1
|
Li Y, Dator RP, Maertens LA, Balbo S, Hecht SS. Mass Spectrometry-Based Metabolic Profiling of Urinary Metabolites of N'-Nitrosonornicotine (NNN) in the Rat. Chem Res Toxicol 2023; 36:769-781. [PMID: 37017527 PMCID: PMC10429506 DOI: 10.1021/acs.chemrestox.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The tobacco-specific nitrosamine N'-nitrosonornicotine (NNN) and its close analogue 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) are classified as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer. The currently used biomarker to monitor NNN exposure is urinary total NNN (free NNN plus its N-glucuronide). However, total NNN does not provide information about the extent of metabolic activation of NNN as related to its carcinogenicity. Targeted analysis of the major metabolites of NNN in laboratory animals recently led to the identification of N'-nitrosonornicotine-1N-oxide (NNN-N-oxide), a unique metabolite detected in human urine that is specifically formed from NNN. To further investigate NNN urinary metabolites that hold promise as new biomarkers for monitoring NNN exposure, uptake, and/or metabolic activation, we conducted a comprehensive profiling of NNN metabolites in the urine of F344 rats treated with NNN or [pyridine-d4]NNN. Using our optimized high-resolution mass spectrometry (HRMS)-based isotope-labeling method, 46 putative metabolites were identified with robust MS evidence. Out of the 46 candidates, all known major NNN metabolites were identified and structurally confirmed by comparing them to their isotopically labeled standards. More importantly, putative metabolites considered to be exclusively formed from NNN were also identified. The two new representative metabolites─4-(methylthio)-4-(pyridin-3-yl)butanoic acid (23, MPBA) and N-acetyl-S-(5-(pyridin-3-yl)-1H-pyrrol-2-yl)-l-cysteine (24, Py-Pyrrole-Cys-NHAc) ─were identified by comparing them to synthetic standards that were fully characterized by nuclear magnetic resonance and HRMS. They are hypothesized to be formed by NNN α-hydroxylation pathways and thus represent the first potential biomarkers to specifically monitor the uptake plus metabolic activation of NNN in tobacco users.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Laura A. Maertens
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
3
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
4
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Li Y, Carlson ES, Zarth AT, Upadhyaya P, Hecht SS. Investigation of 2'-Deoxyadenosine-Derived Adducts Specifically Formed in Rat Liver and Lung DNA by N'-Nitrosonornicotine Metabolism. Chem Res Toxicol 2021; 34:1004-1015. [PMID: 33720703 PMCID: PMC11558792 DOI: 10.1021/acs.chemrestox.1c00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Li Y, Hecht SS. Identification of an N'-Nitrosonornicotine-Specific Deoxyadenosine Adduct in Rat Liver and Lung DNA. Chem Res Toxicol 2021; 34:992-1003. [PMID: 33705110 DOI: 10.1021/acs.chemrestox.1c00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered to be two of the most important carcinogens in unburned tobacco and its smoke. They readily cause tumors in laboratory animals and are classified as "carcinogenic to humans" by the International Agency for Research on Cancer. DNA adduct formation by these two carcinogens is believed to play a critical role in tobacco carcinogenesis. Among all the DNA adducts formed by NNN and NNK, 2'-deoxyadenosine (dAdo)-derived adducts have not been fully characterized. In the study reported here, we characterized the formation of N6-[4-(3-pyridyl)-4-oxo-1-butyl]-2'-deoxyadenosine (N6-POB-dAdo) and its reduced form N6-PHB-dAdo formed by NNN 2'-hydroxylation in rat liver and lung DNA. More importantly, we characterized a new dAdo adduct N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) formed after NaBH3CN or NaBH4 reduction both in vitro in calf thymus DNA reacted with 5'-acetoxy-N'-nitrosonornicotine and in vivo in rat liver and lung upon treatment with NNN. This adduct was specifically formed by NNN 5'-hydroxylation. Chemical standards of N6-HPB-dAdo and the corresponding isotopically labeled internal standard [pyridine-d4]N6-HPB-dAdo were synthesized using a four-step method. Both NMR and high-resolution mass spectrometry data agreed well with the proposed structure of N6-HPB-dAdo. The new adduct coeluted with the synthesized internal standard under various LC conditions. Its product ion patterns of MS2 and MS3 transitions were also consistent with the proposed fragmentation patterns. Chromatographic resolution of the two diastereomers of N6-HPB-dAdo was successfully achieved. Quantitation suggested a dose-dependent response of the levels of this new adduct in the liver and lung of rats treated with NNN. However, its level was lower than that of 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine, a previously reported dGuo adduct that is also formed from NNN 5'-hydroxylation. The identification of N6-HPB-dAdo in this study leads to new insights pertinent to the mechanism of carcinogenesis by NNN and to the development of biomarkers of NNN metabolic activation.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Ma B, Villalta PW, Hochalter JB, Stepanov I, Hecht SS. Methyl DNA phosphate adduct formation in lung tumor tissue and adjacent normal tissue of lung cancer patients. Carcinogenesis 2020; 40:1387-1394. [PMID: 30873516 DOI: 10.1093/carcin/bgz053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 11/14/2022] Open
Abstract
The formation of methyl DNA adducts is a critical step in carcinogenesis initiated by the exposure to methylating carcinogens. Methyl DNA phosphate adducts, formed by methylation of the oxygen atoms of the DNA phosphate backbone, have been detected in animals treated with methylating carcinogens. However, detection of these adducts in human tissues has not been reported. We developed an ultrasensitive liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method for detecting methyl DNA phosphate adducts. Using 50 μg of human lung DNA, a limit of quantitation of two adducts/1010 nucleobases was achieved. Twenty-two structurally unique methyl DNA phosphate adducts were detected in human lung DNA. The adduct levels were measured in both tumor and adjacent normal tissues from 30 patients with lung cancer, including 13 current smokers and 17 current non-smokers, as confirmed by measurements of urinary cotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Levels of total methyl DNA phosphate adducts in normal lung tissues were higher in smokers than non-smokers, with an average of 13 and 8 adducts/109 nucleobases, respectively. Methyl DNA phosphate adducts were also detected in lung tissues from untreated rats with steady-state levels of 5-7 adducts/109 nucleobases over a period of 70 weeks. This is the first study to report the detection of methyl DNA phosphate adducts in human lung tissues. The results provide new insights toward using these DNA adducts as potential biomarkers to study human exposure to environmental methylating carcinogens.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Deligkaris C, Millam E. Physical binding of the tobacco smoke carcinogen NNK diazonium ion to the human tumor suppressor gene TP53 Exon 5. Toxicol Res (Camb) 2019; 8:531-543. [PMID: 31367336 PMCID: PMC6621204 DOI: 10.1039/c9tx00010k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022] Open
Abstract
The tobacco smoke N-nitrosamine, NNK, is an important carcinogen. It has been shown to induce lung, liver, and pancreatic cancer in animals. Its metabolites are associated with lung cancer in tobacco smokers. Our work focuses upon the physical interaction of NNK diazonium ion with DNA. This species is implicated in the formation of pyridyloxobutyl adducts, reacting with DNA bases and phosphate groups. Past research has investigated the metabolic activation of NNK by various enzymes, subsequent adduct formation with DNA, and the role of these adducts in mutagenesis. We present the first study of the physical interaction of NNK diazonium ion with TP53 (exon 5), a frequently mutated human tumor suppressor gene. We identify physical binding sites found via free energy minimization in computational docking simulations. These structures represent local potential energy minima in this system and suggest plausible sites for adduct formation.
Collapse
Affiliation(s)
- Christos Deligkaris
- Department of Geology and Physics , University of Southern Indiana , Evansville , IN 47712 , USA .
| | - Evan Millam
- Department of Chemistry , University of Southern Indiana , Evansville , IN 47712 , USA
| |
Collapse
|
9
|
Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. TOXICS 2019; 7:E16. [PMID: 30893918 PMCID: PMC6468371 DOI: 10.3390/toxics7010016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Li Y, Ma B, Cao Q, Balbo S, Zhao L, Upadhyaya P, Hecht SS. Mass Spectrometric Quantitation of Pyridyloxobutyl DNA Phosphate Adducts in Rats Chronically Treated with N'-Nitrosonornicotine. Chem Res Toxicol 2019; 32:773-783. [PMID: 30740971 DOI: 10.1021/acs.chemrestox.9b00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tobacco-specific carcinogens N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) require metabolic activation to exert their carcinogenicity. NNN and NNK are metabolized to the same reactive diazonium ions, which alkylate DNA forming pyridyloxobutyl (POB) DNA base and phosphate adducts. We have characterized the formation of both POB DNA base and phosphate adducts in NNK-treated rats and the formation of POB DNA base adducts in NNN-treated rats. However, POB DNA phosphate adducts in NNN-treated rats are still uncharacterized. In this study, we quantified the levels of POB DNA phosphate adducts in tissues of rats chronically treated with ( S)-NNN or ( R)-NNN for 10, 30, 50, and 70 weeks during a carcinogenicity study. The highest amounts of POB DNA phosphate adducts were observed in the esophagus of the ( S)-NNN-treated rats, with a maximum level of 5400 ± 317 fmol/mg DNA at 50 weeks. The abundance of POB DNA phosphate adducts in the esophagus was consistent with the results of the carcinogenicity study showing that the esophagus was the primary site of tumor formation from treatment with ( S)-NNN. Compared to the ( R)-NNN group, the levels of POB DNA phosphate adducts were higher in the oral mucosa, esophagus, and liver, while lower in the nasal mucosa of the ( S)-NNN-treated rats. Among 10 combinations of all isomers of POB DNA phosphate adducts, Ap(POB)C and combinations with thymidine predominated across all the rat tissues examined. In the primary target tissue, esophageal mucosa, Ap(POB)C accounted for ∼20% of total phosphate adducts in the ( S)-NNN treatment group throughout the 70 weeks, with levels ranging from 780 ± 194 to 1010 ± 700 fmol/mg DNA. The results of this study showed that POB DNA phosphate adducts were present in high levels and persisted in target tissues of rats chronically treated with ( S)- or ( R)-NNN. These results improve our understanding of DNA damage during NNN-induced carcinogenesis. The predominant POB DNA phosphate isomers observed, such as Ap(POB)C, may serve as biomarkers for monitoring chronic exposure of tobacco-specific nitrosamines in humans.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Bin Ma
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Qing Cao
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Silvia Balbo
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Virus Oncology, College of Life Science and Bioengineering , Beijing University of Technology , Beijing 100124 , China
| | - Pramod Upadhyaya
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Stephen S Hecht
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
11
|
Guo S, Leng J, Tan Y, Price NE, Wang Y. Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chem Res Toxicol 2019; 32:708-717. [PMID: 30714728 DOI: 10.1021/acs.chemrestox.8b00374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
Collapse
|
12
|
Yun BH, Guo J, Turesky RJ. Formalin-Fixed Paraffin-Embedded Tissues-An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. TOXICS 2018; 6:E30. [PMID: 29865161 PMCID: PMC6027047 DOI: 10.3390/toxics6020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
The measurement of DNA adducts provides important information about human exposure to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair. DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis of disease are often available. We have established robust methods to recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is versatile and can be employed to screen for DNA adducts formed with a wide range of environmental and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental chemicals in cancer etiology.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Carlson ES, Upadhyaya P, Villalta PW, Ma B, Hecht SS. Analysis and Identification of 2'-Deoxyadenosine-Derived Adducts in Lung and Liver DNA of F-344 Rats Treated with the Tobacco-Specific Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:358-370. [PMID: 29651838 DOI: 10.1021/acs.chemrestox.8b00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) are carcinogenic in animal models and are believed to play an important role in human lung carcinogenesis for cigarette smokers. Cytochrome P450-mediated metabolism of these tobacco-specific nitrosamines produces reactive species that alkylate DNA in the form of pyridyloxobutyl (POB)- or pyridylhydroxybutyl (PHB)-DNA adducts. Understanding the formation mechanism and overall levels of these adducts can potentially enhance cancer prevention methods through the identification of particularly susceptible smokers. Previous studies have identified and measured a panel of POB- and PHB-DNA base adducts of dGuo, dCyd, and Thd; however, dAdo adducts have yet to be determined. In this study, we complete this DNA adduct panel by identifying and quantifying levels of NNK- and NNAL-derived dAdo adducts in vitro and in vivo. To accomplish this, we synthesized standards for expected dAdo-derived DNA adducts and used isotope-dilution LC-ESI+-MS/MS to identify POB adducts formed in vitro from the reaction of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc) with calf thymus DNA. Adduct levels were then quantified in lung and liver DNA of rats chronically treated with NNK or NNAL for 50 weeks using similar LC-MS detection methods. The in vitro studies identified N6-POB-dAdo and N1-POB-dIno as products of the reaction of NNKOAc with DNA, which supports our proposed mechanism of formation. Though both N6-dAdo and N1-dIno adducts were found in vitro, only N6-dAdo adducts were found in vivo, implying possible intervention by DNA repair mechanisms. Analogous to previous studies, levels of N6-POB-dAdo and N6-PHB-dAdo varied both with tissue and treatment type. Despite the adduct levels being relatively modest compared to most other POB- and PHB-DNA adducts, they may play a biological role and could be used in future studies as NNK- and NNAL-specific DNA damage biomarkers.
Collapse
Affiliation(s)
- Erik S Carlson
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States.,Department of Pharmacology , University of Minnesota Medical School , 321 Church Street SE , 6-120 Jackson Hall, Minneapolis , Minnesota 55455 , United States
| | - Pramod Upadhyaya
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| | - Peter W Villalta
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| | - Bin Ma
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| | - Stephen S Hecht
- Masonic Cancer Center , University of Minnesota , 2231 Sixth Street SE , 2-210 CCRB, Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
14
|
Ma B, Zarth AT, Carlson ES, Villalta PW, Upadhyaya P, Stepanov I, Hecht SS. Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chem Res Toxicol 2018; 31:48-57. [PMID: 29131934 PMCID: PMC5770887 DOI: 10.1021/acs.chemrestox.7b00281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/29/2022]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively. α-Hydroxylation also occurs on the α-methylene carbons of NNK and NNAL to produce methane diazohydroxide, which reacts with DNA to form methyl DNA base adducts. DNA adducts of NNK and NNAL are important in their mechanisms of carcinogenesis. In this study, we characterized and quantified methyl DNA phosphate adducts in the lung of rats treated with 5 ppm of NNK, (S)-NNAL, or (R)-NNAL in drinking water for 10, 30, 50, and 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method. A total of 23, 21, and 22 out of 32 possible methyl DNA phosphate adducts were detected in the lung tissues of rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. Levels of the methyl DNA phosphate adducts were 2290-4510, 872-1120, and 763-1430 fmol/mg DNA, accounting for 15-38%, 8%, and 5-9% of the total measured DNA adducts in rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. The methyl DNA phosphate adducts characterized in this study further enriched the diversity of DNA adducts formed by NNK and NNAL. These results provide important new data regarding NNK- and NNAL-derived DNA damage and new insights pertinent to future mechanistic and biomonitoring studies of NNK, NNAL, and other chemical methylating agents.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Erik S. Carlson
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, 2-152 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|