1
|
The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 2011; 188:325-38. [PMID: 21467572 DOI: 10.1534/genetics.111.128322] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes.
Collapse
|
2
|
Abstract
The budding yeast Gcn5p is a prototypic histone acetyltransferase controlling transcription of diverse genes. Here we show that Gcn5p is itself regulated by Snf1p and Spt3p. Snf1p likely controls Gcn5p via direct interaction. Mutating four residues in the Gcn5p catalytic domain, T203, S204, T211, and Y212 (TSTY), phenocopies snf1 null cells, including Gcn5p hypophosphorylation, hypoacetylation at the HIS3 promoter, and transcriptional defects of the HIS3 gene. However, overexpressing Snf1p suppresses the above phenotypes associated with the phosphodeficient TSTY mutant, suggesting that it is the interaction with Snf1p important for Gcn5p to activate HIS3. A likely mechanism by which Snf1p potentiates Gcn5p function is to antagonize Spt3p, because the HIS3 expression defects caused by snf1 knockout, or by the TSTY gcn5 mutations, can be suppressed by deleting SPT3. In vitro, Spt3p binds Gcn5p, but the interaction is drastically enhanced by the TSTY mutations, indicating that a stabilized Spt3p-Gcn5p interaction may be an underlying cause for the aforementioned HIS3 transcriptional defects. These results suggest that Gcn5p is a target regulated by the competing actions of Snf1p and Spt3p.
Collapse
|
3
|
Martens JA, Wu PYJ, Winston F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 2005; 19:2695-704. [PMID: 16291644 PMCID: PMC1283962 DOI: 10.1101/gad.1367605] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have revealed that transcription of noncoding, intergenic DNA is abundant among eukaryotes. However, the functions of this transcription are poorly understood. We have previously shown that in Saccharomyces cerevisiae, expression of an intergenic transcript, SRG1, represses the transcription of the adjacent gene, SER3, by transcription interference. We now show that SRG1 transcription is regulated by serine, thereby conferring regulation of SER3, a serine biosynthetic gene. This regulation requires Cha4, a serine-dependent activator that binds to the SRG1 promoter and is required for SRG1 induction in the presence of serine. Furthermore, two coactivator complexes, SAGA and Swi/Snf, are also directly required for activation of SRG1 and transcription interference of SER3. Taken together, our results elucidate a physiological role for intergenic transcription in the regulation of SER3. Moreover, our results demonstrate a mechanism by which intergenic transcription allows activators to act indirectly as repressors.
Collapse
Affiliation(s)
- Joseph A Martens
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
4
|
Abstract
A central problem in eukaryotic transcription is how proteins gain access to DNA packaged in nucleosomes. Research on the interplay between chromatin and transcription has progressed with the use of yeast genetics as a useful tool to characterize factors involved in this process. These factors have both positive and negative effects on the stability of nucleosomes, thereby controlling the role of chromatin in transcription in vivo. The negative effectors include the structural components of chromatin, the histones and non-histone chromatin associated proteins, as well as regulatory components like chromatin assembly factors and histone deacetylase complexes. The positive factors are involved in remodeling chromatin and several multiprotein complexes have been described: Swi/Snf, Srb/mediator and SAGA. The components of each of these complexes, as well as the functional relationships between them are covered by this review.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
5
|
Dudley AM, Gansheroff LJ, Winston F. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in Saccharomyces cerevisiae. Genetics 1999; 151:1365-78. [PMID: 10101163 PMCID: PMC1460567 DOI: 10.1093/genetics/151.4.1365] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations selected as suppressors of Ty or solo delta insertion mutations in Saccharomyces cerevisiae have identified several genes, SPT3, SPT7, SPT8, and SPT20, that encode components of the SAGA complex. However, the mechanism by which SAGA activates transcription of specific RNA polymerase II-dependent genes is unknown. We have conducted a fine-structure mutagenesis of one widely used SAGA-dependent promoter, the delta element of his4-912delta, to identify sequence elements important for its promoter activity. Our analysis has characterized three delta regions necessary for full promoter activity and accurate start site selection: an upstream activating sequence, a TATA region, and an initiator region. In addition, we have shown that factors present at the adjacent UASHIS4 (Gcn4, Bas1, and Pho2) also activate the delta promoter in his4-912delta. Our results suggest a model in which the delta promoter in his4-912delta is primarily activated by two factors: Gcr1 acting at the UASdelta and Gcn4 acting at the UASHIS4. Finally, we tested whether activation by either of these factors is dependent on components of the SAGA complex. Our results demonstrate that Spt3 and Spt20 are required for full delta promoter activity, but that Gcn5, another member of SAGA, is not required. Spt3 appears to be partially required for activation of his4-912delta by both Gcr1 and Gcn4. Thus, our work suggests that SAGA exerts a large effect on delta promoter activity through a combination of smaller effects on multiple factors.
Collapse
Affiliation(s)
- A M Dudley
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
6
|
Madison JM, Dudley AM, Winston F. Identification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1879-90. [PMID: 9528759 PMCID: PMC121417 DOI: 10.1128/mcb.18.4.1879] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Accepted: 01/06/1998] [Indexed: 02/07/2023] Open
Abstract
Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations of spt3 and mot1 mutations are inviable. To identify additional proteins related to Spt3 and Mot1 functions, we screened for high-copy-number suppressors of the mot1 spt3 inviability. This screen identified a previously unstudied gene, MOT3, that encodes a zinc finger protein. We show that Mot3 binds in vitro to three sites within the retrotransposon Ty long terminal repeat (delta) sequence. One of these sites is immediately 5' of the delta TATA region. Although a mot3 null mutation causes no strong phenotypes, it does cause some mild phenotypes, including a very modest increase in Ty mRNA levels, partial suppression of transcriptional defects caused by a mot1 mutation, and partial suppression of an spt3 mutation. These results, in conjunction with those of an independent study of Mot3 (A. Grishin, M. Rothenberg, M. A. Downs, and K. J. Blumer, Genetics, in press), suggest that this protein plays a varied role in gene expression that may be largely redundant with other factors.
Collapse
Affiliation(s)
- J M Madison
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
7
|
Kumar S, Harvey KF, Kinoshita M, Copeland NG, Noda M, Jenkins NA. cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. Genomics 1997; 40:435-43. [PMID: 9073511 DOI: 10.1006/geno.1996.4582] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Nedd4 gene was initially identified by a subtraction cloning approach as a highly expressed transcript in the mouse embryonic brain. Cloning of the Nedd4 cDNA indicated that it can encode a protein of approximately 103 kDa, consisting of a Ca2+ and phospholipid binding domain, three putative protein-protein interaction domains (the WW domains), and a carboxyl-terminus region similar to the ubiquitin-protein ligase domain (hect domain). In mouse embryos, the expression of Nedd4 in the central nervous system is highest during neurogenesis and decreases as development progresses. In addition to the central nervous system, the expression of Nedd4 is detected in various embryonic tissues and persists in most adult tissues. Using an antibody raised against a fusion protein, we show that Nedd4 protein is localized to the cellular cytoplasm. We have mapped the mouse Nedd4 gene to chromosome 9 using an interspecific backcross panel. Nedd4 maps to a previously defined homologous region between human and mouse chromosomes and thus provides additional information regarding interspecies comparative mapping.
Collapse
Affiliation(s)
- S Kumar
- The Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Rundle Mall, Adelaide, South Australia, 5000, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Collart MA. The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol Cell Biol 1996; 16:6668-76. [PMID: 8943321 PMCID: PMC231669 DOI: 10.1128/mcb.16.12.6668] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies demonstrated that mutations in the Saccharomyces cerevisiae NOT genes increase transcription from TATA-less promoters. In this report, I show that in contrast, mutations in the yeast MOT1 gene decrease transcription from TATA-less promoters. I also demonstrate specific genetic interactions between the Not complex, Mot1p, and another global regulator of transcription in S. cerevisiae, Spt3p. Five distinct genetic interactions have been established. First, a null allele of SPT3, or a mutation in SPT15 that disrupts the interaction between Spt3p and TATA-binding protein (TBP), allele specifically suppressed the not1-2 mutation. Second, in contrast to not mutations, mutations in MOT1 decreased HIS3 and HIS4 TATA-less transcription. Third, not mutations suppressed toxicity due to overexpression of TBP in mot1-1 mutants. Finally, overexpression of SPT3 caused a weak Not- mutant phenotype in mot1-1 mutants. Collectively, these results suggest a novel type of transcriptional regulation whereby the distribution of limiting TBP (TFIID) on weak and strong TBP-binding core promoters is regulated: Mot1p releases stably bound TBP to allow its redistribution to low-affinity sites, and the Not proteins negatively regulate the activity of factors such as Spt3p that favor distribution of TBP to these low-affinity sites.
Collapse
Affiliation(s)
- M A Collart
- Department of Medical Biochemistry, University of Geneva Medical School, Switzerland
| |
Collapse
|
9
|
Gabriel A, Willems M, Mules EH, Boeke JD. Replication infidelity during a single cycle of Ty1 retrotransposition. Proc Natl Acad Sci U S A 1996; 93:7767-71. [PMID: 8755550 PMCID: PMC38822 DOI: 10.1073/pnas.93.15.7767] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Retroviruses undergo a high frequency of genetic alterations during the process of copying their RNA genomes. However, little is known about the replication fidelity of other elements that transpose via reverse transcription of an RNA intermediate. The complete sequence of 29 independently integrated copies of the yeast retrotransposon Ty1 (173,043 nt) was determined, and the mutation rate during a single cycle of replication was calculated. The observed base substitution rate of 2.5 x 10(-5) bp per replication cycle suggests that this intracellular element can mutate as rapidly as retroviruses. The pattern and distribution of errors in the Ty1 genome is nonrandom and provides clues to potential in vivo molecular mechanisms of reverse transcriptase-mediated error generation, including heterogeneous RNase H cleavage of Ty1 RNA, addition of terminal nontemplated bases, and transient dislocation and realignment of primer-templates. Overall, analysis of errors generated during Ty1 replication underscores the utility of a genetically tractable model system for the study of reverse transcriptase fidelity.
Collapse
Affiliation(s)
- A Gabriel
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855, USA
| | | | | | | |
Collapse
|
10
|
Imhof MO, McDonnell DP. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol Cell Biol 1996; 16:2594-605. [PMID: 8649367 PMCID: PMC231250 DOI: 10.1128/mcb.16.6.2594] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have developed a system in Saccharomyces cerevisiae in which agonist-dependent transcriptional activity of the human progesterone receptor (hPR) is elevated to the point that it compromises cell growth. Screens for suppressors of this phenotype led to the demonstration that RSP5 is involved in hPR transactivation. Expression of RSP5 in yeast cells potentiated hPR and human glucocorticoid receptor (hGR) transcriptional activity and increased the efficacy of weak agonists of these receptors. Remarkably, expression of this yeast protein in mammalian cells had a similar effect on PR and GR transcriptional activity. Importantly, a human homolog of RSP5, hRPF1, functioned identically in mammalian cells. Previously, it has been demonstrated that RSP5 overexpression in yeast cells suppressed mutations within SPT3, a protein which interacts with the TATA-box-binding protein (TBP), suggesting that RSP5 and SPT3 operate in the same regulatory pathway. In support of this observation, we have shown that SPT3 enhances the activity of RSP5 on GR and PR when tested in yeast or mammalian cells. We conclude from these experiments that the regulatory pathways in which RSP5 and SPT3 operate in yeast cells are conserved in higher eukaryotes. Additionally, since SPT3 has been shown to contact yeast TBP directly and is the likely homolog of human TBP-associated factor TAFII18, we propose that RSP5/hRPF1 and SPT3 establish a functional link between activated PR and GR and the general transcription apparatus.
Collapse
Affiliation(s)
- M O Imhof
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
11
|
Orlinsky KJ, Gu J, Hoyt M, Sandmeyer S, Menees TM. Mutations in the Ty3 major homology region affect multiple steps in Ty3 retrotransposition. J Virol 1996; 70:3440-8. [PMID: 8648676 PMCID: PMC190217 DOI: 10.1128/jvi.70.6.3440-3448.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Saccharomyces cerevisiae retroviruslike element Ty3 encodes the major structural proteins capsid (CA) and nucleocapsid in the GAG3 open reading frame. The Ty3 CA protein contains a sequence (QGX2EX5FX3LX3H, where H is a hydrophobic residue) which has not been observed in other retrotransposons but which is similar to the major homology region (MHR) described for retrovirus CA. In this study the effects of mutations in the Ty3 MHR on particle formation, processing, DNA synthesis, and transposition were examined. Each of the mutations tested resulted in severe defects in transposition, with disruption occurring prior to or at particle formation, subsequent to particle formation and prior to completion of DNA synthesis, and subsequent to DNA synthesis. Changing the Q in the motif to R had relatively little effect on particle formation but decreased transposition to about 13% of that of a wild-type element. Changing G to A or V almost completely eliminated the formation of intracellular particles, possibly by disruption of CA-CA interactions. Changes introduced at the position of E resulted in blocked processing, blocked DNA synthesis, or a block at some post-reverse transcription step, depending on the nature of the mutation introduced. These results showed that the integrity of the Ty3 MHR is required for multiple aspects of Ty3 replication involving CA. These functions are independent of extracellular budding and of infection, aspects of the retroviral life cycle which are not recapitulated in replication of the Ty3 retrotransposon.
Collapse
Affiliation(s)
- K J Orlinsky
- Department of Microbiology and Genetics, University of California, Irvine, 92717, USA
| | | | | | | | | |
Collapse
|
12
|
Sudol M. Structure and function of the WW domain. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 65:113-32. [PMID: 9029943 DOI: 10.1016/s0079-6107(96)00008-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Sudol
- Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
13
|
Watanabe Y, Irie K, Matsumoto K. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 1995; 15:5740-9. [PMID: 7565726 PMCID: PMC230825 DOI: 10.1128/mcb.15.10.5740] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The MPK1 (SLT2) gene of Saccharomyces cerevisiae encodes a mitogen-activated protein kinase that is regulated by a kinase cascade whose known elements are Pkc1 (a homolog of protein kinase C), Bck1 (Slk1) (a homolog of MEK kinase), and the functionally redundant Mpk1 activators Mkk1 and Mkk2 (homologs of MEK). An activated mutation of MKK1, MKK1P386, inhibits growth when overexpressed. This growth-inhibitory effect was suppressed by the mpk1 delta mutation, suggesting that hyperactivation of the Mpk1 pathway is toxic to cells. To search for genes that interact with the Mpk1 pathway, we isolated both chromosomal mutations and dosage suppressor genes that ameliorate the growth-inhibitory effect of overexpressed Mkk1P386. One of the genes identified by the analysis of chromosomal mutations is RLM1 (resistance to lethality of MKK1P386 overexpression), which encodes a protein homologous to a conserved domain of the MADS (Mcm1, Agamous, Deficiens, and serum response factor) box family of transcription factors. Although rlm1 delta cells grow normally at any temperature, they display a caffeine-sensitive phenotype similar to that observed in mutants defective in BCK1, MKK1/MKK2, or MPK1. A gene fusion that provides Rlm1 with a transcriptional activation domain of Gal4 suppresses bck1 delta and mpk1 delta. A screening for dosage suppressors yielded the MSG5 genes, which encode a dual-specificity protein phosphatase. Our results suggest that Rlm1 functions as a transcription factor downstream of Mpk1 that is subject to activation by the Mpk1 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | | | |
Collapse
|
14
|
Dohmen RJ, Stappen R, McGrath JP, Forrová H, Kolarov J, Goffeau A, Varshavsky A. An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 1995; 270:18099-109. [PMID: 7629121 DOI: 10.1074/jbc.270.30.18099] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitin (Ub) activation by the Ub-activating (E1) enzyme is the initial and essential step common to all of the known processes that involve post-translational conjugation of Ub to itself or other proteins. The "activated" Ub, linked via a thioester bond to a specific cysteine residue in one of several Ub-conjugating (E2) enzymes, which catalyze the formation of isopeptide bonds between the C-terminal glycine of Ub and lysine residues of acceptor proteins. In the yeast Saccharomyces cerevisiae, a 114-kDa E1 enzyme is encoded by an essential gene termed UBA1 (McGrath, J.P., Jentsch, S., and Varshavsky, A. (1991) EMBO J. 10, 227-236). We describe the isolation and analysis of another essential gene, termed UBA2, that encodes a 71-kDa protein with extensive sequence similarities to both the UBA1-encoded yeast E1 and E1 enzymes of other organisms. The regions of similarities between Uba1p and Uba2p encompass a putative ATP-binding site as well as a sequence that is highly conserved between the known E1 enzymes and contains the active-site cysteine of E1. This cysteine is shown to be required for an essential function of Uba2p, suggesting that Uba2p-catalyzed reactions involved a transient thioester bond between Uba2p and either Ub or another protein. Uba2p is located largely in the nucleus. The putative nuclear localization signal of Uba2p is near its C terminus. The Uba1p (E1 enzyme) and Uba2p cannot complement each others essential functions even if their subcellular localization is altered by mutagenesis. Uba2p appears to interact with itself and several other S. cerevisiae proteins with apparent molecular masses of 52, 63, 87, and 120 kDa. Uba2p is multiubiquitinated in vivo, suggesting that at least a fraction of Uba2p is metabolically unstable. Uba2p is likely to be a component of the Ub system that functions as either an E2 or E1/E2 enzyme.
Collapse
Affiliation(s)
- R J Dohmen
- Institute für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Löhning C, Ciriacy M. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Ty1-mediated gene expression. Yeast 1994; 10:1329-39. [PMID: 7900422 DOI: 10.1002/yea.320101010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of a gene adjacent to the retrotransposon Ty1 is often mediated by Ty-internal sequences. We have identified novel mutants, tye7, which are affected in Ty1-mediated expression of ADH2 through a Ty1 sequence distal to the 5' long terminal repeat sequence. The TYE7 gene has been isolated and characterized. It encodes a 33 kDa protein whose N-terminal third is extremely rich in serine residues (28%). Within its C-terminal sequence, a remarkable similarity to Myc and Max proteins can be found. Thus, TYE7 is a potential member of the basic region/helix-loop-helix/leucine-zipper protein family. TYE7 function is not essential for growth. It may primarily function as a transcriptional activator in Ty1-mediated gene expression, as has been confirmed by the activation of reporter gene expression by a LexA-TYE7 hybrid protein. ADH2 activation by defined Ty1 derivatives revealed that TYE7 acts positively through the more distal Ty1 enhancer element (region D), and negatively in a region between A (the 5' proximal enhancer element) and D.
Collapse
Affiliation(s)
- C Löhning
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|
16
|
Nikolov DB, Burley SK. 2.1 A resolution refined structure of a TATA box-binding protein (TBP). NATURE STRUCTURAL BIOLOGY 1994; 1:621-37. [PMID: 7634102 DOI: 10.1038/nsb0994-621] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of a TATA box-binding protein (TBP2) from Arabidopsis thaliana has been refined at 2.1 A resolution. TBPs are general eukaryotic transcription factors that participate in initiation of RNA synthesis by all three eukaryotic RNA polymerases. The carboxy-terminal portion of TBP is a unique DNA-binding motif/protein fold, adopting a highly symmetric alpha/beta structure that resembles a molecular saddle with two stirrup-like loops. A ten-stranded, antiparallel beta-sheet provides a concave surface for recognizing class II nuclear gene promoters, while the four amphipathic alpha-helices on the convex surface are available for interaction with other transcription factors. The myriad interactions of TBP2 with components of the transcription machinery are discussed.
Collapse
Affiliation(s)
- D B Nikolov
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
17
|
Orlinsky KJ, Sandmeyer SB. The Cys-His motif of Ty3 NC can be contributed by Gag3 or Gag3-Pol3 polyproteins. J Virol 1994; 68:4152-66. [PMID: 7515969 PMCID: PMC236338 DOI: 10.1128/jvi.68.7.4152-4166.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The major structural proteins capsid and nucleocapsid (NC) of the Saccharomyces cerevisiae retroviruslike element Ty3 are produced as domains within the Gag3 and Gag3-Pol3 precursor polyproteins. Ty3 NC contains one copy of the conserved motif CX2CX4HX4C found in most retroviral NC proteins. We show here that NC proteins derived by processing of these different precursor species differ at their carboxyl termini. To determine whether the Cys-His motifs of these nascent NC domains contribute differently to replication, Gag3 and Gag3-Pol3 fusion proteins containing wild-type or mutant Cys-His domains were expressed from separate constructs. Although the Cys-His box was shown to be essential for polyprotein processing of a wild-type Ty3 element, this domain could be contributed from Gag3 or as part of Gag3-Pol3. These data suggest that the functions of the retroviral NC Cys-His domain contributed from Gag and Gag-Pol are redundant.
Collapse
Affiliation(s)
- K J Orlinsky
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
18
|
Eisenmann DM, Chapon C, Roberts SM, Dollard C, Winston F. The Saccharomyces cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 1994; 137:647-57. [PMID: 8088510 PMCID: PMC1206024 DOI: 10.1093/genetics/137.3.647] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations in the Saccharomyces cerevisiae SPT8 gene were previously isolated as suppressors of retrotransposon insertion mutations in the 5' regions of the HIS4 and LYS2 genes. Mutations in SPT8 confer phenotypes similar to those caused by particular mutations in SPT15, which encodes the TATA-binding protein (TBP). These phenotypes are also similar to those caused by mutations in the SPT3 gene, which encodes a protein that directly interacts with TBP. We have now cloned and sequenced the SPT8 gene and have shown that it encodes a predicted protein of 602 amino acids with an extremely acidic amino terminus. In addition, the predicted SPT8 amino acid sequence contains one copy of a sequence motif found in multiple copies in a number of other eukaryotic proteins, including the beta subunit of heterotrimeric G proteins. To investigate further the relationship between SPT8, SPT3 and TBP, we have analyzed the effect of an spt8 null mutation in combination with different spt3 and spt15 mutations. This genetic analysis has shown that an spt8 deletion mutation is suppressed by particular spt3 alleles. Taken together with previous results, these data suggest that the SPT8 protein is required, directly or indirectly, for TBP function at particular promoters and that the role of SPT8 may be to promote a functional interaction between SPT3 and TBP.
Collapse
Affiliation(s)
- D M Eisenmann
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
19
|
Löhning C, Rosenbaum C, Ciriacy M. Isolation of the TYE2 gene reveals its identity to SWI3 encoding a general transcription factor in Saccharomyces cerevisiae. Curr Genet 1993; 24:193-9. [PMID: 8221926 DOI: 10.1007/bf00351791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The TYE2 gene was identified by recessive mutations which result in a significant reduction of Ty-mediated ADH2 expression. We cloned the TYE2 gene and analyzed its sequence. A large open reading frame of 825 codons was found encoding a rather hydrophilic, 93-kilodalton protein which contains a highly acidic region at its N-terminus. By sequence comparison we found that TYE2 is identical to gene SWI3 which has recently been shown to encode a nuclear protein which may function as a global transcription activation factor. The TYE2/SWI3 protein is necessary for the initiation of Ty1 transcription at its major initiation site in the delta element. Furthermore TYE2 function seems to be important for the expression of a variety of Ty-unrelated functions such as ADH1 expression, sporulation, growth on maltose, galactose, raffinose, and on non-fermentable carbon sources.
Collapse
Affiliation(s)
- C Löhning
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
20
|
Happel AM, Winston F. A mutant tRNA affects delta-mediated transcription in Saccharomyces cerevisiae. Genetics 1992; 132:361-74. [PMID: 1330824 PMCID: PMC1205142 DOI: 10.1093/genetics/132.2.361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mutations in the SPT3, SPT7, SPT8 and SPT15 genes define one class of trans-acting mutations that are strong suppressors of insertion mutations caused by Ty elements or by the Ty long terminal repeat sequence, delta. These SPT genes are required for normal transcription of Ty elements, and their gene products are believed to be involved in initiation of Ty transcription from delta sequences. We have isolated and analyzed extragenic suppressors of spt3 mutations. These new mutations, named rsp, partially suppress the requirement for SPT3, SPT7, SPT8 and SPT15 functions. In addition, rsp mutations cause changes in transcription of some delta insertions in an SPT+ genetic background. Interactions between mutations in the four identified RSP genes show a number of interesting genetic properties, including the failure of unlinked rsp mutations to complement for recessive phenotypes. Cloning and sequencing of one rsp mutant gene, rsp4-27, showed that it encodes a frameshift suppressor glycine tRNA. Our results indicate that the other three RSP genes also encode frameshift suppressor glycine tRNAs. In addition, other types of frameshift suppressor glycine tRNAs can confer some Rsp- phenotypes.
Collapse
Affiliation(s)
- A M Happel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
21
|
Périer F, Carbon J. A colony color assay for Saccharomyces cerevisiae mutants defective in kinetochore structure and function. Genetics 1992; 132:39-51. [PMID: 1398062 PMCID: PMC1205128 DOI: 10.1093/genetics/132.1.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have designed a colony color assay for monitoring centromere DNA-protein interactions in yeast (Saccharomyces cerevisiae). The assay is based on the ability of centromere DNA sequences to block (in cis) transcription initiated from a hybrid CEN-GAL1 promoter. Using a IacZ reporter gene under control of the CEN-GAL1 promoter, we screened colonies derived from mutagenized cells for a blue color phenotype indicative of derepression of the hybrid construct. A limited screen in which a 61-bp CEN11 DNA fragment containing an intact CDEIII subregion plus flanking sequences was used as the "pseudo-operator" led to the identification of mutations (blu) in three complementation groups. The blu1 mutants exhibited a decrease in activity of the major CEN DNA-binding proteins in vitro. The BLU1 gene was shown to be identical to the previously isolated SPT3 gene, known to be involved in the transcriptional regulation of a subset of yeast genes. Our results indicate that the BLU1/SPT3 gene product may also be required to maintain optimal levels of functional centromere DNA-binding proteins.
Collapse
Affiliation(s)
- F Périer
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
22
|
Eisenmann DM, Arndt KM, Ricupero SL, Rooney JW, Winston F. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev 1992; 6:1319-31. [PMID: 1628834 DOI: 10.1101/gad.6.7.1319] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.
Collapse
Affiliation(s)
- D M Eisenmann
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
23
|
Ciriacy M, Freidel K, Löhning C. Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr Genet 1991; 20:441-8. [PMID: 1664298 DOI: 10.1007/bf00334769] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
By recessive mutations, we have identified five genes, TYE1-TYE5, that are required for Ty-mediated expression of ADH2. These tye mutations not only suppress transcription of ADH2 when associated with a Ty element but are also defective in transcription of all Ty1 and Ty2 elements. Moreover, some of these mutations cause growth defects on non-fermentable carbon sources as well as sporulation defects. tye mutations also strongly suppress ADH2 expression when controlled by a polyA/T insertion mutation. Genetic analysis revealed that genes TYE3 and TYE4 are allelic to the previously identified genes SNF2 and SNF5 which code for transcription factors. These findings suggest that TYE gene products influence transcription of many genes rather than specifically Ty and Ty-mediated transcription. We have also found that null alleles of certain STE genes (ste7, ste11 and ste12), known to affect cell-type specific gene expression and expression of some Ty-adjacent genes, have a clear effect on Ty-controlled ADH2 expression depending on the carbon source. On the basis of ADH2 transcript levels in glucose-grown cells, all three ste alleles cause of five-fold reduction of ADH2 expression/transcription. In ethanol-grown cells, ste11 and ste12 mutations caused an almost complete loss of Ty-mediated ADH2 activation while ste7 has only a rather moderate effect. Surprisingly, ste11 and ste12 mutations lead to a significant increase in total Ty transcript levels. This would indicate that the STE12 protein, which is known to bind specifically to Ty1 sequences and thereby serve as an activator of a Ty-adjacent gene, can negatively modulate Ty transcription.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Ciriacy
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
24
|
Happel AM, Swanson MS, Winston F. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 1991; 128:69-77. [PMID: 1648006 PMCID: PMC1204454 DOI: 10.1093/genetics/128.1.69] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae SNF2, SNF5 and SNF6 genes were initially identified as genes required for expression of SUC2 and other glucose repressible genes. The Suc- defect in all three of these classes of mutants is suppressed by mutations in the SPT6 gene. Since mutations in SPT6 had also been identified as suppressors of Ty and solo delta insertion mutations at the HIS4 and LYS2 loci, we have examined Ty transcription in snf2, snf5 and snf6 mutants and have found that Ty transcription is abolished or greatly reduced. The snf2, snf5 and snf6 defect for Ty transcription, like the defect for SUC2 transcription, is suppressed by spt6 mutations. In contrast to other mutations that abolish or greatly reduce Ty transcription (in the SPT3, SPT7 and SPT8 genes), mutations in these SNF genes do not cause suppression of insertion mutations. This result suggests that the SNF2, SNF5 and SNF6 gene products act by a distinct mechanism from the SPT3, SPT7 and SPT8 gene products to promote transcription of Ty elements. This result also suggests that a reduction of Ty transcription is not always sufficient for activation of adjacent gene expression.
Collapse
Affiliation(s)
- A M Happel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
25
|
Mendenhall MD, Culbertson MR. The yeast SUF3 frameshift suppressor encodes a mutant glycine tRNA(CCC). Nucleic Acids Res 1988; 16:8713. [PMID: 3047684 PMCID: PMC338592 DOI: 10.1093/nar/16.17.8713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- M D Mendenhall
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | |
Collapse
|
26
|
Schüller HJ, Entian KD. Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product. Gene X 1988; 67:247-57. [PMID: 3049255 DOI: 10.1016/0378-1119(88)90401-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The yeast regulatory gene CAT3 has an essential function for the depression of several glucose-repressible enzymes. Therefore, cat3 mutants are unable to grow on maltose or on non-fermentable carbon sources. Unlike the point mutants isolated previously, cat3 null allele strains also failed to utilize raffinose or galactose as sole carbon sources. Sequencing of an 1.6-kb HindIII-BglII fragment complementing cat3 mutations revealed an open reading frame of 322 codons, size of which is in good agreement with the 1.3-kb size of mRNA. No significant similarities with previously sequenced genes could be detected. CAT3-lacZ fusions confirmed the proposed reading frame. A CAT3-lacZ fusion encoding 307 amino acids of CAT3 was able to complement the growth defects of cat3 point mutants and null allele strains. Assay of beta-galactosidase activity under different growth conditions indicated a constitutive expression of the CAT3 gene product. Cellular fractionation studies showed the nuclear localization of the CAT3 protein.
Collapse
Affiliation(s)
- H J Schüller
- Medizinisch-Naturwissenschaftliches Forschungszentrum, Universität Tübingen, F.R.G
| | | |
Collapse
|
27
|
Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol Cell Biol 1988. [PMID: 2454391 DOI: 10.1128/mcb.8.4.1421] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used several mutations generated in vitro to further characterize the functions of the products encoded by the TyB gene of the transpositionally active retrotransposon TyH3 from Saccharomyces cerevisiae. Mutations close to a core protein domain of TyB, which is homologous to retroviral proteases, have striking effects on Ty protein processing, the physiology of Ty viruslike particles, and transposition. The Ty protease is required for processing of both TyA and TyB proteins. Mutations in the protease resulted in the synthesis of morphologically and functionally aberrant Ty viruslike particles. The mutant particles displayed reverse transcriptase activity, but did not synthesize Ty DNA in vitro. Ty RNA was present in the mutant particles, but at very low levels. Transposition of a genetically tagged element ceased when the protease domain was mutated, demonstrating that Ty protease is essential for transposition. One of these mutations also defined a segment of TyB encoding an active reverse transcriptase. These results indicate that the Ty protease, like its retroviral counterpart, plays an important role in particle assembly, replication, and transposition of these elements.
Collapse
|
28
|
SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol 1988. [PMID: 3127692 DOI: 10.1128/mcb.8.2.822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the Saccharomyces cerevisiae SPT3 gene were previously found to cause suppression of Ty and delta insertion mutations in 5'-noncoding regions of genes. This suppression likely results from the fact that SPT3 is required for transcription initiation in delta sequences. Other additional phenotypes of spt3 mutants, including a mating defect, suggest that SPT3 is required for normal levels of expression of other genes. We analyzed the mating defect in spt3 mutants and showed that the levels of transcripts of the three major mating pheromone genes, MF alpha 1, MFa1, MFa2, were all reduced. The reduction in expression of these genes in spt3 mutants was not due to expression of a silent mating type cassette. Furthermore, we showed that the spt3 mating defect was manifest at the levels of both cellular fusion and nuclear fusion.
Collapse
|
29
|
Youngren SD, Boeke JD, Sanders NJ, Garfinkel DJ. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol Cell Biol 1988; 8:1421-31. [PMID: 2454391 PMCID: PMC363299 DOI: 10.1128/mcb.8.4.1421-1431.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We used several mutations generated in vitro to further characterize the functions of the products encoded by the TyB gene of the transpositionally active retrotransposon TyH3 from Saccharomyces cerevisiae. Mutations close to a core protein domain of TyB, which is homologous to retroviral proteases, have striking effects on Ty protein processing, the physiology of Ty viruslike particles, and transposition. The Ty protease is required for processing of both TyA and TyB proteins. Mutations in the protease resulted in the synthesis of morphologically and functionally aberrant Ty viruslike particles. The mutant particles displayed reverse transcriptase activity, but did not synthesize Ty DNA in vitro. Ty RNA was present in the mutant particles, but at very low levels. Transposition of a genetically tagged element ceased when the protease domain was mutated, demonstrating that Ty protease is essential for transposition. One of these mutations also defined a segment of TyB encoding an active reverse transcriptase. These results indicate that the Ty protease, like its retroviral counterpart, plays an important role in particle assembly, replication, and transposition of these elements.
Collapse
Affiliation(s)
- S D Youngren
- Bionetics Research, Inc., National Cancer Institute-Frederick Cancer Research Facility, Maryland 21701
| | | | | | | |
Collapse
|
30
|
Hirschhorn JN, Winston F. SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:822-7. [PMID: 3127692 PMCID: PMC363210 DOI: 10.1128/mcb.8.2.822-827.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the Saccharomyces cerevisiae SPT3 gene were previously found to cause suppression of Ty and delta insertion mutations in 5'-noncoding regions of genes. This suppression likely results from the fact that SPT3 is required for transcription initiation in delta sequences. Other additional phenotypes of spt3 mutants, including a mating defect, suggest that SPT3 is required for normal levels of expression of other genes. We analyzed the mating defect in spt3 mutants and showed that the levels of transcripts of the three major mating pheromone genes, MF alpha 1, MFa1, MFa2, were all reduced. The reduction in expression of these genes in spt3 mutants was not due to expression of a silent mating type cassette. Furthermore, we showed that the spt3 mating defect was manifest at the levels of both cellular fusion and nuclear fusion.
Collapse
Affiliation(s)
- J N Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
31
|
Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987; 57:267-72. [PMID: 3319781 DOI: 10.1016/0378-1119(87)90131-4] [Citation(s) in RCA: 1984] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A procedure for the rapid isolation of DNA from the yeast Saccharomyces cerevisiae is described. To release plasmid DNA for the transformation of Escherichia coli, cells are subjected to vortex mixing in the presence of acid-washed glass beads, Triton X-100, sodium dodecyl sulfate, phenol and chloroform. Centrifugation of this mixture separates the DNA from cellular debris. E. coli can be efficiently transformed with plasmid present in the aqueous layer without further purification of the plasmid DNA. This procedure also releases chromosomal DNA. Following two ethanol precipitations, the chromosomal DNA can be digested by restriction endonucleases and analysed by Southern blot analysis.
Collapse
Affiliation(s)
- C S Hoffman
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|