1
|
Huang H, Ma J, Cui H, Liang T, Ma Q. Identification of Biomarkers for Cervical Cancer Radiotherapy Sensitivity and Survival Prognosis. Oncol Res Treat 2025; 48:197-211. [PMID: 39761669 DOI: 10.1159/000543409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Radiotherapy resistance leads to treatment failure and disease progression in patients with cervical cancer. This study aims to elucidate the molecular underpinnings of radiotherapy response in cervical cancer by identifying radiotherapy sensitivity genes (RSGs). METHODS We utilized two GEO expression profiling datasets (GSE3578 and GSE6213) comprising cervical cancer biopsy samples taken before and during radiotherapy to identify differentially expressed genes (DEGs) using the RankProd meta-analysis approach. Subsequent analysis was conducted using data from the TCGA-CESE project to further determine the RSGs and investigate their associations with survival prognosis, immune cell infiltration, and drug sensitivities. The differential expressions of the candidate RSGs were validated in an independent set of cervical cancer patients by qPCRs. RESULTS A total of 518 DEGs were identified, with 305 genes upregulated and 213 genes down-regulated during radiotherapy. Six key RSGs were identified as significantly associated with radiotherapy response. Cox regression analysis revealed that upregulations of IL1RAP and GPR15 were associated with an increased risk of poor survival prognosis. Functional enrichment analysis highlighted the involvement of these genes in critical biological processes such as cytokine signaling and immune regulation. Correlation analyses demonstrated significant associations between RSG expressions and M2 macrophage and γδT cell abundances in tumor microenvironment, as well as drug sensitivities. The expression of IL1RAP was significantly higher in the complete response group, supporting the bioinformatic finding. CONCLUSION Our findings on RSGs could potentially serve as potential biomarkers for predicting radiotherapy response and as therapeutic targets to enhance the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Han Huang
- Department of Radiotherapy, Zhoukou Central Hospital, Henan, China
| | - Jianguang Ma
- Department of Radiotherapy, Zhoukou Central Hospital, Henan, China
| | - Hekai Cui
- Department of Radiotherapy, Zhoukou Central Hospital, Henan, China
| | - Tiantian Liang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Qingqing Ma
- Department of Radiotherapy, Zhoukou Central Hospital, Henan, China
| |
Collapse
|
2
|
Dardare J, Witz A, Betz M, François A, Lamy L, Husson M, Demange J, Rouyer M, Lambert A, Merlin JL, Gilson P, Harlé A. DDB2 expression lights the way for precision radiotherapy response in PDAC cells, with or without olaparib. Cell Death Discov 2024; 10:411. [PMID: 39333096 PMCID: PMC11436999 DOI: 10.1038/s41420-024-02188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Therapeutic options for PDAC are primarily restricted to surgery in the early stages of the disease or chemotherapy in advanced disease. Only a subset of patients with germline defects in BRCA1/2 genes can potentially benefit from personalized therapy, with the PARP inhibitor olaparib serving as a maintenance treatment for metastatic disease. Although the role of radiotherapy in PDAC remains controversial, the use of radiosensitizers offers hope for improving cancer management. Previously, we have shown that damage-specific DNA binding protein 2 (DDB2) is a potential prognostic and predictive biomarker for chemotherapy response in PDAC. In this study, we investigated the function of DDB2 in radiotherapy response, with and without radiosensitization by olaparib in PDAC cells. Our findings demonstrated DDB2 resistance to radiation effects, thereby improving cell survival and enhancing the repair of ionizing radiation-induced DNA double-strand breaks. We observed that DDB2 expression enhances the cell cycle arrest in the G2 phase by phosphorylating Chk1 and Chk2 cell cycle checkpoints. Additionally, we identified a novel link between DDB2 and PARP1 in the context of radiotherapy, which enhances the expression and activity of PARP1. Our findings highlight the potential of low-DDB2 expression to potentiate the radiosensitization effect of olaparib in PDAC cells. Collectively, this study provides novel insights into the impacts of DDB2 in the radiotherapy response in PDAC, enabling its employment as a potential biomarker to predict resistance to radiation. Furthermore, DDB2 represents a significant step forward in precision radiotherapy by widening the scope of patients who can be benefiting from olaparib as a radiosensitizer. Hence, this research has the potential to enrich the limited use of radiotherapy in the care of patients with PDAC.
Collapse
Affiliation(s)
- Julie Dardare
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France.
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Andréa Witz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Margaux Betz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Aurélie François
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laureline Lamy
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie Husson
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie Rouyer
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Aurélien Lambert
- Département d'oncologie médicale, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Pauline Gilson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Galli A, Bellè F, Fargnoli A, Caligo MA, Cervelli T. Functional Characterization of the Human BRCA1 ∆11 Splicing Isoforms in Yeast. Int J Mol Sci 2024; 25:7511. [PMID: 39062754 PMCID: PMC11276823 DOI: 10.3390/ijms25147511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BRCA1, a crucial tumor suppressor gene, has several splicing isoforms, including Δ9-11, Δ11, and Δ11q, which lack exon 11, coding for significant portions of the protein. These isoforms are naturally present in both normal and cancerous cells, exhibiting altered activity compared to the full-length BRCA1. Despite this, the impact on cancer risk of the germline intronic variants promoting the exclusive expression of these Δ11 isoforms remains uncertain. Consequently, they are classified as variants of uncertain significance (VUS), posing challenges for traditional genetic classification methods due to their rarity and complexity. Our research utilizes a yeast-based functional assay, previously validated for assessing missense BRCA1 variants, to compare the activity of the Δ11 splicing isoforms with known pathogenic missense variants. This approach allows us to elucidate the functional implications of these isoforms and determine whether their exclusive expression could contribute to increased cancer risk. By doing so, we aim to provide insights into the pathogenic potential of intronic VUS-generating BRCA1 splicing isoforms and improve the classification of BRCA1 variants.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Arcangelo Fargnoli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Oncology, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| |
Collapse
|
4
|
Tashakori N, Kolour SSP, Ghafouri K, Ahmed SI, Kahrizi MS, Gerami R, Altafi M, Nazari A. Critical role of the long non-coding RNAs (lncRNAs) in radiotherapy (RT)-resistance of gastrointestinal (GI) cancer: Is there a way to defeat this resistance? Pathol Res Pract 2024; 258:155289. [PMID: 38703607 DOI: 10.1016/j.prp.2024.155289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Radiotherapy (RT) is a frequently used treatment for cervical cancer, effectively decreasing the likelihood of the disease returning in the same area and extending the lifespan of individuals with cervical cancer. Nevertheless, the primary reason for treatment failure in cancer patients is the cancer cells' resistance to radiation therapy (RT). Long non-coding RNAs (LncRNAs) are a subset of RNA molecules that do not code for proteins and are longer than 200 nucleotides. They have a significant impact on the regulation of gastrointestinal (GI) cancers biological processes. Recent research has shown that lncRNAs have a significant impact in controlling the responsiveness of GI cancer to radiation. This review provides a concise overview of the composition and operation of lncRNAs as well as the intricate molecular process behind radiosensitivity in GI cancer. Additionally, it compiles a comprehensive list of lncRNAs that are linked to radiosensitivity in such cancers. Furthermore, it delves into the potential practical implementation of these lncRNAs in modulating radiosensitivity in GI cancer.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Internal Medicine, Faculty of Medicine, Tehran branch, Islamic Azad University, Tehran, Iran
| | | | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Ibrahem Ahmed
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | | | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Mana Altafi
- Department of Radiology, Faculty of Biological Science and Technology, Shiraz Pardis Branch, Islamic Azad University, Shiraz, Iran.
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| |
Collapse
|
5
|
Liu K, Hu L, Wang S, Chen X, Liu Y, Zhao S, Wang H, Li L, Li H. An efficient qPCR assay for the quantification of human cells in preclinical animal models by targeting human specific DNA in the intron of BRCA1. Mol Biol Rep 2023; 50:9229-9237. [PMID: 37805662 DOI: 10.1007/s11033-023-08853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Precise quantification of grafted human cells in preclinical animal models such as non-human primates, rodents and rabbits is needed for the evaluations of the safety and efficacy of cell therapy. Quantitative PCR (qPCR) as a swift, sensitive and powerful assay is suitable for human cell quantification. However, it is a formidable challenge due to that the genome of non-human primates share more than 95% of similarity as human. METHODS In the present study, we developed a probe-based quantitative PCR (qPCR) assay for the quantification of human cells in preclinical animal models via targeting human specific DNA in the intron of BRCA1 (termed BRCA1-qPCR). The 5' and 3' end of BRCA1-qPCR probe was conjugated with FAM and non-fluorescent quencher-minor groove binder (NFQ-MGB), respectively. 1 µg of genomic DNA from human and preclinical animal models including rhesus monkeys, cynomolgus monkeys, New Zealand white rabbits, SD rats, C57BL/6 and BALB/c mice were used for determining the specificity and sensitivity of the BRCA1-qPCR assay. A calibration curve was generated by BRCA1-qPCR analysis of linearized plasmid containing targeted human specific DNA in BRCA1. The BRCA1-qPCR assay was validated by analysis of 0.003%, 0.03% and 0.3% of human leukocytes mixed within murine leukocytes. RESULTS The BRCA1-qPCR assay detected human DNA rather than DNA from tested species. The amplification efficiency of the BRCA1-qPCR assay was 95.4% and the linearity of the calibration curve was R2 = 0.9997. The BRCA1-qPCR assay detected as low as 5 copies of human specific DNA and is efficient to specially amplify 30 pg human DNA in the presence of 1 µg of genomic DNA from tested species, respectively. The BRCA1-qPCR assay was able to quantify as low as 0.003% of human cells within murine leukocytes. CONCLUSION The BRCA1-qPCR assay is efficient for the quantification of human cells in preclinical animal models.
Collapse
Affiliation(s)
- Ke Liu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Siyu Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xinzhu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuting Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Hui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Biotechnology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Zhang H, Wang X, Ma Y, Zhang Q, Liu R, Luo H, Wang Z. Review of possible mechanisms of radiotherapy resistance in cervical cancer. Front Oncol 2023; 13:1164985. [PMID: 37692844 PMCID: PMC10484717 DOI: 10.3389/fonc.2023.1164985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
7
|
Peña-Guerrero J, Fernández-Rubio C, García-Sosa AT, Nguewa PA. BRCT Domains: Structure, Functions, and Implications in Disease-New Therapeutic Targets for Innovative Drug Discovery against Infections. Pharmaceutics 2023; 15:1839. [PMID: 37514027 PMCID: PMC10386641 DOI: 10.3390/pharmaceutics15071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new therapeutic targets and their implications in drug development remains an emerging scientific topic. BRCT-bearing proteins are found in Archaea, Bacteria, Eukarya, and viruses. They are traditionally involved in DNA repair, recombination, and cell cycle control. To carry out these functions, BRCT domains are able to interact with DNA and proteins. Moreover, such domains are also implicated in several pathogenic processes and malignancies including breast, ovarian, and lung cancer. Although these domains exhibit moderately conserved folding, their sequences show very low conservation. Interestingly, sequence variations among species are considered positive traits in the search for suitable therapeutic targets, since non-specific drug interactions might be reduced. These main characteristics of BRCT, as well as its critical implications in key biological processes in the cell, have prompted the study of these domains as therapeutic targets. This review explores the possible roles of BRCT domains as therapeutic targets for drug discovery. We describe their common structural features and relevant interactions and pathways, as well as their implications in pathologic processes. Drugs commonly used to target these domains are also presented. Finally, based on their structures, we describe new drug design possibilities using modern and innovative techniques.
Collapse
Affiliation(s)
- José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Alfonso T García-Sosa
- Chair of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Paul A Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| |
Collapse
|
8
|
Shishido K, Reinders A, Asuthkar S. Epigenetic regulation of radioresistance: insights from preclinical and clinical studies. Expert Opin Investig Drugs 2022; 31:1359-1375. [PMID: 36524403 DOI: 10.1080/13543784.2022.2158810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Oftentimes, radiation therapy (RT) is ineffective due to the development of radioresistance (RR). However, studies have shown that targeting epigenetic modifiers to enhance radiosensitivity represents a promising direction of clinical investigation. AREAS COVERED This review discusses the mechanisms by which epigenetic modifiers alter radiosensitivity through dysregulation of MAPK-ERK and AKT-mTOR signaling. Finally, we discuss the clinical directions for targeting epigenetic modifiers and current radiology techniques used in the clinic. METHODOLOGY We searched PubMed and ScienceDirect databases from April 4th, 2022 to October 18th, 2022. We examined 226 papers related to radioresistance, epigenetics, MAPK, and PI3K/AKT/mTOR signaling. 194 papers were selected for this review. Keywords used for this search include, 'radioresistance,' 'radiosensitivity,' 'radiation,' 'radiotherapy,' 'particle radiation,' 'photon radiation,' 'epigenetic modifiers,' 'MAPK,' 'AKT,' 'mTOR,' 'cancer,' and 'PI3K.' We examined 41 papers related to clinical trials on the aforementioned topics. Outcomes of interest were safety, overall survival (OS), dose-limiting toxicities (DLT), progression-free survival (PFS), and maximum tolerated dose (MTD). EXPERT OPINION Current studies focusing on epigenetic mechanisms of RR strongly support the use of targeting epigenetic modifiers as adjuvants to standard cancer therapies. To further the success of such treatments and their clinical benefit , both preclinical and clinical studies are needed to broaden the scope of known radioresistant mechanisms.
Collapse
Affiliation(s)
- Katherine Shishido
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Alexis Reinders
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| |
Collapse
|
9
|
Pan-cancer analysis of co-occurring mutations in RAD52 and the BRCA1-BRCA2-PALB2 axis in human cancers. PLoS One 2022; 17:e0273736. [PMID: 36107942 PMCID: PMC9477347 DOI: 10.1371/journal.pone.0273736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
In human cells homologous recombination (HR) is critical for repair of DNA double strand breaks (DSBs) and rescue of stalled or collapsed replication forks. HR is facilitated by RAD51 which is loaded onto DNA by either BRCA2-BRCA1-PALB2 or RAD52. In human culture cells, double-knockdowns of RAD52 and genes in the BRCA1-BRCA2-PALB2 axis are lethal. Mutations in BRCA2, BRCA1 or PALB2 significantly impairs error free HR as RAD51 loading relies on RAD52 which is not as proficient as BRCA2-BRCA1-PALB2. RAD52 also facilitates Single Strand Annealing (SSA) that produces intra-chromosomal deletions. Some RAD52 mutations that affect the SSA function or decrease RAD52 association with DNA can suppress certain BRCA2 associated phenotypes in breast cancers. In this report we did a pan-cancer analysis using data reported on the Catalogue of Somatic Mutations in Cancers (COSMIC) to identify double mutants between RAD52 and BRCA1, BRCA2 or PALB2 that occur in cancer cells. We find that co-occurring mutations are likely in certain cancer tissues but not others. However, all mutations occur in a heterozygous state. Further, using computational and machine learning tools we identified only a handful of pathogenic or driver mutations predicted to significantly affect the function of the proteins. This supports previous findings that co-inactivation of RAD52 with any members of the BRCA2-BRCA1-PALB2 axis is lethal. Molecular modeling also revealed that pathogenic RAD52 mutations co-occurring with mutations in BRCA2-BRCA1-PALB2 axis are either expected to attenuate its SSA function or its interaction with DNA. This study extends previous breast cancer findings to other cancer types and shows that co-occurring mutations likely destabilize HR by similar mechanisms as in breast cancers.
Collapse
|
10
|
Zhang H, Fang C, Feng Z, Xia T, Lu L, Luo M, Chen Y, Liu Y, Li Y. The Role of LncRNAs in the Regulation of Radiotherapy Sensitivity in Cervical Cancer. Front Oncol 2022; 12:896840. [PMID: 35692795 PMCID: PMC9178109 DOI: 10.3389/fonc.2022.896840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is one of the three majors gynecological malignancies, which seriously threatens women’s health and life. Radiotherapy (RT) is one of the most common treatments for cervical cancer, which can reduce local recurrence and prolong survival in patients with cervical cancer. However, the resistance of cancer cells to Radiotherapy are the main cause of treatment failure in patients with cervical cancer. Long non-coding RNAs (LncRNAs) are a group of non-protein-coding RNAs with a length of more than 200 nucleotides, which play an important role in regulating the biological behavior of cervical cancer. Recent studies have shown that LncRNAs play a key role in regulating the sensitivity of radiotherapy for cervical cancer. In this review, we summarize the structure and function of LncRNAs and the molecular mechanism of radiosensitivity in cervical cancer, list the LncRNAs associated with radiosensitivity in cervical cancer, analyze their potential mechanisms, and discuss the potential clinical application of these LncRNAs in regulating radiosensitivity in cervical cancer.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Zhiyu Feng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Tingting Xia
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| |
Collapse
|
11
|
Bellè F, Mercatanti A, Lodovichi S, Congregati C, Guglielmi C, Tancredi M, Caligo MA, Cervelli T, Galli A. Validation and Data-Integration of Yeast-Based Assays for Functional Classification of BRCA1 Missense Variants. Int J Mol Sci 2022; 23:ijms23074049. [PMID: 35409408 PMCID: PMC8999655 DOI: 10.3390/ijms23074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Germline mutations in the BRCA1 gene have been reported to increase the lifetime risk of developing breast and/or ovarian cancer (BOC). By new sequencing technologies, numerous variants of uncertain significance (VUS) are identified. It is mandatory to develop new tools to evaluate their functional impact and pathogenicity. As the expression of pathogenic BRCA1 variants in Saccharomyces cerevisiae increases the frequency of intra- and inter-chromosomal homologous recombination (HR), and gene reversion (GR), we validated the two HR and the GR assays by testing 23 benign and 23 pathogenic variants and compared the results with those that were obtained in the small colony phenotype (SCP) assay, an additional yeast-based assay, that was validated previously. We demonstrated that they scored high accuracy, sensitivity, and sensibility. By using a classifier that was based on majority of voting, we have integrated data from HR, GR, and SCP assays and developed a reliable method, named yBRCA1, with high sensitivity to obtain an accurate VUS functional classification (benign or pathogenic). The classification of BRCA1 variants, important for assessing the risk of developing BOC, is often difficult to establish with genetic methods because they occur rarely in the population. This study provides a new tool to get insights on the functional impact of the BRCA1 variants.
Collapse
Affiliation(s)
- Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Alberto Mercatanti
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Caterina Congregati
- Division of Internal Medicine, University Hospital of Pisa, 56125 Pisa, Italy;
| | - Chiara Guglielmi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, 56125 Pisa, Italy; (C.G.); (M.T.)
| | - Mariella Tancredi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, 56125 Pisa, Italy; (C.G.); (M.T.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, 56125 Pisa, Italy; (C.G.); (M.T.)
- Correspondence: (M.A.C.); (A.G.)
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
| | - Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, CNR via Moruzzi 1, 56125 Pisa, Italy; (F.B.); (A.M.); (S.L.); (T.C.)
- Correspondence: (M.A.C.); (A.G.)
| |
Collapse
|
12
|
Lei R, Zhou M, Zhang S, Luo J, Qu C, Wang Y, Guo P, Huang R. Potential role of PRKCSH in lung cancer: bioinformatics analysis and a case study of Nano ZnO. NANOSCALE 2022; 14:4495-4510. [PMID: 35254362 DOI: 10.1039/d1nr08133k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PRKCSH, also known as glucosidase II beta, functions as a contributor to lung tumorigenesis by regulating the cell cycle in a p53-dependent manner under severe environmental stress. However, the prognostic value and molecular mechanisms by which the level of PRKCSH is significantly increased in cancer cells are not clearly understood. Here, we first generated a biological profile of PRKCSH expression changes in cancers by analysing bioinformatic data from cancer databases. We found that higher PRKCSH expression was correlated with a poorer prognosis and greater infiltration of most immune cell types in patients with lung cancer. In particular, PRKCSH expression showed significant negative correlations with the level of STAT6 (r = -0.31, p < 0.001) in lung cancer tissues. We further found that PRKCSH deficiency promoted G2/M arrest in response to zinc oxide nanoparticle (Nano ZnO) treatment in A549 cells. With regard to the mechanism, PRKCSH deficiency may induce STAT6 translocation to the nucleus to activate p53 expression through binding to the p53 promoter region from -365 bp to +126 bp. Eventually, activated p53 contributed to Nano-ZnO-induced G2/M arrest in lung cancer cells. Taken together, our data provide new insights into immunotherapy target choices and the prognostic value of PRKCSH. Since the G2/M cell cycle checkpoint is crucial for lung cancer prognosis, targeting PRKCSH expression to suppress the activation of the STAT6/p53 pathway is a potential therapeutic strategy for managing lung cancer.
Collapse
Affiliation(s)
- Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan Province, China.
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
13
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6574410. [DOI: 10.1093/femsyr/foac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
|
14
|
Can neural signals override cellular decisions in the presence of DNA damage? DNA Repair (Amst) 2021; 103:103127. [PMID: 33990031 DOI: 10.1016/j.dnarep.2021.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Cells within an organism are in constant crosstalk with their surrounding environment. Short and long-range signals influence cellular behavior associated with division, differentiation, and death. This crosstalk among cells underlies tissue renewal to guarantee faithful replacement of old or damaged cells over many years. Renewing tissues also offer recurrent opportunities for DNA damage and cellular transformation that tend to occur with aging. Most cells with extensive DNA damage have limited options such as halting cell cycle to repair DNA, undergo senescence, or programmed cell death. However, in some cases cells carrying toxic forms of DNA damage survive and proliferate. The underlying factors driving survival and proliferation of cells with DNA damage remain unknown. Here we discuss potential roles the nervous system may play in influencing the fate of cells with DNA damage. We present a brief survey highlighting the implications the nervous system has in regeneration, regulation of stem cells, modulation of the immune system, and its contribution to cancer progression. Finally, we propose the use of planarian flatworms as a convenient model organism to molecularly dissect the influence of neural signals over cellular fate regulation in the presence of DNA damage.
Collapse
|
15
|
Cervelli T, Lodovichi S, Bellè F, Galli A. Yeast-based assays for the functional characterization of cancer-associated variants of human DNA repair genes. MICROBIAL CELL 2020; 7:162-174. [PMID: 32656256 PMCID: PMC7328678 DOI: 10.15698/mic2020.07.721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Technological advances are continuously revealing new genetic variants that are often difficult to interpret. As one of the most genetically tractable model organisms, yeast can have a central role in determining the consequences of human genetic variation. DNA repair gene mutations are associated with many types of cancers, therefore the evaluation of the functional impact of these mutations is crucial for risk assessment and for determining therapeutic strategies. Owing to the evolutionary conservation of DNA repair pathways between human cells and the yeast Saccharomyces cerevisiae, several functional assays have been developed. Here, we describe assays for variants of human genes belonging to the major DNA repair pathways divided in functional assays for human genes with yeast orthologues and human genes lacking a yeast orthologue. Human genes with orthologues can be studied by introducing the correspondent human mutations directly in the yeast gene or expressing the human gene carrying the mutations; while the only possible approach for human genes without a yeast orthologue is the heterologous expression. The common principle of these approaches is that the mutated gene determines a phenotypic alteration that can vary according to the gene studied and the domain of the protein. Here, we show how the versatility of yeast can help in classifying cancer-associated variants.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Francesca Bellè
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy
| |
Collapse
|
16
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 643] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|