1
|
Dvořáčková Š, Kroisová D, Knápek T, Váňa M. Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials. Polymers (Basel) 2024; 16:2559. [PMID: 39339024 PMCID: PMC11435035 DOI: 10.3390/polym16182559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Conventional dry machining (without process media) of carbon fibre composite materials (CFRP) produces tiny chips/dust particles that float in the air and cause health hazards to the machining operator. The present study investigates the effect of cutting conditions (cutting speed, feed per tooth and depth of cut) during CFRP milling on the size, shape and amount of harmful dust particles. For the present study, one type of cutting tool (CVD diamond-coated carbide) was used directly for machining CFRP. The analysis of harmful dust particles was carried out on a Tescan Mira 3 (Tescan, Brno, Czech Republic) scanning electron microscope and a Keyence VK-X 1000 (Keyence, Itasca, IL, USA) confocal microscope. The results show that with the combination of higher feed per tooth (mm) and lower cutting speed, for specific CFRP materials, the size and shape of harmful dust particles is reduced. Particles ranging in size from 2.2 to 99 μm were deposited on the filters. Smaller particles were retained on the tool body (1.7 to 40 μm). Similar particle sizes were deposited on the machine and in the work area.
Collapse
Affiliation(s)
| | | | - Tomáš Knápek
- Assembly and Engineering Metrology, Department of Machining, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | | |
Collapse
|
2
|
Rossnerova A, Chvojkova I, Elzeinova F, Pelclova D, Klusackova P, Zdimal V, Ondrackova L, Bradna P, Roubickova A, Simova Z, Rossner P. Genetic alteration profiling in middle-aged women acutely exposed during the mechanical processing of dental nanocomposites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104462. [PMID: 38710242 DOI: 10.1016/j.etap.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic.
| | - Irena Chvojkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Lucie Ondrackova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| |
Collapse
|
3
|
Rossnerova A, Elzeinova F, Chvojkova I, Honkova K, Sima M, Milcova A, Pastorkova A, Schmuczerova J, Rossner P, Topinka J, Sram RJ. Effects of various environments on epigenetic settings and chromosomal damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121290. [PMID: 36804881 DOI: 10.1016/j.envpol.2023.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic; Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jana Schmuczerova
- Department of Medical Genetics, L. Pasteur University Hospital, Trieda SNP 1, 040 11, Kosice, Slovakia.
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Radim J Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
4
|
Testing Strategies of the In Vitro Micronucleus Assay for the Genotoxicity Assessment of Nanomaterials in BEAS-2B Cells. NANOMATERIALS 2021; 11:nano11081929. [PMID: 34443765 PMCID: PMC8399994 DOI: 10.3390/nano11081929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
Collapse
|
5
|
Novotna B, Pelclova D, Rossnerova A, Zdimal V, Ondracek J, Lischkova L, Vlckova S, Fenclova Z, Klusackova P, Zavodna T, Topinka J, Komarc M, Dvorackova S, Rossner P. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis 2021; 35:331-340. [PMID: 32701136 DOI: 10.1093/mutage/geaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.
Collapse
Affiliation(s)
- Bozena Novotna
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Tana Zavodna
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Martin Komarc
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, Prague, Czech Republic
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Faculty of Mechanical Engineering, Studentská, Liberec, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| |
Collapse
|
6
|
Ursini CL, Fresegna AM, Ciervo A, Maiello R, Del Frate V, Folesani G, Galetti M, Poli D, Buresti G, Di Cristo L, Sabella S, Iavicoli S, Cavallo D. Occupational exposure to graphene and silica nanoparticles. Part II: pilot study to identify a panel of sensitive biomarkers of genotoxic, oxidative and inflammatory effects on suitable biological matrices. Nanotoxicology 2020; 15:223-237. [PMID: 33373530 DOI: 10.1080/17435390.2020.1850903] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The available biomonitoring studies on workers producing/handling nanomaterials (NMs) focused on potential effects on respiratory, immune and cardio-vascular system. Aim of this study was to identify a panel of sensitive biomarkers and suitable biological matrices to evaluate particularly genotoxic and oxidative effects induced on workers unintentionally exposed to graphene or silica nanoparticles during the production process. These nanomaterials have been chosen for 'NanoKey' project, integrating the workplace exposure assessment (reported in part I) with the biomonitoring of exposed workers reported in the present work. Simultaneously to workplace exposure characterization, we monitored the workers using: Buccal Micronucleus Cytome (BMCyt) assay, fpg-comet test (lymphocytes), oxidized DNA bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo measurements (urine), analysis of oxidative stress biomarkers in exhaled breath condensate (EBC), FENO measurement and cytokines release detection (serum). Since buccal cells are among the main targets of NM occupational exposure, particular attention was posed to the BMCyt assay that represents a noninvasive assay. This pilot study, performed on 12 workers vs.11 controls, demonstrates that BMCyt and fpg-comet assays are the most sensitive biomarkers of early, still reparable, genotoxic and oxidative effects. The findings suggest that these biomarkers could represent useful tools for the biomonitoring of workers exposed to nanoparticles, but they need to be confirmed on a high number of subjects. However, such biomarkers don't discriminate the effects of NM from those due to other chemicals used in the NM production process. Therefore, they could be suitable for the biomonitoring of workers exposed to complex scenario, including nanoparticles exposure.
Collapse
Affiliation(s)
- Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Valentina Del Frate
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Giuseppina Folesani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Diana Poli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Luisana Di Cristo
- Department of Drug Discovery and Development, Italian Institute of Technology -IIT, Genova, Italy
| | - Stefania Sabella
- Department of Drug Discovery and Development, Italian Institute of Technology -IIT, Genova, Italy
| | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Monte Porzio Catone-Rome, Italy
| |
Collapse
|
7
|
Pelclova D, Zdimal V, Komarc M, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Vlckova S, Fenclova Z, Dvorackova S, Lischkova L, Klusackova P, Kolesnikova V, Rossnerova A, Navratil T. Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years. NANOMATERIALS 2020; 10:nano10122440. [PMID: 33291323 PMCID: PMC7762143 DOI: 10.3390/nano10122440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.
Collapse
Affiliation(s)
- Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
- Correspondence: ; Tel.: +420-224-964-532
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Komarc
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Salmovska, 120 00 Prague, Czech Republic; or
- Faculty of Physical Education and Sport, Charles University and General University Hospital in Prague, José Martího 31, 162 52 Prague, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Lucie Ondrackova
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Kostejn
- Institute of Chemical Process Fundamentals CAS, Rozvojova 1/135, 165 02 Prague, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic;
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Viktoriia Kolesnikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti, 128 00 Prague, Czech Republic; (S.V.); (Z.F.); (L.L.); (P.K.); (V.K.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Tomas Navratil
- J. Heyrovský Institute of Physical Chemistry CAS, Dolejškova, 182 23 Prague, Czech Republic;
| |
Collapse
|
8
|
Pelclová D, Navrátil T, Fenclová Z, Vlčková Š. Markers of oxidative stress after three days of nanoTiO 2 sunscreen use in humans: a pilot study. Cent Eur J Public Health 2020; 28 Suppl:S17-S21. [PMID: 33069176 DOI: 10.21101/cejph.a6158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Recent experimental studies point to a high reactivity of nanoparticles and the potential of sunscreens to penetrate the skin. We measured 20 markers of oxidative stress and inflammation to find out whether skin exposure to nanoTiO2 sunscreen may elevate the level of the markers in exhaled breath condensate (EBC) and urine of exposed subjects, as was suggested by our earlier study. METHODS Six volunteers (3 males and 3 females), with a mean age of 48.0 ± 6.7 years, used commercial sunscreen for three days continuously. The first samples were collected before the test. The second samples were collected on day 4, before the sunscreen was washed off, and the third samples on day 11. The following biomarkers were measured: malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, aldehydes C6-C12, 8-isoProstaglandin F2α, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, and leukotrienes B4, C4, D4, and E4, using liquid chromatography-electrospray ionisation-tandem mass spectrometry. RESULTS In the urine, 4-hydroxy-trans-hexenal was significantly higher in post-exposure sample 2, and the same trend was seen in all urinary markers. In EBC, no difference was seen between the mean values of 20 post-test markers as compared with pre-test samples. CONCLUSION This study suggests potential side effects of the sunscreen - borderline elevation of markers of oxidative stress/inflammation - which may relate to the absorption of the nanoTiO2, and the non-significant difference may be explained by the small number of subjects. The effect was not seen in EBC, where nanoTiO2 was not found. A larger study is needed, as according to our previous study, the beneficial effect of the sunscreen to suppress oxidative stress caused by UV radiation may be questioned.
Collapse
Affiliation(s)
- Daniela Pelclová
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Navrátil
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenka Fenclová
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Štěpánka Vlčková
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Rossnerova A, Izzotti A, Pulliero A, Bast A, Rattan SIS, Rossner P. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int J Mol Sci 2020; 21:ijms21197053. [PMID: 32992730 PMCID: PMC7582272 DOI: 10.3390/ijms21197053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as “hormesis”. Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, 14220 Prague, Czech Republic;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Pulliero
- Department of Health Science, University of Genoa, 16132 Genoa, Italy
- Correspondence:
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5900 AA Venlo, The Netherlands
| | - S. I. S. Rattan
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine, 14220 Prague, Czech Republic;
| |
Collapse
|
10
|
Rossnerova A, Honkova K, Pelclova D, Zdimal V, Hubacek JA, Chvojkova I, Vrbova K, Rossner P, Topinka J, Vlckova S, Fenclova Z, Lischkova L, Klusackova P, Schwarz J, Ondracek J, Ondrackova L, Kostejn M, Klema J, Dvorackova S. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int J Mol Sci 2020; 21:E2420. [PMID: 32244494 PMCID: PMC7177382 DOI: 10.3390/ijms21072420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jaroslav A. Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.V.); (P.R.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (S.V.); (Z.F.); (L.L.); (P.K.)
| | - Jaroslav Schwarz
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Lucie Ondrackova
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Martin Kostejn
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.S.); (J.O.); (L.O.); (M.K.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic;
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2 Liberec, Czech Republic;
| |
Collapse
|