1
|
He X, Yao D, Yuan X, Ban J, Gou Y, You M. Occupational agents-mediated asthma: From the perspective of autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175880. [PMID: 39216756 DOI: 10.1016/j.scitotenv.2024.175880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Occupational asthma (OA) is a common occupational pulmonary disease that is frequently underdiagnosed and underreported. The complexity of diagnosing and treating OA creates a significant social and economic burden, making it an important public health issue. In addition to avoiding allergens, patients with OA require pharmacotherapy; however, new therapeutic targets and strategies need further investigation. Autophagy may be a promising intervention target, but there is a lack of relevant studies summarizing the role of autophagy in OA. In this review consolidates the current understanding of OA, detailing principal and novel agents responsible for its onset. Additionally, we summarize the mechanisms of autophagy in HMW and LMW agents induced OA, revealing that occupational allergens can induce autophagy disorders in lung epithelial cells, smooth muscle cells, and dendritic cells, ultimately leading to OA through involving inflammatory responses, oxidative stress, and cell death. Finally, we discuss the prospects of targeting autophagy as an effective strategy for managing OA and even steroid-resistant asthma, encompassing autophagy interventions focused on organoids, organ-on-a-chip systems, nanomaterials vehicle, and nanobubbles; developing combined exposure models, and the role of non-classical autophagy in occupational asthma. In briefly, this review summarizes the role of autophagy in occupational asthma, offers a theoretical foundation for OA interventions based on autophagy, and identifies directions and challenges for future research.
Collapse
Affiliation(s)
- Xiu He
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China
| | - Dengxiang Yao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Xiaoli Yuan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jiaqi Ban
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yuxuan Gou
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Clinical Medical School, Guizhou Medical University, Guiyang 561113, China
| | - Mingdan You
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Sipilä LJ, Katainen R, Aavikko M, Ravantti J, Donner I, Lehtonen R, Leivo I, Wolff H, Holmila R, Husgafvel-Pursiainen K, Aaltonen LA. Genome-wide somatic mutation analysis of sinonasal adenocarcinoma with and without wood dust exposure. Genes Environ 2024; 46:12. [PMID: 38711096 PMCID: PMC11071320 DOI: 10.1186/s41021-024-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Sinonasal adenocarcinoma is a rare cancer, encompassing two different entities, the intestinal-type sinonasal adenocarcinoma (ITAC) and the non-intestinal-type sinonasal adenocarcinoma (non-ITAC). Occurrence of ITAC is strongly associated with exposure to hardwood dusts. In countries with predominant exposure to softwood dust the occurrence of sinonasal adenocarcinomas is lower and the relative amount of non-ITACs to ITACs is higher. The molecular mechanisms behind the tumorigenic effects of wood dust remain largely unknown. METHODS We carried out whole-genome sequencing of formalin-fixed paraffin-embedded (FFPE) samples of sinonasal adenocarcinomas from ten wood dust-exposed and six non-exposed individuals, with partial tobacco exposure data. Sequences were analyzed for the presence of mutational signatures matching COSMIC database signatures. Driver mutations and CN variant regions were characterized. RESULTS Mutation burden was higher in samples of wood dust-exposed patients (p = 0.016). Reactive oxygen species (ROS) damage-related mutational signatures were almost exclusively identified in ITAC subtype samples (p = 0.00055). Tobacco smoke mutational signatures were observed in samples of patients with tobacco exposure or missing information, but not in samples from non-exposed patients. A tetraploidy copy number (CN) signature was enriched in ITAC subtype (p = 0.042). CN variation included recurrent gains in COSMIC Cancer Gene Census genes TERT, SDHA, RAC1, ETV1, PCM1, and MYC. Pathogenic variants were observed most frequently in TP53, NF1, CHD2, BRAF, APC, and LRP1B. Driver mutations and copy number gains did not segregate by subtype. CONCLUSIONS Our analysis identified distinct mutational characteristics in ITAC and non-ITAC. Mutational signature analysis may eventually become useful for documentation of occupation-related cancer, while the exact mechanisms behind wood dust-driven carcinogenesis remain elusive. The presence of homologous recombination deficiency signatures implies a novel opportunity for treatment, but further studies are needed.
Collapse
Affiliation(s)
- Lauri J Sipilä
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Finnish Cancer Registry, Unioninkatu 22, Helsinki, 00130, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Janne Ravantti
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Iikki Donner
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, 00014, Finland
| | - Rainer Lehtonen
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Kiinamyllynkatu 10, Turku, D 5035, 20520, Finland
- Turku University Central Hospital, Turku, 20521, Finland
| | - Henrik Wolff
- Finnish Institute of Occupational Health, PB 40, Helsinki, 00251, Finland
- Department of Pathology, University of Helsinki, PB 20, Helsinki, 00014, Finland
| | - Reetta Holmila
- Finnish Institute of Occupational Health, PB 40, Helsinki, 00251, Finland
| | | | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland.
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8), PO Box 63, Helsinki, FI-00014, Finland.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
3
|
Gao S, Chen L, Lin Z, Xu Z, Wang Y, Ling H, Wu Z, Yin Y, Yao W, Wu K, Liu G. 8-Oxoguanine DNA glycosylase protects cells from senescence via the p53-p21 pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:184-198. [PMID: 38282476 PMCID: PMC10984855 DOI: 10.3724/abbs.2023264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024] Open
Abstract
Cellular senescence is an important factor leading to pulmonary fibrosis. Deficiency of 8-oxoguanine DNA glycosylase (OGG1) in mice leads to alleviation of bleomycin (BLM)-induced mouse pulmonary fibrosis, and inhibition of the OGG1 enzyme reduces the epithelial mesenchymal transition (EMT) in lung cells. In the present study, we find decreased expression of OGG1 in aged mice and BLM-induced cell senescence. In addition, a decrease in OGG1 expression results in cell senescence, such as increases in the percentage of SA-β-gal-positive cells, and in the p21 and p-H2AX protein levels in response to BLM in lung cells. Furthermore, OGG1 promotes cell transformation in A549 cells in the presence of BLM. We also find that OGG1 siRNA impedes cell cycle progression and inhibits the levels of telomerase reverse transcriptase (TERT) and LaminB1 in BLM-treated lung cells. The increase in OGG1 expression results in the opposite phenomenon. The mRNA levels of senescence-associated secretory phenotype (SASP) components, including IL-1α, IL-1β, IL-6, IL-8, CXCL1/CXCL2, and MMP-3, in the absence of OGG1 are obviously increased in A549 cells treated with BLM. Interestingly, we demonstrate that OGG1 binds to p53 to inhibit the activation of p53 and that silencing of p53 reverses the inhibition of OGG1 on senescence in lung cells. Additionally, the augmented cell senescence is shown in vivo in OGG1-deficient mice. Overall, we provide direct evidence in vivo and in vitro that OGG1 plays an important role in protecting tissue cells against aging associated with the p53 pathway.
Collapse
Affiliation(s)
- Shenglan Gao
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Lujun Chen
- Department of Cardiovascularthe Affiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Ziying Lin
- State Key Laboratory of Respiratory DiseasesGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Zhiliang Xu
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Yahong Wang
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Huayu Ling
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Zijun Wu
- Department of Cardiovascularthe Affiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Yu Yin
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Weimin Yao
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Keng Wu
- Department of Cardiovascularthe Affiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Gang Liu
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
- Department of Respiratory and Critical Care MedicineTangdu HospitalAir Force Military Medical UniversityXi’an710038China
| |
Collapse
|
4
|
Nsonwu-Anyanwu AC, Eworo RE, Fabian UA, Luke U, Thomas CC, Kamsi Muoka O, Ufot UO, Usoro CAO. Perturbations in indices of oxidative stress, oxidative DNA damage and lung function in chronic exposure to wood dust in Southern Nigeria. Inhal Toxicol 2023; 35:231-240. [PMID: 37326599 DOI: 10.1080/08958378.2023.2224388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Oxidative stress (OS) and oxidative DNA damage accruing from chronic exposure to wood dust have been implicated in the development of chronic lung conditions among woodworkers. Indices of OS, inflammation, oxidative DNA damage and lung function in relation to duration of exposure to wood dust were assessed in woodworkers to determine their possible utility as risk evaluation indices for chronic lung conditions. METHODS Ninety participants comprising 30 active woodworkers, 30 passive woodworkers, and 30 controls were enrolled into this cross-sectional study. The total plasma peroxides, total antioxidant capacity (TAC), oxidative stress index (OSI), malondialdehyde (MDA), reduced glutathione, nitric oxide, high sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and peak expiratory flow rate (PEFR) were determined in all participants. RESULTS Woodworkers had lower PEFR, TAC, and higher malondialdehyde, OSI, hs-CRP, and 8-OHdG compared to controls (p < 0.05). Active woodworkers had higher malondialdehyde, 8-OHdG, and hs-CRP compared to passive woodworkers (p < 0.05). Increasing duration of exposure to wood dust is associated with higher malondialdehyde, hs-CRP, and 8-OHdG in active woodworkers (p < 0.05) and higher 8-OHdG and hs-CRP in passive woodworkers (p < 0.05). Negative correlation was observed between hs-CRP and TAC (r=-0.367, p = 0.048) in active workers. CONCLUSION The association of exposure to wood dust with elevated indices of inflammation, OS, lipid peroxidation, oxidative DNA damage, and reduction in antioxidants and peak expiratory flow rate; and the concomitant increase in oxidative DNA damage and inflammation with increasing duration of exposure suggest that these indices may be useful in predicting woodworkers at risk of development of chronic lung conditions.
Collapse
Affiliation(s)
| | - Raymond Ekong Eworo
- Department of Clinical Chemistry & Immunology, University of Calabar, Calabar, Nigeria
| | | | - Uduak Luke
- Department of Biochemistry, University of Uyo, Uyo, Nigeria
| | | | - Olivia Kamsi Muoka
- Department of Clinical Chemistry & Immunology, University of Calabar, Calabar, Nigeria
| | - Unwanaabasi Okon Ufot
- Department of Clinical Chemistry & Immunology, University of Calabar, Calabar, Nigeria
| | | |
Collapse
|
5
|
Effect of Grit Size on Airborne Particle Concentration and Size Distribution during Oak Wood Sanding. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adverse health effects caused by exposure to airborne particles have been detected in recent years, however there is little knowledge about exposure to ultrafine particles with a diameter <100 nm. In this study, particle number concentration and size distribution in a range of particle diameters from 10 nm to 10 µm were determined during oak wood sanding. A hand-held orbit sander in combination with three types of grit size (P60, 120 and 240) of sandpaper were used. Measurements were obtained using a portable particle size distribution analyzer and an optical particle size spectrometer, carried out at 15-min intervals for each treatment by static sampling in the breathing zone. We also compared the optical particle size spectrometer to the aerosol monitor in order to evaluate the mass concentration of airborne particles in the range of 1 to 10 µm in diameter. Sanding paper with the finest grit, P240, showed a significantly higher number concentration of ultrafine particles, compared with P60 and P120 grits. The differences among particular grit size were statistically significant for microparticles. The size distribution of particles during sanding was not affected by grit size. For each grit size, apparent peak values of ultrafine and microparticle number concentrations were determined at approximately 15 nm, and 0.1 µm, respectively. Optical particle size spectrometer and aerosol monitor showed comparable results of mass concentration for the respirable fraction.
Collapse
|
6
|
Ling H, Song C, Fang Y, Yin Y, Wu Z, Wang Y, Xu Z, Gao S, Li A, Liu G. TH5487, a small molecule inhibitor of OGG1, attenuates pulmonary fibrosis by NEDD4L-mediated OGG1 degradation. Chem Biol Interact 2022; 362:109999. [PMID: 35654123 DOI: 10.1016/j.cbi.2022.109999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
Pulmonary fibrosis is a highly aggressive and lethal disease that currently lacks effective targeting therapies. Herein, we established a mouse model of pulmonary fibrosis induced by intratracheal instillation of bleomycin (BLM) in wild-type (WT) and 8-oxoguanine DNA glycosylase-1 (OGG1) knockout (Ogg1-/-) mice. TH5487, a specific small-molecule inhibitor of OGG1, was found to ameliorate BLM-induced pulmonary fibrosis in WT mice. Concomitantly, TH5487 treatment markedly suppressed the BLM-mediated alveolar epithelial-mesenchymal transition (EMT) and increase in OGG1 protein level in the lungs of WT mice. However, administration of TH5487 did not further improve this fibrotic transformation in Ogg1-/- mice. More importantly, adeno-associated virus-mediated lung-specific OGG1 overexpression accelerated alveolar EMT and the resultant fibrosis progression antagonized by TH5487 in the fibrotic lungs of WT mice, suggesting that the down-regulation of OGG1 protein level could be essential for TH5487 to exert its anti-fibrogenic function. Mechanism study in alveolar epithelial cells demonstrated that TH5487 treatment canceled TGF-β1-mediated suppression of NEDD4-like E3 ubiquitin ligase (NEDD4L), which ubiquitinated OGG1 and targeted it for proteasomal degradation. Furthermore, TH5487-mediated suppression of alveolar EMT and the fibrotic processes was counteracted by silencing OGG1 in TGF-β1-induced alveolar epithelial cells. Collectively, these data underline the potential of TH5487 as an effective anti-fibrotic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Huayu Ling
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chuge Song
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yaowei Fang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yu Yin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zijun Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhiliang Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ao Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
7
|
Savino L, Di Marcantonio MC, Moscatello C, Cotellese R, Centurione L, Muraro R, Aceto GM, Mincione G. Effects of H 2O 2 Treatment Combined With PI3K Inhibitor and MEK Inhibitor in AGS Cells: Oxidative Stress Outcomes in a Model of Gastric Cancer. Front Oncol 2022; 12:860760. [PMID: 35372019 PMCID: PMC8966616 DOI: 10.3389/fonc.2022.860760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer is worldwide the fifth and third cancer for incidence and mortality, respectively. Stomach wall is daily exposed to oxidative stress and BER system has a key role in the defense from oxidation-induced DNA damage, whilst ErbB receptors have important roles in the pathogenesis of cancer. We used AGS cells as an aggressive gastric carcinoma cell model, treated with H2O2 alone or combined with ErbB signaling pathway inhibitors, to evaluate the effects of oxidative stress in gastric cancer, focusing on the modulation of ErbB signaling pathways and their eventual cross-talk with BER system. We showed that treatment with H2O2 combined with PI3K/AKT and MEK inhibitors influenced cell morphology and resulted in a reduction of cancer cell viability. Migration ability was reduced after H2O2 treatment alone or combined with MEK inhibitor and after PI3K/AKT inhibitor alone. Western blotting analysis showed that oxidative stress stimulated EGFR pathway favoring the MAPKs activation at the expense of PI3K/AKT pathway. Gene expression analysis by RT-qPCR showed ErbB2 and OGG1 increase under oxidative stress conditions. Therefore, we suggest that in AGS cells a pro-oxidant treatment can reduce gastric cancer cell growth and migration via a different modulation of PI3K and MAPKs pathways. Moreover, the observed ErbB2 and OGG1 induction is a cellular response to protect the cells from H2O2-induced cell death. In conclusion, to tailor specific combinations of therapies and to decide which strategy to use, administration of a chemotherapy that increases intracellular ROS to toxic levels, might not only be dependent on the tumor type, but also on the molecular targeting therapy used.
Collapse
Affiliation(s)
- Luca Savino
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Lucia Centurione
- Department of Medicine and Aging Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Raffaella Muraro
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University ‘G. d’Annunzio’ of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
8
|
Wang Y, Chen T, Pan Z, Lin Z, Yang L, Zou B, Yao W, Feng D, Huangfu C, Lin C, Wu G, Ling H, Liu G. 8-Oxoguanine DNA glycosylase modulates the cell transformation process in pulmonary fibrosis by inhibiting Smad2/3 and interacting with Smad7. FASEB J 2020; 34:13461-13473. [PMID: 32808374 DOI: 10.1096/fj.201901291rrrrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/11/2022]
Abstract
The DNA repair enzyme 8-oxoguanine DNA glycosylase-1 (OGG1) is involved in early embryonic development, as well as in multiple conditions, including cardiac fibrosis, diabetes, and neurodegenerative diseases. But, function of OGG1 in pulmonary fibrosis was not entirely clear. In this study, we identified a novel function of OGG1 in the cell transformation process in pulmonary fibrosis. We demonstrated that OGG1 and Smad7 co-localize and interact in A549 cells. Bleomycin-induced pulmonary fibrosis was established in wild-type (WT) and Ogg1-/- mice. Upon treatment with transforming growth factor (TGF)-β1, increased OGG1 expression was observed in WT mice with pulmonary fibrosis as well as in A549 cells, MRC-5 cells, and primary rat type II alveolar epithelial cells. The increased expression of OGG1 promoted cell migration, while OGG1 depletion decreased migration ability. Expression of the transformation-associated markers vimentin and alpha-smooth muscle actin were also affected by OGG1. We also observed that OGG1 promoted TGF-β1-induced cell transformation and activated Smad2/3 by interacting with Smad7. The interaction between OGG1 and the TGF-β/Smad axis modulates the cell transformation process in lung epithelial cells and fibroblasts. Moreover, we demonstrated that Ogg1 deficiency relieved pulmonary fibrosis in bleomycin-treated mice. Ogg1 knockout decreased the bleomycin-induced expression of Smad7 and phosphorylation of Smad2/3 in mice. These findings suggest that OGG1 has multiple biological functions in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Chen
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhanchun Pan
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Baoan Zou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dehui Feng
- Elderly Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Changmei Huangfu
- Elderly Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunyu Lin
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guiqing Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huayu Ling
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
9
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
10
|
Sayeed MA, Bracci M, Ciarapica V, Malavolta M, Provinciali M, Pieragostini E, Gaetani S, Monaco F, Lucarini G, Rapisarda V, Di Primio R, Santarelli L. Allyl Isothiocyanate Exhibits No Anticancer Activity in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19010145. [PMID: 29300316 PMCID: PMC5796094 DOI: 10.3390/ijms19010145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/24/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022] Open
Abstract
It was reported recently that allyl isothiocyanate (AITC) could inhibit various types of cancer cell growth. In the present study, we further investigated whether AITC could inhibit the growth of human breast cancer cells. Unexpectedly, we found that AITC did not inhibit, rather slightly promoted, the proliferation of MDA-MB-231 breast cancer cells, although it did have inhibitory effect on MCF-7 breast cancer cells. Cytofluorimetric analysis revealed that AITC (10 µM) did not induce apoptosis and cell cycle arrest in MDA-MB-231 cells. In addition, AITC significantly (p < 0.05) increased the expression of BCL-2 and mTOR genes and Beclin-1 protein in MDA-MB-231 cells. No significant changes in expression of PRKAA1 and PER2 genes, Caspase-8, Caspase-9, PARP, p-mTOR, and NF-κB p65 proteins were observed in these AITC-treated cells. Importantly, AITC displayed cytotoxic effect on MCF-10A human breast epithelial cell line. These observations suggest that AITC may not have inhibitory activity in MDA-MB-231 breast cancer cells. This in vitro study warrants more preclinical and clinical studies on the beneficial and harmful effects of AITC in healthy and cancer cells.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Veronica Ciarapica
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), 60120 Ancona, Italy.
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), 60120 Ancona, Italy.
| | - Ernesta Pieragostini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy.
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| |
Collapse
|