1
|
A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 2011; 186:1085-93. [PMID: 21156958 DOI: 10.1534/genetics.110.124180] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as "transposable elements" in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work.
Collapse
|
2
|
Rachidi M, Lopes C, Benichou JC, Hellio R, Maisonhaute C. Virus-like particle formation in Drosophila melanogaster germ cells suggests a complex translational regulation of the retrotransposon cycle and new mechanisms inhibiting transposition. Cytogenet Genome Res 2005; 111:88-95. [PMID: 16093726 DOI: 10.1159/000085675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/23/2004] [Indexed: 11/19/2022] Open
Abstract
Transposition of 1731, a Drosophila melanogaster LTR retrotransposon, was investigated in reproductive organs by RNA, protein and VLP distribution during its life cycle. We detected 1731 transcription in oogonia but not in spermatogonia; in all cells during oogenesis but only in primary spermatocytes; and in ovarian cytoplasm but both in nuclei and cytoplasm of primary spermatocytes. By confocal scanning, we showed that whereas Gag protein appeared in all cytoplasms during oogenesis, in testes Gag detection began in late premeiotic primary spermatocytes and increased in elongating spermatids suggesting distinct mechanisms of 1731 transcription and translation regulation. By electron microscopy, we did not detect 1731 VLPs in ovaries, suggesting a complex post-translational control blocking VLP assembly and transposition. Interestingly, in testes we discovered VLP aggregates in cystic cytoplasm of maturing partially individualized spermatids. In testes, we observed two delays in 1731 product expressions, suggesting a complex temporal control mechanism. Transcriptional/translational delay may be determined by accumulation of 1731 RNAs in primary spermatocyte nuclei. Translational/VLP assembly delay may be determined by post-transductional mechanisms controlling +1 frameshift and Pol-protein degradation. Our results indicated two differential mechanisms inhibiting 1731 transposition in Drosophila melanogaster ovaries and testes. In addition, we proposed a new mechanism for transposition control at the cell cycle level.
Collapse
Affiliation(s)
- M Rachidi
- EA 3508 Université Paris 7-Denis Diderot, Paris, France.
| | | | | | | | | |
Collapse
|
3
|
Abstract
Telomeres, the eukaryotic chromosome termini, are deoxyribonucleoprotein structures that distinguish natural chromosome ends from broken DNA. In most organisms, telomeres are extended by a reverse transcriptase (RT) with an integrated RNA template, telomerase; in Drosophila melanogaster, however, telomere-specific retrotransposons, HeT-A and TART, transpose specifically to chromosome ends. Whether telomeres are extended by a telomerase or by retrotransposons, an RT is a key component. RT has been studied extensively, both for its important role in converting RNA genomes to DNA, which has great evolutionary impact, and as a therapeutic target in human retroviral diseases. Here we discuss a few important aspects of RT usage during retrotransposition and telomere elongation.Key words: telomeres, telomerase, retrotransposons, reverse transcriptase.
Collapse
|
4
|
Faure E, Best-Belpomme M, Champion S. UVB irradiation upregulation of the Drosophila 1731 retrotransposon LTR requires the same short sequence of U3 region in a human epithelial cell line as in Drosophila cells. Photochem Photobiol 1996; 64:807-13. [PMID: 8931378 DOI: 10.1111/j.1751-1097.1996.tb01838.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phylogenetic analysis of the retrotransposon and retrovirus suggests an evolutionary relationship between them and indicates that transactivation of the long terminal repeat (LTR)-containing retroelements could be ubiquitous. Using constructs expressing a reporter gene under the control of the entire or deleted LTR of 1731, which is a retrotransposable element of Drosophila melanogaster, we were able to show that the UVB-irradiation activation of the 1731-LTR requires the same short sequence of U3 region in a human epithelial cell line as in Schneider's Drosophila cell line (S2). This sequence is similar to the binding sequence of the members of the nuclear factor-kappa B (NF-kappa B)/rel family. In addition, human colonic carcinoma cells (HT29), in response to UVB-irradiation, produce some extracellular factor(s) that activates the 1731-LTR in nonirradiated cells.
Collapse
Affiliation(s)
- E Faure
- Institut de Chimie Biologique, Université de Provence, Marseille, France
| | | | | |
Collapse
|
5
|
Lacoste J, Codani-Simonart S, Best-Belpomme M, Peronnet F. Characterization and cloning of p11, a transrepressor of Drosophila melanogaster retrotransposon 1731. Nucleic Acids Res 1995; 23:5073-9. [PMID: 8559667 PMCID: PMC307515 DOI: 10.1093/nar/23.24.5073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The NssBF element has been characterized as a 26 nt sequence in the long terminal repeat of Drosophila melanogaster retrotransposon 1731. This sequence has been shown to be implicated in transcriptional repression of the 1731 promoter. We here report the cloning of a cDNA encoding a nuclear DNA binding protein named p11 that binds specifically to the NssBF element. P11 is a 98 amino acid polypeptide. It exhibits similarities with the mouse p9 single-stranded DNA binding protein, raising the possibility of a very general family of protein factors. Co-transfection experiments in human U937 cells showed repression of the 1731 promoter by overexpression of p11.
Collapse
Affiliation(s)
- J Lacoste
- UA CNRS 1135, Université P. et M. Curie, Paris, France
| | | | | | | |
Collapse
|
6
|
L'Hélias C, Proust J. Genetic recombination and DNA transpositions induced by pteridines and extracts of pteridine-treated diapausing chrysalids and mutants injected in Drosophila melanogaster. Mutat Res 1995; 328:91-111. [PMID: 7898508 DOI: 10.1016/0027-5107(94)00200-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper presents the results of two different treatments using pteridines in Drosophila melanogaster larvae: injection of pteridines alone; and injection of extracts from diapaused Pieris brassicae chrysalids treated with pteridines. Genetic analysis reveals first the induction of lethal or visible recessive mutations that give rise mostly to developmental mutants with variable phenotypes, and second the induction of genetic recombinations. Both treatments disturb genetic recombination in F1 female female issued from the treated larvae. This disturbance is evidenced by the increase in the rate of recombination particularly in the centromere region, and induces in F1 female female and male male clusters of mitotic recombinations of premeiotic origin. These two observations present an analogy with hybrid dysgenesis in the P-M system. This suggests that the treatments either promote the mobility of transposons in female and male larvae and their progeny, or affect the system controlling transposon mobility and integration at specific chromosomal sites. We used in situ hybridization to test our hypotheses, using P, I and copia-like probes. P yields a positive response both at the level of gonadal sterility (gonadal dysgenesis test) and in situ hybridization: after treatment, Oregon K and the wing-altered mutant bspw exhibit a normal number of P elements whereas the maternal strain Oregon K is totally devoid of P. This mutant bspw carries the neutral strain Q (a variant of P), which cannot produce P-M dysgenesis. The implication of these findings for understanding the mode of action of pteridines is twofold: (1) pteridines may be mutagenic agents which perturb meiotic and mitotic recombination; and (2) pteridines disturb the system regulating the mobility and insertion of P elements.
Collapse
Affiliation(s)
- C L'Hélias
- Laboratoire de Biologie Expérimentale, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
7
|
Lacoste J, Fourcade-Peronnet F. The NssBF element, a sequence of the Drosophila melanogaster retrotransposon 1731 potentially implicated in transcriptional repression and replication. FEBS Lett 1995; 357:283-6. [PMID: 7835428 DOI: 10.1016/0014-5793(94)01373-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nuclear single-stranded DNA binding factor (NssBF) has been characterized as a nuclear protein that binds to a 26 nucleotides sequence in the long terminal repeat (LTR) of the Drosophila melanogaster 1731 retrotransposon. This sequence, called NssBF element, was analysed by gel retardation experiments using wild-type and mutated oligonucleotides. In vitro transcription experiments were performed and suggest that NssBF element binding protein(s) represses transcription through the 1731 promoter. Furthermore, computer assisted sequence comparisons put forward a possible role of this element and/or its associated DNA binding proteins in replication.
Collapse
Affiliation(s)
- J Lacoste
- UA CNRS 1135, Université P. et M. Curie, Paris, France
| | | |
Collapse
|
8
|
Ding D, Lipshitz HD. Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis. Genet Res (Camb) 1994; 64:167-81. [PMID: 7698641 DOI: 10.1017/s0016672300032833] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Over twenty distinct families of long terminal direct repeat (LTR)-containing retrotransposons have been identified in Drosophila melanogaster. While there have been extensive analyses of retrotransposon transcription in cultured cells, there have been few studies of the spatial expression of retrotransposons during normal development. Here we report a detailed analysis of the spatial expression patterns of fifteen families of retrotransposons during Drosophila melanogaster embryogenesis (17.6, 297, 412, 1731, 3S18, blood, copia, gypsy, HMS Beagle, Kermit/flea, mdg1, mdg3, opus, roo/B104 and springer). In each case, analyses were carried out in from two to four wild-type strains. Since the chromosomal insertion sites of any particular family of retrotransposons vary widely among wild-type strains, a spatial expression pattern that is conserved among strains is likely to have been generated through interaction of host transcription factors with cis-regulatory elements resident in the retrotransposons themselves. All fifteen families of retrotransposons showed conserved patterns of spatially and temporally regulated expression during embryogenesis. These results suggest that all families of retrotransposons carry cis-acting elements that control their spatial and temporal expression patterns. Thus, transposition of a retrotransposon into or near a particular host gene-possibly followed by an excision event leaving behind the retrotransposon's cis-regulatory sequences-might impose novel developmental control on such a host gene. Such a mechanism would serve to confer evolutionarily significant alterations in the spatio-temporal control of gene expression.
Collapse
Affiliation(s)
- D Ding
- Division of Biology 156-29, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
9
|
Kim MH, Aimar C, Best-Belpomme M, Maisonhaute C. The microinjected Drosophila melanogaster 1731 retrotransposon is activated after the midblastula stage of the amphibian Pleurodeles waltl development. Genetica 1994; 92:107-14. [PMID: 7958934 DOI: 10.1007/bf00163759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The entire 1731 retrotransposon of Drosophila melanogaster, tagged with the E. coli lac Z gene inserted in its gag sequence, was injected into oocytes and fertilized eggs of the urodele amphibian Pleurodeles waltl. Expression of the reporter gene indicated that the 1731 promoter (its 5'LTR) is active in the embryos and not in the oocytes. It appeared that this element is regulated as amphibian genes are at the beginning of the development, i.e. that expression was detected after the mid blastula stage and maintained up to four or five days after injection. Another construction associating the modified 1731 promoter with the CAT gene is also expressed in Pleurodeles embryos during the same period of development. This indicated that the 1731 promoter issued from a Drosophila species is activated as promoting sequences of amphibian zygotic genes are, suggesting that in the case of horizontal transfer, 1731 can be expressed into vertebrate organisms.
Collapse
Affiliation(s)
- M H Kim
- Groupe de Génétique Cellulaire et Moléculaire, URA-CNRS 1135, Université Pierre et Marie Curie-7, Paris, France
| | | | | | | |
Collapse
|
10
|
Nahon E, Best-Belpomme M, Saucier JM. Analysis of the DNA topoisomerase-II-mediated cleavage of the long terminal repeat of Drosophila 1731 retrotransposon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:95-102. [PMID: 8243480 DOI: 10.1111/j.1432-1033.1993.tb18355.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interaction of DNA topoisomerase II with the long terminal repeat (LTR) of the Drosophila melanogaster 1731 retrotransposon was studied. The covalent binding of topoisomerase II to the LTR was strongly stimulated by different inhibitors of the enzyme 4'-demethylepipodophyllotoxin-9-(4,6-O-2-ethylidene-beta-D-glucopy ranoside (VP-16), 4'-(9-acridinylamino)methanesulfon-m-anisidine) (m-AMSA) and an ellipticine derivative. Enzyme-mediated DNA cleavage could be observed in the absence of inhibitors and was stimulated in their presence. Cleavage occurred predominantly at sites located within or at the boundary of alternating purine/pyrimidine tracts in agreement with previous observations [Spitzner, J. R., Chung, I. K. & Muller, M. T. (1990) Eukaryotic topoisomerase II preferentially cleaves alternating purine-pyrimidine repeats, Nucleic Acids Res. 18, 1-11]. In addition, all of the cleavage sites observed in the absence of inhibitor were located in the U3 region of the LTR. The site specificity of drug-induced cleavage was studied and the conformity of the cleavage sites with previously established consensus sequences was examined. Our results suggest that DNA topoisomerase II, through its ability to alter the degree of DNA supercoiling, might be involved in the control of different functions of the LTR.
Collapse
Affiliation(s)
- E Nahon
- URA Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
11
|
Kim MH, Coulondre C, Champion S, Lacoste J, Best-Belpomme M, Maisonhaute C. Translation and fates of the gag protein of 1731, a Drosophila melanogaster retrotransposon. FEBS Lett 1993; 328:183-8. [PMID: 8393808 DOI: 10.1016/0014-5793(93)80989-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An entire copy of 1731, a Drosophila melanogaster retrotransposon, was tagged by fusing in frame its putative gag gene with the reporter LacZ sequence. The high transfection efficiency of Drosophila virilis cells added to the absence of 1731 in their genome allowed, by combining histochemical staining and immunological detections, the demonstration of the translation of the 1731 gag gene. The gag protein is gathered in virus-like particles. Its occurrence in nuclei is consistent with a nuclear localization signal. The expression of the sense construction was inhibited by cotransfections with its antisense homologue.
Collapse
Affiliation(s)
- M H Kim
- Groupe de Génétique Cellulaire et Moléculaire, URA-CNRS 1135, Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Codani-Simonart S, Lacoste J, Best-Belpomme M, Fourcade-Peronnet F. Promoter activity of the 1731 Drosophila retrotransposon in a human monocytic cell line. FEBS Lett 1993; 325:177-82. [PMID: 8391472 DOI: 10.1016/0014-5793(93)81068-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The resemblance between retrotransposons and retroviruses suggests an evolutionary relationship and indicates that they may share common transcription factors. We have analyzed the behaviour of the Drosophila 1731 retrotransposon promoter in the human monocytic U937 cell line. We show that the long terminal repeat (LTR) of 1731 promotes CAT (chloramphenicol acetyl transferase) activity in these cells, in which it is enhanced by phorbol esters. Using gel mobility assays, we detected a human nuclear protein that binds in the U3 region of the LTR in a sequence-specific manner. Its precise target was determined by a DNase I footprinting experiment.
Collapse
Affiliation(s)
- S Codani-Simonart
- UA CNRS 1135, Groupe de Génétique Cellulaire et Moléculaire, Université P. et M. Curie, Paris, France
| | | | | | | |
Collapse
|
13
|
Champion S, Maisonhaute C, Kim MH, Best-Belpomme M. Characterization of the reverse transcriptase of 1731, a Drosophila melanogaster retrotransposon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:523-31. [PMID: 1385119 DOI: 10.1111/j.1432-1033.1992.tb17316.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nucleotide sequence of 1731, a retrotransposon cloned from the genome of Drosophila melanogaster, reveals a structural similarity with the proviral form of the retroviruses including a pol-like gene containing a putative reverse-transcriptase(RT)-coding sequence. Diverse parts of that sequence were subcloned and expressed in Escherichia coli. It has been demonstrated that the expression of the RT-like sequence, when translated, gives rise to peptides displaying enzyme activity characteristic of a true RT enzyme. In addition, rabbit antisera directed against such recombinant proteins allowed us to detect an immunoreactive protein of around 110 kDa, which was only present in D. melanogaster cell lines, but not in cells derived from Drosophila virilis or Drosophila hydei, whose genomes do not bear the 1731 element. This protein is expected to correspond to a non-processed pol-gene translated product and cosediments with virus-like particles exhibiting RT activity.
Collapse
Affiliation(s)
- S Champion
- Institut de Chimie Biologique, Université de Provence, Marseille, France
| | | | | | | |
Collapse
|
14
|
Evgen'ev MB, Corces VG, Lankenau DH. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. J Mol Biol 1992; 225:917-24. [PMID: 1318387 DOI: 10.1016/0022-2836(92)90412-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have determined the DNA structure of the Ulysses transposable element of Drosophila virilis and found that this transposon is 10,653 bp and is flanked by two unusually large direct repeats 2136 bp long. Ulysses shows the characteristic organization of LTR-containing retrotransposons, with matrix and capsid protein domains encoded in the first open reading frame. In addition, Ulysses contains protease, reverse transcriptase, RNase H and integrase domains encoded in the second open reading frame. Ulysses lacks a third open reading frame present in some retrotransposons that could encode an env-like protein. A dendrogram analysis based on multiple alignments of the protease, reverse transcriptase, RNase H, integrase and tRNA primer binding site of all known Drosophila LTR-containing retrotransposon sequences establishes a phylogenetic relationship of Ulysses to other retrotransposons and suggests that Ulysses belongs to a new family of this type of elements.
Collapse
Affiliation(s)
- M B Evgen'ev
- Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
15
|
Fourcade-Peronnet F, Codani-Simonart S, Best-Belpomme M. A nuclear single-stranded-DNA binding factor interacts with the long terminal repeats of the 1731 Drosophila retrotransposon. J Virol 1992; 66:1682-7. [PMID: 1371170 PMCID: PMC240910 DOI: 10.1128/jvi.66.3.1682-1687.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using gel mobility assays, we have detected two proteins that bind in the U3 region of the 1731 retrotransposon long terminal repeats (between positions -110 and -73) in nuclear extracts from Drosophila melanogaster cultured cells. The first one binds double-stranded DNA, whereas the other binds the mRNA-like strand in a sequence-specific manner. We report here the characterization of the latter protein, named NssBF for nuclear single-stranded-DNA binding factor. Gel filtration shows an apparent molecular mass of 95 kDa for NssBF. The points of contact between NssBF and its single-stranded DNA target were determined. This protein binds neither the complementary strand nor the corresponding RNA sequence. A possible role of NssBF in transcription is discussed.
Collapse
Affiliation(s)
- F Fourcade-Peronnet
- URA Centre National de la Recherche Scientifique 1135, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
16
|
Di Franco C, Galuppi D, Junakovic N. Genomic distribution of transposable elements among individuals of an inbred Drosophila line. Genetica 1992; 86:1-11. [PMID: 1334902 DOI: 10.1007/bf00133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The stability of the elements of eleven transposon families (412, B 104, blood, 297, 1731, G, copia, mdg 4, hobo, jockey and I) has been compared by the Southern technique among individuals of a Drosophila line that has been subjected to 30 generations of sister sib matings. The 412, B104, blood, 297, 1731 and G elements appear stable. Heterochromatic copia and hobo elements and euchromatic I elements appear highly polymorphic. In addition, copia, mdg 4, jockey and I elements undergo an instability resulting in significant variations in relative intensity among autoradiographic bands. The extent of the polymorphisms detected strongly suggests de novo rearrangements of transposable elements.
Collapse
Affiliation(s)
- C Di Franco
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Roma, Italy
| | | | | |
Collapse
|
17
|
Ziarczyk P, Best-Belpomme M. A short 5' region of the long terminal repeat is required for regulation by hormone and heat shock of Drosophila retrotransposon 1731. Nucleic Acids Res 1991; 19:5689-93. [PMID: 1658740 PMCID: PMC328976 DOI: 10.1093/nar/19.20.5689] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1731, a Drosophila retrotransposon was first described as having a transcription activity which was negatively regulated by 20-hydroxyecdysone (20-OH), the steroid molting hormone of insects. Using constructions expressing the bacterial chloramphenicol-acetyltransferase (CAT) gene under the control of the entire or deleted Long Terminal Repeats (LTRs) of 1731, we were able to show that a short (28 bp) sequence located in the U3 region of these LTRs was required for 1) the increase in promoter strength, 2) negative regulation by 20-OH and, 3) positive regulation by heat shock.
Collapse
Affiliation(s)
- P Ziarczyk
- Groupe de Génétique Cellulaire et Moléculaire, URA-CNRS 1135, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
18
|
|
19
|
Di Franco C, Pisano C, Dimitri P, Gigliotti S, Junakovic N. Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster. Chromosoma 1989; 98:402-10. [PMID: 2560696 DOI: 10.1007/bf00292785] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genomic distribution of elements of the copia, 412, B 104, mdg 1, mdg 4 and 1731 transposon families was compared by the Southern technique in DNA preparations extracted from brains, salivary glands and adult flies of two related Drosophila lines. The copia, 412 and mdg 1 sequences were also probed in DNA from sperm, embryos, and 1st and 2nd instar larvae. The homogeneity of the patterns observed shows that somatic transposition is unlikely to occur frequently. A correlation between mobility and the euchromatic or heterochromatic location of transposable elements is discussed. In addition, an explanation of the variable band intensities of transposable elements in Southern autoradiographs is proposed.
Collapse
Affiliation(s)
- C Di Franco
- Centro per lo Studio degli Acidi Nucleici C.N.R., Università La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
20
|
Ziarczyk P, Fourcade-Peronnet F, Simonart S, Maisonhaute C, Best-Belpomme M. Functional analysis of the long terminal repeats of Drosophila 1731 retrotransposon: promoter function and steroid regulation. Nucleic Acids Res 1989; 17:8631-44. [PMID: 2555776 PMCID: PMC335032 DOI: 10.1093/nar/17.21.8631] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1731 is a Drosophila retrotransposon whose transcripts decrease in Drosophila cells after treatment by the steroid hormone 20-hydroxyecdysone (20-OH). Several constructions have been made where the bacterial chloramphenicol acetyltransferase (CAT) gene is put under the control of either the 5' or the 3' long terminal repeats (LTRs) of 1731. CAT activity assays in transfected Drosophila cells show that either the 5' or the 3'LTR constitutes a unidirectional promoter. Analysis of partially deleted LTR suggests the presence of so-called silencer and activator regions in these LTRs. Moreover, the first 260 bp of the LTR are sufficient to provoke 20-OH inhibition whereas the first 58 bp are necessary for hormonal responsiveness. These 58 bp contain sequences showing similarities with the targets of trans-acting factors such as Octal-c and NFkB.
Collapse
Affiliation(s)
- P Ziarczyk
- Unité Associée du CNRS 1135, Groupe de Génétique Cellulaire et Moleculaire, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Yun YD, Davis RL. Copia RNA levels are elevated in dunce mutants and modulated by cAMP. Nucleic Acids Res 1989; 17:8313-26. [PMID: 2478960 PMCID: PMC334966 DOI: 10.1093/nar/17.20.8313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clones carrying sequences expressed at altered abundance levels in dunce mutants were isolated by differentially screening a genomic library with cDNA probes representing the RNA population from dunce+ flies and the RNA population from dunce mutant flies. These mutants have an elevated cAMP content, so some isolates potentially contain cAMP responsive genes. Two classes of clones were isolated. One class contains genes expressed at a higher steady state abundance level in dunce mutants compared to dunce+ flies and the other contains genes expressed at a lower steady state level in the mutants. The recovery of clones from the differential screen demonstrates that in addition to altering normal behavior, fertility, and cAMP metabolism, dunce mutation confers an alteration in the level of expression of certain genes. The class of clones carrying sequences which are overexpressed in the mutants have been characterized. These clones carry a common repetitive sequence which codes for a 5.5 kb poly(A)+ RNA - the RNA species found to be overexpressed in the mutants. Restriction analysis and hybridization experiments show these repetitive sequences to be members of the copia family of transposable elements. Administration of pharmacological agents to normal flies to increase cAMP levels leads to an increased steady state level of copia RNA. Thus, copia RNA metabolism appears to be influenced by cAMP levels.
Collapse
Affiliation(s)
- Y D Yun
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
22
|
Lankenau DH, Huijser P, Hennig W. Characterization of the long terminal repeats of micropia elements microdissected from the Y-chromosomal lampbrush loops "threads" of Drosophila hydei. J Mol Biol 1989; 209:493-7. [PMID: 2585498 DOI: 10.1016/0022-2836(89)90013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Four micropia elements from Drosophila melanogaster and D. hydei have been analysed by sequencing. Two elements, from D. hydei, micropia-DhMiF8 and -DhMiF2, were recovered by cloning microdissected Y-chromosomal lampbrush loops "threads". This method allows isolation of repetitive sequences from defined chromosomal positions, but recovery of large and overlapping inserts is difficult. In case of the Y-chromosomal micropia elements it was not possible to define the endpoints of their long terminal repeat sequences precisely. Comparison of these locus-defined micropia elements to complete micropia elements isolated from D. melanogaster allowed identification of micropia-DhMiF8 and micropia-DhMiF2 long terminal repeats (LTRs). LTR sequences from the two Drosophila species are not conserved except for a few short sequences found at comparable positions that are believed to have functional significance. In contrast, the Leu-tRNA primer binding site and plus strand primer binding site are conserved between D. melanogaster and D. hydei.
Collapse
Affiliation(s)
- D H Lankenau
- Department of Molecular and Developmental Genetics, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
23
|
Sobrier ML, Chapel S, Couderc JL, Micard D, Lecher P, Somme-Martin G, Dastugue B. 20-OH-ecdysone regulates 60 C beta tubulin gene expression in Kc cells and during Drosophila development. Exp Cell Res 1989; 184:241-9. [PMID: 2507336 DOI: 10.1016/0014-4827(89)90382-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cultured Kc cells of Drosophila melanogaster are sensitive to the insect moulting hormone, 20-hydroxy-ecdysone (20-OH-E). Morphological changes of Kc-treated cells were observed and electron microscopic analysis of pseudopodia shows a large increase in the number of microtubules, all arranged in the same orientation. The 60 C beta tubulin gene which is expressed only in 20-OH-E-treated cells encodes a 2.6-kb mRNA which is essentially cytoplasmic and polyadenylated. The corresponding premessenger is 7 kb in length and is absent in untreated cells. Two peaks of expression of the 60 C beta tubulin gene are observed during Drosophila development: at midembryogenesis (stage 8-13 h) and at the late third instar larvae-early pupae stage. By use of the Ecdysone 1 mutant, 60 C beta tubulin gene expression was demonstrated to be regulated in part by 20-OH-E during Drosophila development. Through these two complementary biological models of study, the mode and role of beta tubulin gene regulation are discussed.
Collapse
Affiliation(s)
- M L Sobrier
- Laboratoire de Biochimie Médicale, UFR de Médecine, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Degroote F, Pont G, Micard D, Picard G. Extrachromosomal circular DNAs in Drosophila melanogaster: comparison between embryos and Kc0% cells. Chromosoma 1989; 98:201-6. [PMID: 2510979 DOI: 10.1007/bf00329684] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We established the size distribution of extrachromosomal covalently closed circular DNA molecules from embryos of various Drosophila melanogaster strains and from Kc0% tissue culture cells. In embryos, more than 80% of the circular DNA molecules are smaller than 2.5 kb and all the distributions show a peak of molecules of between 200 and 400 bp. The Kc0% cell distribution differs mainly from that of embryos in that 48% of the molecules have a size between 4 and 8 kb. Correlating with this, circular molecules homologous to copia, 412 and 297 were detected only in Kc0% cells. The three tandemly repeated families containing the 5S genes, the histone genes and the 240 bp repeat of the ribosomal DNA intergenic spacer, which had previously been identified in circular DNAs from embryos, were also found in cultured cells. A fourth tandemly repeated family corresponding to the 1.688 g/cm3 satellite DNA was detected, both in embryos and Kc0% cells. It consists of circular multimeric molecules containing multiple copies of the 359 bp repeated unit. No circular DNA molecules homologous to the actin genes, the type I ribosomal DNA insertion, or the F and I transposable elements were found in embryos or Kc0% cells. Thus it appears that the extrachromosomal circular DNA molecules from embryos and from tissue culture cells differ mainly in the presence of circular copies of the copia-like transposable elements.
Collapse
Affiliation(s)
- F Degroote
- Laboratoire de Génétique, UA 360 CNRS, Université Blaise-Pascal Clermont-Ferrand II, Aubière, France
| | | | | | | |
Collapse
|
25
|
Vaury C, Bucheton A, Pelisson A. The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 1989; 98:215-24. [PMID: 2555116 DOI: 10.1007/bf00329686] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phylogenetic studies suggest that mobile element families are unstable components of the Drosophila genome. Two examples of immobilization of a transposable element family are presented here: as judged by their constant genomic organization among unrelated strains, the F and I element families have been respectively immobilized for a long time in D. simulans and in the reactive D. melanogaster strains (these are the laboratory strains which escaped the recent I invasion of D. melanogaster natural populations). All the elements of these defective families are located in the beta heterochromatic portion of the genome. Moreover, most if not all of the beta heterochromatic sequences into which the defective I elements are embedded are themselves non-mobile members of various nomadic families such as mdg 4, 297, 1731, F and Doc. These results are discussed with special emphasis on the possible nomadic origin of beta heterochromatin components and on the mechanisms of evolutionary turnover of the transposable element families.
Collapse
Affiliation(s)
- C Vaury
- Laboratoire de Génétique, Université Blaise Pascal, Aubière, France
| | | | | |
Collapse
|
26
|
Affiliation(s)
- G Echalier
- URA 7 CNRS, Laboratoire de Zoologie, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
27
|
Lankenau DH, Huijser P, Jansen E, Miedema K, Hennig W. Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol 1988; 204:233-46. [PMID: 2464689 DOI: 10.1016/0022-2836(88)90572-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The retrotransposon micropia was first described from Y-chromosomal fertility genes of Drosophila hydei. Screening a Drosophila melanogaster genomic library yielded several clones representing micropia elements in D. melanogaster. The DNA sequences of two elements from D. hydei (micropia-DhMiF2 and micropia-DhMiF8) and two elements from D. melanogaster (micropia-Dm2 and micropia-Dm11) permitted a detailed analysis of the spatial organization of micropia constituents. Micropia represents the typical gene organization represented by "core"-protein domains followed by a protease, reverse transcriptase, RNase and integrase domain. New features of the micropia family compared with other retrotransposons are: (1) a region of similarity to class I major histocompatibility complex antigens of mammals; (2) only one main open reading frame of about 4000 bases length; (3) a non-protein-coding region of about 500 base-pairs length between the 3' end of the open reading frame and the 5' start of the 3' long terminal repeat. This region includes 32 base-pair tandem repeats; (4) within the long terminal repeats, 82 base-pair tandem repeats with four potential ecdysteroid receptor binding sites. Because micropia combines many evolutionary features of different viruses, non-viral transposable elements, chromosomal genes and repetitive sequence organizations, this retrotransposon may be seen as a "minigenome" reflecting evolutionary principles of the construction of genomic components.
Collapse
Affiliation(s)
- D H Lankenau
- Department of Molecular and Developmental Genetics, Katholieke Universiteit, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Junakovic N, Di Franco C, Best-Belpomme M, Echalier G. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 1988; 97:212-8. [PMID: 2851420 DOI: 10.1007/bf00292963] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We studied the stability of the genomic distribution of six retrotransposon families in long-term and short-term cultures of Drosophila cells. In a subclone derived from Kc cells, no significant rearrangements were detected over an 8 year period. On the contrary, extensive reshuffling and amplification of transposon families were observed in recently established cell lines. These results show that in cultured Drosophila cells transposition appears to be restricted to the transition from the embryo to continuous cell lines.
Collapse
Affiliation(s)
- N Junakovic
- U.A. CNRS 1135, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
29
|
Emanoil-Ravier R, Mercier G, Canivet M, Garcette M, Lasneret J, Peronnet F, Best-Belpomme M, Peries J. Dexamethasone stimulates expression of transposable type A intracisternal retroviruslike genes in mouse (Mus musculus) cells. J Virol 1988; 62:3867-9. [PMID: 2843680 PMCID: PMC253534 DOI: 10.1128/jvi.62.10.3867-3869.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dexamethasone treatment enhances expression of transposable intracisternal type A particles (IAP) at RNA and proteins levels in a murine retrovirus-transformed cell line (Ki-BALB). This effect was ascertained by electron microscopic numeration of IAP. By sequence comparison, we located glucocorticoid-responsive elements in IAP long terminal repeats. Their regulatory potential was tested on the promoter activity of an IAP long terminal repeat construct coupled with the chloramphenicol acetyltransferase gene. Our findings suggest that the IAP activation by dexamethasone occurs at the level of transcription.
Collapse
Affiliation(s)
- R Emanoil-Ravier
- Laboratoire de Virologie des Leucémies, LOI Centre National de la Recherche Scientifique, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fourcade-Peronnet F, d'Auriol L, Becker J, Galibert F, Best-Belpomme M. Primary structure and functional organization of Drosophila 1731 retrotransposon. Nucleic Acids Res 1988; 16:6113-25. [PMID: 2456522 PMCID: PMC336851 DOI: 10.1093/nar/16.13.6113] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have determined the nucleotide sequence of the Drosophila retrotransposon 1731. 1731 is 4648 bp long and is flanked by 336 bp terminal repeats (LTRs) previously described as being reminiscent of provirus LTRs. The 1731 genome consists of two long open reading frames (ORFs 1 and 2) which slightly overlap each other. The ORF 1 and 2 present similarities with retroviral gag and pol genes respectively as shown by computer analysis. The pol gene exhibits several enzymatic activities in the following order: protease, endonuclease and reverse transcriptase. It is possible that 1731 also encompasses a ribonuclease H activity located between the endonuclease and reverse transcriptase domains. Moreover, comparison of the 1731 pol gene with the pol region of copia shows similarities extending over the protease, endonuclease and reverse transcriptase domains. We show that codon usage in the two retrotransposons is different. Finally, no ORF able to encode an env gene is detected in 1731.
Collapse
|
31
|
Micard D, Couderc JL, Sobrier ML, Giraud G, Dastugue B. Molecular study of the retrovirus-like transposable element 412, a 20-OH ecdysone responsive repetitive sequence in Drosophila cultured cells. Nucleic Acids Res 1988; 16:455-70. [PMID: 2829128 PMCID: PMC334672 DOI: 10.1093/nar/16.2.455] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Used at a physiological concentration, the steroid hormone 20-hydroxyecdysone (20-OHE) induces, in Kc cultured Drosophila melanogaster cells, important and specific changes. Modifications occur at morphological and enzymatical levels. Variations in specific protein synthesis are observed. At the molecular level, 20-OHE particularly induces a decrease in expression of the mobile dispersed genetic element 412. This repeated element which belongs to the "copia-like" family is more widely represented in Kc cells (80 fold) compared to fly cells (25 fold). 412 transcripts are heterogeneous in size, essentially polyadenylated and restricted to the nucleus. A minimal concentration of 10(-8) M and a time treatment of 16 hours are necessary to obtain a strong decrease in 412 expression. The decrease is at least an effect on these sequences at the transcriptional level. Structural similarities between the 412 element and the proviral forms of vertebrate retroviruses are strengthened by the characterization of extrachromosomal circular DNA forms revealed by the 412 probe. Quantifying experiments have shown that the steady state level of such forms is not affected by the steroid treatment.
Collapse
Affiliation(s)
- D Micard
- UA CNRS 360, Laboratoire de Biochimie Médicale, Faculté de Médecine, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|