1
|
Voyage of RepA protein from plasmid DNA replication through amyloid aggregation towards synthetic biology. J Appl Biomed 2010. [DOI: 10.2478/v10136-009-0018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2
|
Nordström K. Plasmid R1--replication and its control. Plasmid 2005; 55:1-26. [PMID: 16199086 DOI: 10.1016/j.plasmid.2005.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/04/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Plasmid R1 is a low-copy-number plasmid belonging to the IncFII group. The genetics, biochemistry, molecular biology, and physiology of R1 replication and its control are summarised and discussed in the present communication. Replication of R1 starts at a unique origin, oriR1, and proceeds unidirectionally according to the Theta mode. Plasmid R1 replicates during the entire cell cycle and the R1 copies in the cell are members of a pool from which a plasmid copy at random is selected for replication. However, there is an eclipse period during which a newly replicated copy does not belong to this pool. Replication of R1 is controlled by an antisense RNA, CopA, that is unstable and formed constitutively; hence, its concentration is a measure of the concentration of the plasmid. CopA-RNA interacts with its complementary target, CopT-RNA, that is located upstream of the RepA message on the repA-mRNA. CopA-RNA post-transcriptionally inhibits translation of the repA-mRNA. CopA- and CopT-RNA interact in a bimolecular reaction which results in an inverse proportionality between the relative rate of replication (replications per plasmid copy and cell cycle) and the copy number; the number of replications per cell and cell cycle, n, is independent of the actual copy number in the individual cells, the so-called +n mode of control. Single base-pair substitutions in the copA/copT region of the plasmid genome may result in mutants that are compatible with the wild type. Loss of CopA activity results in (uncontrolled) so-called runaway replication, which is lethal to the host but useful for the production of proteins from cloned genes. Plasmid R1 also has an ancillary control system, CopB, that derepresses the synthesis of repA-mRNA in cells that happen to contain lower than normal number of copies. Plasmid R1, as other plasmids, form clusters in the cell and plasmid replication is assumed to take place in the centre of the cells; this requires traffic from the cluster to the replication factories and back to the clusters. The clusters are plasmid-specific and presumably based on sequence homology.
Collapse
Affiliation(s)
- Kurt Nordström
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, P.O. Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
3
|
Giraldo R, Díaz R. Differential binding of wild-type and a mutant RepA protein to oriR sequence suggests a model for the initiation of plasmid R1 replication. J Mol Biol 1992; 228:787-802. [PMID: 1469713 DOI: 10.1016/0022-2836(92)90864-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA replication of the enterobacterial plasmid R1 is initiated by RepA protein. We have developed a new procedure for the purification of RepA from inclusion bodies, which involves CHAPS-mediated solubilization. This method has been also used for the thermosensitive mutant protein RepA2623. The nucleoprotein complexes obtained with both proteins and oriR, the origin of replication, are studied in this paper. DNaseI and hydroxyl-radical footprinting suggest the presence in oriR of two sites with different affinity for RepA separated by eight helical turns. The pattern of hypersensitive sites in the footprints indicates that the oriR sequence, when complexed with RepA, is curved. The binding of RepA molecules to oriR is co-operative and this co-operativity is defective in the thermosensitive protein. Band-shift analysis of RepA-oriR complexes revealed the existence of a species with an anomalously high electrophoretic mobility that appears after formation of the first RepA-oriR complex and requires the sequential interaction of RepA with its two distal binding sites. These features lead us to propose that protein-protein interactions between RepA bound to both distal sites could be responsible for oriR looping. This model represents a novel mechanism that results in activation of an origin in a replicon that does not contain iterons.
Collapse
Affiliation(s)
- R Giraldo
- Unidad de Ingeniería Genética, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Replication of plasmid R6K origin gamma in vitro. Dependence on dual initiator proteins and inhibition by transcription. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98515-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Ruiz-Echevarría MJ, de Torrontegui G, Giménez-Gallego G, Díaz-Orejas R. Structural and functional comparison between the stability systems ParD of plasmid R1 and Ccd of plasmid F. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:355-62. [PMID: 2017133 DOI: 10.1007/bf00261674] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The stability determined by the systems ParD of plasmid R1 and Ccd of plasmid F is due to the concerted action of two proteins, a cytotoxin and an antagonist of this function. In this paper we report that CcdA and Kis proteins, the antagonists of the Ccd and ParD systems respectively, share significant sequence homologies at both ends. In Kis, these regions seem to correspond to two different domains. Despite the structural similarities, Kis and CcdA are not interchangeable. In addition we have shown that the cytotoxins of these systems, the Kid and CcdB proteins, do not share structural homologies. In contrast to CcdB, the Kid protein of the ParD system induces RecA-dependent cleavage of the cI repressor of bacteriophage lambda very inefficiently or not at all. The functional implications of these results are discussed.
Collapse
|
6
|
Ortega S, de Torrontegui G, Díaz R. Isolation and characterization of a conditional replication mutant of the antibiotic resistance factor R1 affected in the gene of the replication protein repA. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:111-7. [PMID: 2671646 DOI: 10.1007/bf00330949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vitro mutagenesis with hydroxylamine of a ParD- miniderivative of R1, pAB174, yielded mutants that were less stable in the cell than pAB174. Some of these mutants had a thermosensitive phenotype. The replication of pAB2623, one of the thermosensitive mutants, was inhibited in the cell at the restrictive temperature of 42 degrees C. The efficiency of the RepA protein of pAB2623 to promote replication of R1 in an in vitro assay was greatly reduced. Sequence analysis indicated that the repA gene of pAB2623 contains, close to its 3' end, two GC-AT transitions, separated by a single base, that change two consecutive codons of the gene. These results indicate that the phenotype of the mutant is the consequence of a mutated RepA protein and is consistent with the requirement of RepA for the in vivo replication of this plasmid.
Collapse
Affiliation(s)
- S Ortega
- Centro de Investigaciones Biológicas (C.S.I.C.), Madrid, Spain
| | | | | |
Collapse
|
7
|
Abstract
We isolated a 284 base-pair BamHI fragment of plasmid R100 that supports initiation of replication of a plasmid regardless of the orientation of the fragment. Analysis of the specific radioactivity of restriction fragments from 32P-labeled replication intermediates synthesized in vitro shows that replication of the plasmid carrying the 284 base-pair fragment is unidirectional. The direction of replication depends on the orientation of the fragment present in the plasmid. The 5' ends of the leading-strand DNA formed in the early stage of replication were mapped to a region downstream from the 284 base-pair fragment in the direction of replication. The lagging-strand DNA products were also identified and their 3' ends mapped to unique sites within the 284 base-pair fragment causing unidirectional replication of R100.
Collapse
Affiliation(s)
- C Miyazaki
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Dong XN, Womble DD, Rownd RH. In-vivo studies on the cis-acting replication initiator protein of IncFII plasmid NR1. J Mol Biol 1988; 202:495-509. [PMID: 3050127 DOI: 10.1016/0022-2836(88)90281-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using segment-directed mutagenesis, a temperature-sensitive mutant of the gene that encodes the cis-acting RepA1 initiation protein of the IncFII plasmid NR1 was isolated. The mutant protein was unable to promote initiation of plasmid replication in vivo at 42 degrees C. Both the wild-type and the mutant repA1 genes were cloned separately into the high-expression vector plasmid pAS1. In these pAS1-repA1 derivatives, the transcription of the repA1 gene was under the control of the lambda PL promoter, which was regulated by the temperature-sensitive lambda cI857 repressor protein. The translation initiation of the repA1 mRNA from these derivatives was mediated by the lambda cII Shine-Dalgarno sequence and initiation codon. The yield of 33,000 Mr RepA1 protein detected on SDS/polyacrylamide gels from Escherichia coli cells containing the pAS1-repA1 derivatives was dependent upon whether the newly synthesized RepA1 was capable of interacting in cis with the downstream NR1 replication origin on the cloned DNA fragment. Mutations in the repA1 gene or deletions of the cis origin region dramatically increased the detectable yield of RepA1 protein. Deletion of the NR1 origin region from the pAS1 derivative containing the wild-type repA1 gene enabled the cis-acting RepA1 protein to complement partially the temperature-sensitive repA1 mutant in trans, to increase the copy number in trans of plasmids that contained the NR1 replicon, and to help NR1 derivatives overcome plasmid incompatibility. The trans effects of RepA1 provided by the pAS1-repA1 derivatives that retained the origin in cis were much less significant. RepA1 provided in trans also stimulated the replication of plasmids carrying cloned copies of the NR1 replication origin region regardless of whether the origin was transcribed from an upstream promoter.
Collapse
Affiliation(s)
- X N Dong
- Department of Molecular Biology, Medical School, Northwestern University, Chicago, IL 60611
| | | | | |
Collapse
|
9
|
Maciag IE, Viret JF, Alonso JC. Replication and incompatibility properties of plasmid pUB110 in Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:232-40. [PMID: 2841567 DOI: 10.1007/bf00334690] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Within plasmid pUB110 we have identified a 1.2 kb segment necessary and sufficient for driving autonomous replication in Rec+ cells at a wild-type copy number. This region can be divided into three functionally discrete segments: a 24 base pair (bp) region that acts as an origin, a 949 bp determinant of an essential replication protein, repU, and a 358 bp incompatibility region, incA, overlapping with the repU gene. The synthesis of the IncA determinant/s proceeds in the direction opposite to that of RepU. The positively (RepU) and negatively (IncA) trans-acting products seem to be involved in the control of plasmid replication. The RepU product has an Mr of 39 kDa, could be overproduced in Escherichia coli, and binds to the pUB110 origin region. Outside the minimal replicon a cis-acting, orientation dependent, 516 bp determinant is required (i) to compete with a coexisting incompatible plasmid and (ii) for segregational stability.
Collapse
Affiliation(s)
- I E Maciag
- Max-Planck-Institut für Molekulare Genetik, Berlin
| | | | | |
Collapse
|
10
|
Alonso JC, Tailor RH. Initiation of plasmid pC194 replication and its control in Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:476-84. [PMID: 3123890 DOI: 10.1007/bf00327200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
By deletion analysis we have defined a 1.1 kb segment required for driving autonomous replication of the plasmid pC194. The minimal replicon specifies a positive, RepH, and a negative, Inc8A, trans-acting product and their target sites. The RepH product has a Mr of 34.1 kDa, could be overproduced, and binds specifically to the pC194 origin region. By trans complementation studies we have shown that pC194 replication is indirectly controlled at the level of RepH synthesis by a negative product, IncA, that is transcribed within the repH transcription unit in the opposite direction ("antisense RNA"). The antisense RNA regulates the RepH synthesis by a mechanism that seems to involve RNA/RNA interaction in a manner that interferes with translation. In addition, an autoregulatory control might be operative.
Collapse
Affiliation(s)
- J C Alonso
- Max-Planck-Institut für Molekulare Genetik, Berlin
| | | |
Collapse
|
11
|
Masai H, Arai K. RepA and DnaA proteins are required for initiation of R1 plasmid replication in vitro and interact with the oriR sequence. Proc Natl Acad Sci U S A 1987; 84:4781-5. [PMID: 3037524 PMCID: PMC305189 DOI: 10.1073/pnas.84.14.4781] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RepA, an initiation protein of R1 plasmid replication, was purified from an Escherichia coli strain overproducing the protein. The purified RepA protein specifically initiated replication in vitro of plasmid DNA bearing the replication origin of R1 plasmid (oriR). The replication, strictly dependent on added RepA protein, was independent of host RNA polymerase but required other host replication functions (DnaB and DnaC proteins, the single-stranded-DNA-binding protein SSB, and DNA gyrase). The replication was also completely dependent on the host DnaA function. In filter binding assays in high salt (0.5 M KCl) conditions, RepA specifically binds to both supercoiled and linear plasmid DNA containing the oriR sequence, whereas it binds to nonspecific DNA in low salt. DNase I-protection studies on a linearized DNA fragment revealed that DnaA protein specifically binds to a 9-base-pair DnaA-recognition sequence ("DnaA box") within oriR only when RepA is bound to the sequence immediately downstream of the DnaA box. These results indicate that initiation of R1 plasmid replication is triggered by interaction of RepA and DnaA proteins with the oriR sequence.
Collapse
|
12
|
del Solar G, Diaz R, Espinosa M. Replication of the streptococcal plasmid pMV158 and derivatives in cell-free extracts of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1987; 206:428-35. [PMID: 3035343 DOI: 10.1007/bf00428882] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
pMV158 is a 5.4 kb broad host range multicopy plasmid specifying tetracycline resistance. This plasmid and two of its derivatives, pLS1 and pLS5, are stably maintained and express their genetic information in gram-positive and gram-negative hosts. The in vitro replication of plasmid pMV158 and its derivatives was studied in extracts prepared from plasmid-free Escherichia coli cells and the replicative characteristics of the streptococcal plasmids were compared to those of the E. coli replicons, ColE1 and the mini-R1 derivative pKN182. The optimal replicative activity of the E. coli extracts was found at a cellular phase of growth that corresponded to 2 g wet weight of cells per litre. Maximal synthesis of streptococcal plasmid DNA occurred after 90 min of incubation and at a temperature of 30 degrees C. The optimal concentration of template DNA was 40 micrograms/ml. Higher plasmid DNA concentrations resulted in a decrease in the incorporation of dTMP, indicating that competition of specific replication factor(s) for functional plasmid origins may occur. In vitro replication of plasmid pMV158 and its derivatives required the host RNA polymerase and de novo protein synthesis. The final products of the streptococcal plasmid DNAs replicated in the E. coli in vitro system were monomeric supercoiled DNA forms that had completed at least one round of replication, although a set of putative replicative intermediates could also be found. The results suggest that a specific plasmid-encoded factor is needed for the replication of the streptococcal plasmids.
Collapse
|
13
|
Noyer-Weidner M, Diaz R, Reiners L. Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli K12: involvement of rglB. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:469-75. [PMID: 3550384 DOI: 10.1007/bf00338084] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several chimeric pBR322/328 derivatives containing genes for cytosine-specific DNA methyltransferases (Mtases) can be transformed into the Escherichia coli K12/E. coli B hybrid strains HB101 and RR1 but not into other commonly used E. coli K12 strains. In vitro methylation of cytosine residues in pBR328 and other unrelated plasmids also reduces their potential to transform such methylation sensitive strains, albeit to a lesser degree than observed with plasmids containing Mtase genes. The extent of reduced transformability depends on the target specificity of the enzyme used for in vitro modification. The role of a host function in the discrimination against methylated plasmids was verified by the isolation of K12 mutants which tolerate cytosine methylated DNA. The mutations map in the vicinity of the serB locus. This and other data indicate that the host rglB function is involved in the discrimination against modified DNA.
Collapse
|
14
|
Ortega S, Lanka E, Diaz R. The involvement of host replication proteins and of specific origin sequences in the in vitro replication of miniplasmid R1 DNA. Nucleic Acids Res 1986; 14:4865-79. [PMID: 3523437 PMCID: PMC311497 DOI: 10.1093/nar/14.12.4865] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The in vitro replication of R1 miniplasmid promoted by purified preparations of the plasmid encoded RepA protein in cell extracts of E. coli is resistant to rifampicin and can be completely inhibited by antibodies against DnaG, the primase of the cell, as well as by antibodies against proteins DnaB and SSB. R1 replication is abolished in extracts deficient in the DnaA protein. This deficiency is efficiently complemented by purified preparations of the DnaA protein. The in vitro replication of plasmid R1 is also abolished in DnaC deficient extracts and by a 10 bp deletion (nucleotides 1463-1472) within the minimal origin region. These data indicate the requirement of the DnaA, DnaB, DnaC, DnaG and SSB replication proteins of the host, as well as of specific oriR1 sequences for the RepA dependent replication of plasmid R1. The implications of these results for the initiation of R1 replication are discussed.
Collapse
|
15
|
Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: contributions of RNA polymerase and primase. Proc Natl Acad Sci U S A 1985; 82:3562-6. [PMID: 2987933 PMCID: PMC397825 DOI: 10.1073/pnas.82.11.3562] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Replication of plasmids that depend on the 245-base-pair origin of the Escherichia coli chromosome (oriC) requires many purified proteins that (i) direct initiation to oriC (e.g., dnaA protein), (ii) influence initiations elsewhere (e.g., auxiliary proteins), and (iii) prime and extend DNA chains (e.g., priming and synthesis proteins). For the RNA priming and initiation of new DNA chains, the requirements for both primase and RNA polymerase (RNA pol) [Kaguni, J. M. & Kornberg, A. (1984) Cell 38, 183-190] have been further analyzed. Depending on the levels of auxiliary proteins (topoisomerase I and protein HU), three priming systems can operate: primase alone, RNA pol alone, or both combined. At low levels of auxiliary proteins, primase alone sustains an effective priming system. At higher levels, primase action is blocked, but RNA pol alone can initiate replication, albeit feebly; at these high levels of auxiliary proteins, primase and RNA pol act synergistically. When RNA pol is stalled by an inhibitor or lack of a ribonucleoside triphosphate, primase action is also inhibited. Based on these and other data [van der Ende, A., Baker, T. A., Ogawa, T. & Kornberg, A. (1985) Proc. Natl. Acad. Sci. USA 82, in press], RNA pol can counteract inhibition by auxiliary proteins and thus activate the origin for the priming by primase of the leading strand of the replication fork.
Collapse
|
16
|
Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme. Proc Natl Acad Sci U S A 1985; 82:3954-8. [PMID: 2408271 PMCID: PMC397912 DOI: 10.1073/pnas.82.12.3954] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The enzymatic replication of plasmids containing the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme priming systems: primase alone, RNA polymerase alone, or both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Kornberg, A. (1985) Proc. Natl. Acad. Sci. USA 82, 3562-3566). At certain levels of auxiliary proteins (topoisomerase I, protein HU, and RNase H), the solo primase system is efficient and responsible for priming synthesis of all DNA strands. Replication of oriC plasmids is here separated into four stages: (i) formation of an isolable, prepriming complex requiring oriC, dnaA protein, dnaB protein, dnaC protein, gyrase, single-strand binding protein, and ATP; (ii) formation of a primed template by primase; (iii) rapid, semiconservative replication by DNA polymerase III holoenzyme; and (iv) conversion of nearly completed daughter molecules to larger DNA forms. Optimal initiation of the leading strand of DNA synthesis, over a range of levels of auxiliary proteins, appears to depend on transcriptional activation of the oriC region by RNA polymerase prior to priming by primase.
Collapse
|