation(s)
- Angela K J Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Joshua M Francis
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Joon-Oh Park
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeonghee Cho
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Gallant JN, Sheehan JH, Shaver TM, Bailey M, Lipson D, Chandramohan R, Red Brewer M, York SJ, Kris MG, Pietenpol JA, Ladanyi M, Miller VA, Ali SM, Meiler J, Lovly CM. EGFR Kinase Domain Duplication (EGFR-KDD) Is a Novel Oncogenic Driver in Lung Cancer That Is Clinically Responsive to Afatinib. Cancer Discov 2015; 5:1155-63. [PMID: 26286086 DOI: 10.1158/2159-8290.cd-15-0654] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/13/2015] [Indexed: 01/04/2023]
Abstract
UNLABELLED Oncogenic EGFR mutations are found in 10% to 35% of lung adenocarcinomas. Such mutations, which present most commonly as small in-frame deletions in exon 19 or point mutations in exon 21 (L858R), confer sensitivity to EGFR tyrosine kinase inhibitors (TKI). In analyzing the tumor from a 33-year-old male never-smoker, we identified a novel EGFR alteration in lung cancer: EGFR exon 18-25 kinase domain duplication (EGFR-KDD). Through analysis of a larger cohort of tumor samples, we detected additional cases of EGFR-KDD in lung, brain, and other cancers. In vitro, EGFR-KDD is constitutively active, and computational modeling provides potential mechanistic support for its auto-activation. EGFR-KDD-transformed cells are sensitive to EGFR TKIs and, consistent with these in vitro findings, the index patient had a partial response to the EGFR TKI afatinib. The patient eventually progressed, at which time resequencing revealed an EGFR-dependent mechanism of acquired resistance to afatinib, thereby validating EGFR-KDD as a driver alteration and therapeutic target. SIGNIFICANCE We identified oncogenic and drug-sensitive EGFR-KDD that is recurrent in lung, brain, and soft-tissue cancers and documented that a patient with metastatic lung adenocarcinoma harboring the EGFR-KDD derived significant antitumor response from treatment with the EGFR inhibitor afatinib. Findings from these studies will be immediately translatable, as there are already several approved EGFR inhibitors in clinical use.
Collapse
Affiliation(s)
- Jean-Nicolas Gallant
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan H Sheehan
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee. Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy M Shaver
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark Bailey
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Doron Lipson
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Raghu Chandramohan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Monica Red Brewer
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sally J York
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer A Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Lovly
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
11
|
Furgason JM, Koncar RF, Michelhaugh SK, Sarkar FH, Mittal S, Sloan AE, Barnholtz-Sloan JS, Bahassi EM. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience 2015; 2:618-28. [PMID: 26328271 PMCID: PMC4549359 DOI: 10.18632/oncoscience.178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Findings based on recent advances in next-generation sequence analysis suggest that, in some tumors, a single catastrophic event, termed chromothripsis, results in several simultaneous tumorigenic alterations. Previous studies have suggested that glioblastoma (GBM) may exhibit chromothripsis at a higher rate (39%) than other tumors (9%). Primary glioblastoma is an aggressive form of brain cancer that typically appears suddenly in older adults. With aggressive treatment, the median survival time is only 15 months. Their acute onset and widespread genomic instability indicates that chromothripsis may play a key role in their initiation and progression. GBMs are often characterized by EGFR amplification, CDKN2A and PTEN deletion, although approximately 20% of GBMs harbor additional amplifications in MDM2 or MDM4 with CDK4. METHODS We used the chromothripsis prediction tool, Shatterproof, in conjunction with a custom whole genome sequence analysis pipeline in order to generate putative regions of chromothripsis. The data derived from this study was further expanded on using fluorescence in situ hybridization (FISH) analysis and susceptibility studies with colony formation assays. RESULTS We show that primary GBMs are associated with higher chromothripsis scores and establish a link between chromothripsis and gene amplification of receptor tyrosine kinases (RTKs), as well as modulators of the TP53 and RB1 pathways. CONCLUSIONS Utilizing a newly introduced bioinformatic tool, we provide evidence that chromothripsis is associated with the formation of amplicons containing several oncogenes involved in key pathways that are likely essential for post-chromothriptic cell survival.
Collapse
Affiliation(s)
- John M Furgason
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| | - Robert F Koncar
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| | - Sharon K Michelhaugh
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University College of Medicine, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA ; Department of Neurological Surgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| |
Collapse
|
12
|
Bahassi EM, Stambrook PJ. Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 2014; 29:303-10. [PMID: 25150023 PMCID: PMC7318892 DOI: 10.1093/mutage/geu031] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Demand for new technologies that deliver fast, inexpensive and accurate genome information has never been greater. This challenge has catalysed the rapid development of advances in next-generation sequencing (NGS). The generation of large volumes of sequence data and the speed of data acquisition are the primary advantages over previous, more standard methods. In 2013, the Food and Drug Administration granted marketing authorisation for the first high-throughput NG sequencer, Illumina's MiSeqDx, which allowed the development and use of a large number of new genome-based tests. Here, we present a review of template preparation, nucleic acid sequencing and imaging, genome assembly and alignment approaches as well as recent advances in current and near-term commercially available NGS instruments. We also outline the broad range of applications for NGS technologies and provide guidelines for platform selection to best address biological questions of interest. DNA sequencing has revolutionised biological and medical research, and is poised to have a similar impact on the practice of medicine. This tool is but one of an increasing arsenal of developing tools that enhance our capabilities to identify, quantify and functionally characterise the components of biological networks that keep us healthy or make us sick. Despite advances in other 'omic' technologies, DNA sequencing and analysis, in many respects, have played the leading role to date. The new technologies provide a bridge between genotype and phenotype, both in man and model organisms, and have revolutionised how risk of developing a complex human disease may be assessed. The generation of large DNA sequence data sets is producing a wealth of medically relevant information on a large number of individuals and populations that will potentially form the basis of truly individualised medical care in the future.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology, UC Brain Tumor Center, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA
| |
Collapse
|