1
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Wongdee J, Boonkerd N, Teaumroong N, Tittabutr P, Giraud E. Regulation of Nitrogen Fixation in Bradyrhizobium sp. Strain DOA9 Involves Two Distinct NifA Regulatory Proteins That Are Functionally Redundant During Symbiosis but Not During Free-Living Growth. Front Microbiol 2018; 9:1644. [PMID: 30087663 PMCID: PMC6066989 DOI: 10.3389/fmicb.2018.01644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
The Bradyrhizobium sp. DOA9 strain displays the unusual properties to have a symbiotic plasmid and to fix nitrogen during both free-living and symbiotic growth. Sequence genome analysis shows that this strain contains the structural genes of dinitrogenase (nifDK) and the nifA regulatory gene on both the plasmid and chromosome. It was previously shown that both nifDK clusters are differentially expressed depending on growth conditions, suggesting different mechanisms of regulation. In this study, we examined the functional regulatory role of the two nifA genes found on the plasmid (nifAp) and chromosome (nifAc) that encode proteins with a moderate level of identity (55%) and different structural architectures. Using gusA (β-glucuronidase) reporter strains, we showed that both nifA genes were expressed during both the free-living and symbiotic growth stages. During symbiosis with Aeschynomene americana, mutants in only one nifA gene were not altered in their symbiotic properties, while a double nifA mutant was drastically impaired in nitrogen fixation, indicating that the two NifA proteins are functionally redundant during this culture condition. In contrast, under in vitro conditions, the nifAc mutant was unable to fix nitrogen, and no effect of the nifAp mutation was detected, indicating that NifAc is essential to activate nif genes during free-living growth. In accordance, the nitrogenase fixation deficiency of this mutant could be restored by the introduction of nifAc but not by nifAp or by two chimeric nifA genes encoding hybrid proteins with the N-terminus part of NifAc and the C-terminus of NifAp. Furthermore, transcriptional analysis by RT-qPCR of the WT and two nifA mutant backgrounds showed that NifAc and NifAp activated the expression of both chromosome and plasmid structural nifDK genes during symbiosis, while only NifAc activated the expression of nifDKc during free-living conditions. In summary, this study provides a better overview of the complex mechanisms of regulation of the nitrogenase genes in the DOA9 strain that involve two distinct NifA proteins, which are exchangeable during symbiosis for the activation of nif genes but not during free-living growth where NifAc is essential for the activation of nifDKc.
Collapse
Affiliation(s)
- Jenjira Wongdee
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche Pour le Développement (IRD), UMR IRD, SupAgro, INRA, CIRAD, Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Roelvink PW, Van Den Bos RC. Regulation of nitrogen fixation in diazotrophs: the regulatorynifA gene and its characteristics. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/j.1438-8677.1989.tb01349.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. W. Roelvink
- Department of Molecular Biology; Wageningen Agricultural University; Dreijenlaan 3 6703 HA Wageningen The Netherlands
| | - R. C. Van Den Bos
- Department of Molecular Biology; Wageningen Agricultural University; Dreijenlaan 3 6703 HA Wageningen The Netherlands
| |
Collapse
|
4
|
Ott T, Sullivan J, James EK, Flemetakis E, Günther C, Gibon Y, Ronson C, Udvardi M. Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:800-8. [PMID: 19522562 DOI: 10.1094/mpmi-22-7-0800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During development of legume root nodules, rhizobia and their host plant cells undergo profound differentiation, which is underpinned by massive changes in gene expression in both symbiotic partners. Oxygen concentrations in infected and surrounding uninfected cells drop precipitously during nodule development. To assess what effects this has on plant and bacterial cell differentiation and gene expression, we used a leghemoglobin-RNA-interference (LbRNAi) line of Lotus japonicus, which is devoid of leghemoglobins and has elevated levels of free-oxygen in its nodules. Bacteroids in LbRNAi nodules showed altered ultrastructure indicating changes in bacterial differentiation. Transcript analysis of 189 plant and 192 bacterial genes uncovered many genes in both the plant and bacteria that were differentially regulated during nodulation of LbRNAi plants compared with the wild type (containing Lb and able to fix nitrogen). These included fix and nif genes of the bacteria, which are involved in microaerobic respiration and nitrogen fixation, respectively, and plant genes involved in primary and secondary metabolism. Metabolite analysis revealed decreased levels of many amino acids in nodules of LbRNAi plants, consistent with the defect in symbiotic nitrogen fixation of this line.
Collapse
Affiliation(s)
- Thomas Ott
- Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 2001; 98:9883-8. [PMID: 11481432 PMCID: PMC55547 DOI: 10.1073/pnas.161294798] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti contains three replicons: pSymA, pSymB, and the chromosome. We report here the complete 1,354,226-nt sequence of pSymA. In addition to a large fraction of the genes known to be specifically involved in symbiosis, pSymA contains genes likely to be involved in nitrogen and carbon metabolism, transport, stress, and resistance responses, and other functions that give S. meliloti an advantage in its specialized niche.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, and Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Emmerich R, Strehler P, Hennecke H, Fischer HM. An imperfect inverted repeat is critical for DNA binding of the response regulator RegR of Bradyrhizobium japonicum. Nucleic Acids Res 2000; 28:4166-71. [PMID: 11058113 PMCID: PMC113139 DOI: 10.1093/nar/28.21.4166] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RegR is the response regulator of the RegSR two-component regulatory system in Bradyrhizobium japonicum. The only target known so far is the fixR-nifA operon, encoding the redox-responsive transcription factor NifA, which activates many genes required for symbiotic nitrogen fixation in soybean nodules. In previous in vivo studies, we identified a 32 bp upstream activating sequence located around position -68, which is essential for RegR-dependent expression of the fixR-nifA operon. Here, we used an in vitro binding-site selection assay (SELEX) to more precisely define the DNA-binding specificity of RegR. The selected sequences comprised an imperfect inverted repeat (GCGGC-N(5)-GTCGC) which is highly similar to an imperfect inverted repeat in the fixR UAS (GCGAC-N(5)-GACGC). In a parallel approach, band-shift experiments were performed with oligonucleotides comprising defined point or deletion mutations in the fixR UAS. This led to the identification of 11 critical nucleotides within a 17 bp minimal RegR binding site centered at position -64 upstream of the fixR-nifA transcription start site. Notably, all 11 critical nucleotides were located either within the half sites of the inverted repeat (four nucleotides in each half site) or in the 5 bp spacer that separates the half sites (three nucleotides). Based on these results, we defined a DNA motif comprising those nucleotides that are critical for RegR binding (RegR box; 5'-GNG(A)(G)C(A)(G)TTNNGNCGC-3'). A comparison of the RegR box with functional binding sites of the RegR-like regulator RegA of Rhodobacter capsulatus revealed considerable similarities. Thus, the RegR box may assist in the identification of new RegR target genes not only in B.japonicum but also in other alpha-proteobacteria possessing RegR-like response regulators.
Collapse
Affiliation(s)
- R Emmerich
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
7
|
Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM. Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 2000; 182:1472-80. [PMID: 10692350 PMCID: PMC94442 DOI: 10.1128/jb.182.6.1472-1480.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The so-called symbiotic region of the Bradyrhizobium japonicum chromosome (C. Kündig, H. Hennecke, and M. Göttfert, J. Bacteriol. 175:613-622, 1993) was screened for the presence of genes controlled by the nitrogen fixation regulatory protein NifA. Southern blots of restriction enzyme-digested cosmids that represent an ordered, overlapping library of the symbiotic region were competitively hybridized with in vitro-labeled RNA from anaerobically grown wild-type cells and an excess of RNA isolated either from anaerobically grown nifA and rpoN mutant cells or from aerobically grown wild-type cells. In addition to the previously characterized nif and fix gene clusters, we identified three new NifA-regulated genes that were named nrgA, nrgB, and nrgC (nrg stands for NifA-regulated gene). The latter two probably form an operon, nrgBC. The proteins encoded by nrgC and nrgA exhibited amino acid sequence similarity to bacterial hydroxylases and N-acetyltransferases, respectively. The product of nrgB showed no significant similarity to any protein with a database entry. Primer extension experiments and expression studies with translational lacZ fusions revealed the presence of a functional -24/-12-type promoter upstream of nrgA and nrgBC and proved the NifA- and RpoN (sigma(54))-dependent transcription of the respective genes. Null mutations introduced into nrgA and nrgBC resulted in mutant strains that exhibited wild-type-like symbiotic properties, including nitrogen fixation, when tested on soybean, cowpea, or mung bean host plants. Thus, the discovery of nrgA and nrgBC further emphasizes the previously suggested role of NifA as an activator of anaerobically induced genes other than the classical nitrogen fixation genes.
Collapse
Affiliation(s)
- A Nienaber
- Institut für Mikrobiologie, Eidgenössische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 2000; 182:983-92. [PMID: 10648524 PMCID: PMC94374 DOI: 10.1128/jb.182.4.983-992.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is tightly regulated in Rhodospirillum rubrum at two different levels: transcriptional regulation of nif expression and posttranslational regulation of dinitrogenase reductase by reversible ADP-ribosylation catalyzed by the DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase-dinitrogenase reductase-activating glycohydrolase) system. We report here the characterization of glnB, glnA, and nifA mutants and studies of their relationship to the regulation of nitrogen fixation. Two mutants which affect glnB (structural gene for P(II)) were constructed. While P(II)-Y51F showed a lower nitrogenase activity than that of wild type, a P(II) deletion mutant showed very little nif expression. This effect of P(II) on nif expression is apparently the result of a requirement of P(II) for NifA activation, whose activity is regulated by NH(4)(+) in R. rubrum. The modification of glutamine synthetase (GS) in these glnB mutants appears to be similar to that seen in wild type, suggesting that a paralog of P(II) might exist in R. rubrum and regulate the modification of GS. P(II) also appears to be involved in the regulation of DRAT activity, since an altered response to NH(4)(+) was found in a mutant expressing P(II)-Y51F. The adenylylation of GS plays no significant role in nif expression or the ADP-ribosylation of dinitrogenase reductase, since a mutant expressing GS-Y398F showed normal nitrogenase activity and normal modification of dinitrogenase reductase in response to NH(4)(+) and darkness treatments.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
9
|
Teixeira KÃR, Wülling M, Morgan T, Galler R, Zellermann EM, Baldani JI, Kennedy C, Meletzus D. Molecular analysis of the chromosomal region encoding thenifAandnifBgenes ofAcetobacter diazotrophicus. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13676.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Bauer E, Kaspar T, Fischer HM, Hennecke H. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol 1998; 180:3853-63. [PMID: 9683482 PMCID: PMC107369 DOI: 10.1128/jb.180.15.3853-3863.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 05/27/1998] [Indexed: 02/08/2023] Open
Abstract
Many nitrogen fixation-associated genes in the soybean symbiont Bradyrhizobium japonicum are regulated by the transcriptional activator NifA, whose activity is inhibited by aerobiosis. NifA is encoded in the fixR-nifA operon, which is expressed at a low level under aerobic conditions and induced approximately fivefold under low-oxygen tension. This induction depends on a -24/-12-type promoter (fixRp1) that is recognized by the sigma54 RNA polymerase and activated by NifA. Low-level aerobic expression and part of the anaerobic expression originates from a second promoter (fixRp2) that overlaps with fixRp1 and depends on an upstream DNA region (UAS) located around position -68 (H. Barrios, H. M. Fischer, H. Hennecke, and E. Morett, J. Bacteriol. 177:1760-1765, 1995). A protein binding to the UAS was previously postulated to act as an activator. This protein has now been purified, and the corresponding gene (regR) has been cloned. On the basis of the predicted amino acid sequence, RegR belongs to the family of response regulators of two-component regulatory systems. We identified upstream of the regR gene an additional gene (regS) encoding a putative sensor kinase. A regR mutant was constructed in which neither a specific UAS-binding activity nor fixRp2-dependent transcript formation and fixR'-'lacZ expression was detected in aerobically grown cells. Anaerobic fixR'-'lacZ expression was also decreased in regR mutants to about 10% of the level observed in the wild type. Similarly, regR mutants showed only about 2% residual nitrogen fixation activity, but unlike nodules induced by nifA mutants, the morphology of those nodules was normal, displaying no signs of necrosis. While regR mutants grew only slightly slower in free-living, aerobic conditions, they displayed a strong growth defect under anaerobic conditions. The phenotypic properties of regS mutants differed only marginally, if at all, from those of the wild type, suggesting the existence of a compensating sensor activity in these strains. The newly identified RegR protein may be regarded as a master regulator in the NifA-dependent network controlling nif and fix gene expression in B. japonicum.
Collapse
Affiliation(s)
- E Bauer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
11
|
Barrios H, Grande R, Olvera L, Morett E. In vivo genomic footprinting analysis reveals that the complex Bradyrhizobium japonicum fixRnifA promoter region is differently occupied by two distinct RNA polymerase holoenzymes. Proc Natl Acad Sci U S A 1998; 95:1014-9. [PMID: 9448277 PMCID: PMC18656 DOI: 10.1073/pnas.95.3.1014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Bradyrhizobium japonicum fixRnifA operon is transcribed from two promoters: fixRp1, a -24/-12 promoter recognized by the sigma54-holoenzyme form of the RNA polymerase, and fixRp2, a -35/-10 promoter that is transcribed by a second, unidentified, form of RNA polymerase holoenzyme. The fixRp1 promoter is autoregulated during microaerobiosis by NifA, whereas fixRp2 is also activated, but by a different regulatory protein. The main transcription start sites for these promoters are just two nucleotides apart, such that the conserved -12 and -10 regions of fixRp1 and fixRp2, respectively, must overlap each other, whereas the -24 and -35 regions lie one DNA helical turn apart. Using in vivo genomic dimethyl sulfate and KMnO4 footprinting, we showed that the promoter region is differentially protected, depending upon which holoenzyme is bound. Mutagenesis analyses indicated that positions from -12 to -14 are critical for the activity of both promoters, whereas mutations at -10 and -11 affected mainly fixRp2 expression. When the sequence of the putative -35 region of fixRp2 was modified to match the putative consensus, expression from this promoter was increased 3-fold and the reactivity toward KMnO4, but not the transcriptional start site, moved two nucleotides further upstream, indicating that the altered promoter forms a different open complex. Additionally, we detected NifA-dependent methylation protection of two atypical NifA binding sites and protection of guanine -75. The latter residue is located in a region critical for fixRp2 promoter activation. The results present direct physical evidence of the complexity of the organization, regulation, and function of the fixRnifA promoter region.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
12
|
Thöny-Meyer L, Künzler P. The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis. J Bacteriol 1996; 178:6166-72. [PMID: 8892815 PMCID: PMC178486 DOI: 10.1128/jb.178.21.6166-6172.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Bradyrhizobium japonicum acnA gene encoding the tricarboxylic acid cycle enzyme aconitase was cloned and characterized. The gene was mapped immediately upstream of the cytochrome c biogenesis gene cycV and found to be transcribed in the opposite direction. The nucleotide sequence of acnA was determined; the derived amino acid sequence shared a significant similarity with bacterial aconitases and with the human iron-responsive-element-binding protein. The level of expression of the acnA gene under aerobic growth conditions was 10-fold higher than that under anaerobic conditions. The start of transcription was mapped by primer extension experiments, and the putative promoter was found to contain a typical -10 but no -35 consensus sequence for a sigma70-type RNA polymerase. A 5' deletion removing all but 19 nucleotides upstream of the start of transcription completely abolished gene expression. An acnA mutant was constructed by gene disruption, and the mutant phenotype was characterized. Growth of the mutant was severely affected and could not be corrected by the addition of glutamate as a supplement. Although aconitase activity in free-living cells was decreased by more than 70%, the ability of the mutant to establish an effective root nodule symbiosis with soybean plants was not affected. This suggested either the existence of a second aconitase or the compensation for the mutant defect by symbiosis-specific metabolites synthesized in the root nodules.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | |
Collapse
|
13
|
Abstract
The csgA gene encodes an extracellular protein that is essential for cell-cell communication (C-signaling) during fruiting body development of Myxococcus xanthus. Two transposon insertions in the socABC operon, soc-560 and socC559, restore development to csgA null mutants. Mixing soc-560 csgA cells or socC559 csgA cells with csgA cells at a ratio of 1:1 stimulated the development of csgA cells, suggesting that soc mutations allow cells to produce the C-signal or a similar molecule via a csgA-independent mechanism. The socABC operon contains the following three genes: socA, a member of the short-chain alcohol dehydrogenase gene family; socB, a gene encoding a putative membrane anchoring protein; and socC, a negative autoregulator of socABC operon expression. Both suppressor mutations inactivate socC, leading to a 30- to 100-fold increase in socA transcription; socA expression in suppressor strains is at least 100-fold higher than csgA expression during all stages of development. The amino acid sequence of SocA has 28% identity and 51% similarity with that of CsgA. We suggest that CsgA suppression is due to overproduction of SocA, which can substitute for CsgA. These results raise the possibility that a cell surface dehydrogenase plays a role in C-signaling.
Collapse
Affiliation(s)
- K Lee
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
14
|
Barrios H, Fischer HM, Hennecke H, Morett E. Overlapping promoters for two different RNA polymerase holoenzymes control Bradyrhizobium japonicum nifA expression. J Bacteriol 1995; 177:1760-5. [PMID: 7896698 PMCID: PMC176803 DOI: 10.1128/jb.177.7.1760-1765.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Bradyrhizobium japonicum NifA protein, the central regulator for nitrogen fixation gene expression, is encoded in the fixRnifA operon. This operon is activated during free-living anaerobic growth and in the symbiotic root nodule bacteroid state. In addition, it is expressed in aerobic conditions, albeit at a low level. Here, we report that this pattern of expression is due to the presence of two overlapping promoters: fixRp1, which is of the -24/-12 class recognized by the RNA polymerase sigma 54, and fixRp2, which shares homology with the -35 and -10 regions found in other putative B. japonicum housekeeping promoters. Primer extension analyses showed that fixRp1 directed the synthesis of a transcript, P1, that starts 12 nucleotides downstream of the -12 region. In addition to sigma 54, P1 was dependent on NifA and low oxygen tension. Transcripts originating from fixRp2 started at two sites: one coincided with P1, while the most abundant, P2 initiated just two nucleotides further downstream of P1. Expression from fixRp2 was dependent on the upstream -68 promoter region, a region known to bind a putative activator protein, but it was independent of sigma 54 and NifA. This promoter was expressed in aerobic and anaerobic conditions but was not expressed in 30-day-old bacteroids. Mutations in the conserved 12 region for the sigma 54 promoter did not show any transcript, because these mutations also disrupted the overlapping -10 region of the fixRp2 promoter. Conversely, mutations at the -24 region only affected the sigma 54-dependent P1 transcript, having no effect on the expression of P2. In the absence of omega(54), anaerobic expression from the fixRp(2) promoter was enhanced threefold, suggesting that in the wild-type strain, the two RNA polymerase holoenzymes must compete for binding to the same promoter region.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Ecología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | |
Collapse
|
15
|
Maser E. Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases. Biochem Pharmacol 1995; 49:421-40. [PMID: 7872949 DOI: 10.1016/0006-2952(94)00330-o] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E Maser
- Department of Pharmacology and Toxicology, School of Medicine, Philipps-University of Marburg, Germany
| |
Collapse
|
16
|
Matthysse AG, White S, Lightfoot R. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 1995; 177:1069-75. [PMID: 7860585 PMCID: PMC176703 DOI: 10.1128/jb.177.4.1069-1075.1995] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A region of the chromosome of Agrobacterium tumefaciens 11 kb long containing two operons required for cellulose synthesis and a part of a gene homologous to the fixR gene of Bradyrhizobium japonicum has been sequenced. One of the cellulose synthesis operons contained a gene (celA) homologous to the cellulose synthase (bscA) gene of Acetobacter xylinum. The same operon also contained a gene (celC) homologous to endoglucanase genes from A. xylinum, Cellulomonas uda, and Erwinia chrysanthemi. The middle gene of this operon (celB) and both the genes of the other operon required for cellulose synthesis (celDE) showed no significant homology to genes contained in the databases. Transposon insertions showed that at least the last gene of each of these operons (celC and celE) was required for cellulose synthesis in A. tumefaciens.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
17
|
Michiels J, Vanderleyden J. Molecular basis of the establishment and functioning of a N2-fixing root nodule. World J Microbiol Biotechnol 1994; 10:612-30. [DOI: 10.1007/bf00327946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/1994] [Accepted: 08/03/1994] [Indexed: 12/01/2022]
|
18
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
19
|
Michiels J, D'hooghe I, Verreth C, Pelemans H, Vanderleyden J. Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression. Arch Microbiol 1994; 161:404-8. [PMID: 8042903 DOI: 10.1007/bf00288950] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the isolation, mutational analysis and the nucleotide sequence of the Rhizobium leguminosarum bv. phaseoli nifA gene. Comparison of the deduced amino acid sequence with other NifA sequences indicated the presence of the conserved central activator and the C-terminal DNA-binding domains. Nodules elicited by a R. leguminosarum bv. phaseoli nifA mutant were symbiotically ineffective. The expression of a nifA-gusA fusion was shown to be independent on the oxygen status of the cell. We cloned the three nifH copies of R. leguminosarum bv. phaseoli and determined the nucleotide sequence of their promoter regions. The expression of nifH-gusA fusions is induced under microaerobic conditions and is dependent on the presence of NifA.
Collapse
Affiliation(s)
- J Michiels
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
20
|
Abstract
Amino acid sequence comparisons have revealed that mammalian 11 beta-hydroxysteroid and 17 beta-hydroxysteroid dehydrogenases and bacterial 3 alpha, 20 beta- and 3 beta-hydroxysteroid dehydrogenases are homologs; that is, these enzymes are descended from a common ancestor. These steroid dehydrogenases are also homologous to human 15-hydroxyprostaglandin dehydrogenase and to proteins found in Rhizobia, bacteria that form nitrogen-fixing nodules in the roots of legumes. We constructed a multiple sequence alignment of these proteins, which, when combined with the recently determined tertiary structure of Streptomyces hydrogenans 3 alpha, 20 beta-hydroxysteroid dehydrogenase and a homologous enzyme, rat dihydropteridine reductase, identifies segments and residues that are likely to be structurally important in the functioning of these enzymes especially regarding specificity for NADPH and NADH.
Collapse
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623
| |
Collapse
|
21
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
22
|
Abstract
There is an astonishing array of microbial alcohol oxidoreductases. They display a wide variety of substrate specificities and they fulfill several vital but quite different physiological functions. Some of these enzymes are involved in the production of alcoholic beverages and of industrial solvents, others are important in the production of vinegar, and still others participate in the degradation of naturally occurring and xenobiotic aromatic compounds as well as in the growth of bacteria and yeasts on methanol. They can be divided into three major categories. (1) The NAD- or NADP-dependent dehydrogenases. These can in turn be divided into the group I long-chain (approximately 350 amino acid residues) zinc-dependent enzymes such as alcohol dehydrogenases I, II, and III of Saccharomyces cerevisiae or the plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida; the group II short-chain (approximately 250 residues) zinc-independent enzymes such as ribitol dehydrogenase of Klebsiella aerogenes; the group III "iron-activated" enzymes that generally contain approximately 385 amino acid residues, such as alcohol dehydrogenase II of Zymomonas mobilis and alcohol dehydrogenase IV of Saccharomyces cerevisiae, but may contain almost 900 residues in the case of the multifunctional alcohol dehydrogenases of Escherichia coli and Clostridium acetobutylicum. The aldehyde/alcohol oxidoreductase of Amycolatopsis methanolica and the methanol dehydrogenases of A. methanolica and Mycobacterium gasti are 4-nitroso-N,N-dimethylaniline-dependent nicotinoproteins. (2) NAD(P)-independent enzymes that use pyrroloquinoline quinone, haem or cofactor F420 as cofactor, exemplified by methanol dehydrogenase of Paracoccus denitrificans, ethanol dehydrogenase of Acetobacter and Gluconobacter spp. and the alcohol dehydrogenases of certain archaebacteria. (3) Oxidases that catalyze an essentially irreversible oxidation of alcohols, such as methanol oxidase of Hansenula polymorpha and probably the veratryl alcohol oxidases of certain fungi involved in lignin degradation. This review deals mainly with those enzymes for which complete amino acid sequences are available. The discussion focuses on a comparison of their primary, secondary, tertiary, and quaternary structures and their catalytic mechanisms. The physiological roles of the enzymes and isoenzymes are also considered, as are their probable evolutionary relationships.
Collapse
Affiliation(s)
- M F Reid
- Department of Biochemistry, University of Glasgow, Scotland, U.K
| | | |
Collapse
|
23
|
Akrim M, Bally M, Ball G, Tommassen J, Teerink H, Filloux A, Lazdunski A. Xcp-mediated protein secretion in Pseudomonas aeruginosa: identification of two additional genes and evidence for regulation of xcp gene expression. Mol Microbiol 1993; 10:431-43. [PMID: 7934833 DOI: 10.1111/j.1365-2958.1993.tb02674.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Pseudomonas aeruginosa, several exoproteins synthesized with a signal sequence (elastase, lipase, phospholipases, alkaline phosphatase and exotoxin A) are secreted by a two-step mechanism. They first cross the inner membrane in a signal sequence-dependent way, and are further translocated across the outer membrane in a second step requiring secretion functions encoded by several xcp genes. Ten xcp genes have already been characterized (Bally et al., 1992a). In this study, two additional xcp genes, xcpP and xcpQ, are described. They are located in the 40 min region of the chromosome where they probably define an operon, divergent from the xcpR-Z operon previously characterized in this region. These two genes encode two proteins, XcpP and XcpQ, similar to PulC and PulD of the pul system of Klebsiella oxytoca. Moreover, the two divergent operons share a common regulation which is growth-phase dependent.
Collapse
Affiliation(s)
- M Akrim
- Laboratoire d'Ingéniérie et Dynamique des Systèmes Membranaires, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Picton S, Gray J, Barton S, AbuBakar U, Lowe A, Grierson D. cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. PLANT MOLECULAR BIOLOGY 1993; 23:193-207. [PMID: 8219049 DOI: 10.1007/bf00021431] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.
Collapse
|
25
|
Weidenhaupt M, Fischer HM, Acuña G, Sanjuan J, Hennecke H. Use of a promoter-probe vector system in the cloning of a new NifA-dependent promoter (ndp) from Bradyrhizobium japonicum. Gene X 1993; 129:33-40. [PMID: 8335258 DOI: 10.1016/0378-1119(93)90693-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many of the symbiotic nitrogen-fixation genes in the soybean root nodule bacterium, Bradyrhizobium japonicum, are transcribed from -24/-12 promoters that are recognized by the sigma 54-RNA polymerase and activated by the transcriptional regulator protein, NifA. Several lines of evidence suggest that the B. japonicum genome has more than those seven NifA-regulated promoters which were characterized previously. Here, we present a strategy aimed at the cloning of new NifA-activated promoters. It makes use of (i) a promoter-probe vector into which random B. japonicum genomic fragments were cloned in front of a promoterless reporter gene and (ii) a screening procedure that allowed us to distinguish constitutive promoters from promoters that were specifically activated by NifA under microaerobic or anaerobic conditions. With certain modifications, the system may be generally applicable to clone positively regulated, anaerobically induced genes. A novel NifA-dependent promoter region (ndp) of B. japonicum was found by these means. The transcription start point was mapped, and its 5'-flanking DNA carried a -24/-12-type promoter sequence plus potential binding sites for NifA and integration host factor. Further transcript analyses confirmed that maximal transcription from this promoter occurred only in the presence of NifA and sigma 54 during anaerobic growth of B. japonicum. In Escherichia coli, expression of beta-galactosidase derived from a transcriptional ndp::lacZ fusion was activated 11-fold by B. japonicum NifA, and this activation also required sigma 54 but was independent of NtrC. The DNA around ndp shared no similarity with known sequences in databases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Weidenhaupt
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
North AK, Klose KE, Stedman KM, Kustu S. Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J Bacteriol 1993; 175:4267-73. [PMID: 8331061 PMCID: PMC204865 DOI: 10.1128/jb.175.14.4267-4273.1993] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- A K North
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
27
|
Kündig C, Hennecke H, Göttfert M. Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J Bacteriol 1993; 175:613-22. [PMID: 8423135 PMCID: PMC196196 DOI: 10.1128/jb.175.3.613-622.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We describe a compilation of 79 known genes of Bradyrhizobium japonicum 110, 63 of which were placed on a correlated physical and genetic map of the chromosome. Genomic DNA was restricted with enzymes PacI, PmeI, and SwaI, which yielded two, five, and nine fragments, respectively. Linkage of some of the fragments was established by performing Southern blot hybridization experiments. For probes we used isolated, labelled fragments that were produced either by PmeI or by SwaI. Genes were mapped on individual restriction fragments by performing gene-directed mutagenesis. The principle of this method was to introduce recognition sites for all three restriction enzymes mentioned above into or very near the desired gene loci. Pulsed-field gel electrophoresis of restricted mutant DNA then resulted in an altered fragment pattern compared with wild-type DNA. This allowed us to identify overlapping fragments and to determine the exact position of any selected gene locus. The technique was limited only by the accuracy of the fragment size estimates. After linkage of all of the restriction fragments we concluded that the B. japonicum genome consists of a single, circular chromosome that is approximately 8,700 kb long. Genes directly concerned with nodulation and symbiotic nitrogen fixation are clustered in a chromosomal section that is about 380 kb long.
Collapse
Affiliation(s)
- C Kündig
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
28
|
Callahan H, Beverley S. A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35743-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Krey R, Pühler A, Klipp W. A defined amino acid exchange close to the putative nucleotide binding site is responsible for an oxygen-tolerant variant of the Rhizobium meliloti NifA protein. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:433-41. [PMID: 1406589 DOI: 10.1007/bf00538703] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Rhizobium meliloti the NifA protein plays a central role in the expression of genes involved in nitrogen fixation. The R. meliloti NifA protein has been found to be oxygen sensitive and therefore acts as a transcriptional activator only under microaerobic conditions. In order to generate oxygen-tolerant variants of the NifA protein a plasmid carrying the R. meliloti nifA gene was mutagenized in vitro with hydroxylamine. About 70 mutated nifA genes were isolated which mediated up to 12-fold increased NifA activity at high oxygen concentrations. A cloning procedure involving the combination of DNA fragments from mutated and wild-type nifA genes allowed mapping of the mutation sites within the central part of the nifA gene. For 17 mutated nifA genes the exact mutation sites were determined by DNA sequence analysis. It was found that all 17 mutated nifA genes carried identical guanosine--adenosine mutations resulting in a methionine--isoleucine exchange (M217I) near the putative nucleotide binding site within the central domain. Secondary structure predictions indicated that the conformation of the putative nucleotide binding site may be altered in the oxygen-tolerant NifA proteins. A model is proposed which assumes that at high oxygen concentrations the loss of activity of the R. meliloti NifA protein is due to a conformational change in the nucleotide binding site that may abolish binding or hydrolysis of the nucleotide. Such a conformational change may be blocked in the oxygen-tolerant NifA protein, thus allowing interaction with the nucleotide at high oxygen concentrations.
Collapse
Affiliation(s)
- R Krey
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | |
Collapse
|
30
|
Neidle E, Hartnett C, Ornston LN, Bairoch A, Rekik M, Harayama S. cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:113-20. [PMID: 1740120 DOI: 10.1111/j.1432-1033.1992.tb16612.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the aerobic degradation of benzoate by bacteria, benzoate is first dihydroxylated by a ring-hydroxylating dioxygenase to form a cis-diol (1,2-dihydroxycyclohexa-3,4-diene carboxylate) which is subsequently transformed to a catechol by an NAD(+)-dependent cis-diol dehydrogenase. The structural gene for this dehydrogenase, encoded on TOL plasmid pWW0 of Pseudomonas putida (xylL) and that encoded on the chromosome of Acinetobacter calcoaceticus (benD), were sequenced. They encode polypeptides of about 28 kDa in size. These proteins are similar to each other, exhibiting 58% sequence identity. They are also similar to other proteins of at least 20 different functions, which are members of the short-chain alcohol dehydrogenase family. The alignment of these proteins suggest two amino acids, lysine and tyrosine, as catalytically important residues.
Collapse
Affiliation(s)
- E Neidle
- Department of Biology, Yale University, New Haven
| | | | | | | | | | | |
Collapse
|
31
|
Watabe K, Ishikawa T, Mukohara Y, Nakamura H. Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding L-amino acids from the native plasmid of Pseudomonas sp. strain NS671. J Bacteriol 1992; 174:962-9. [PMID: 1732229 PMCID: PMC206176 DOI: 10.1128/jb.174.3.962-969.1992] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas sp. strain NS671, which produces L-amino acids asymmetrically from the corresponding racemic 5-substituted hydantoins, harbored a plasmid of 172 kb. Curing experiments suggest that this plasmid, designated pHN671, is responsible for the conversion of 5-substituted hydantoins to their corresponding L-amino acids by strain NS671. DNA fragments containing the genes involved in this conversion were cloned from pHN671 in Escherichia coli by using pUC18 as a cloning vector. The smallest recombinant plasmid, designated pHPB12, contained a 7.5-kb insert DNA. The nucleotide sequence of the insert DNA was determined, and three closely spaced open reading frames predicted to encode peptides with molecular masses of 75.6, 64.9, and 45.7 kDa were found. These open reading frames were designated hyuA, hyuB, and hyuC, respectively. Cell extracts from E. coli carrying deletion derivatives of pHPB12 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the gene products of hyuA, hyuB, and hyuC were identified. The functions of these gene products were also examined with the deletion derivatives. The results indicate that both hyuA and hyuB are involved in the conversions of D- and L-5-substituted hydantoins to corresponding N-carbamyl-D- and N-carbamyl-L-amino acids, respectively, and that hyuC is involved in the conversion of N-carbamyl-L-amino acids to L-amino acids.
Collapse
Affiliation(s)
- K Watabe
- Odawara Research Center, Nippon Soda Co., Ltd., Kanagawa, Japan
| | | | | | | |
Collapse
|
32
|
Vieille C, Elmerich C. Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and to Rhizobium meliloti nodG. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:375-84. [PMID: 1538694 DOI: 10.1007/bf00292706] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 4 kb SalI fragment from Azospirillum brasilense Sp7 that shares homology with a 6.8 kb EcoRI fragment carrying nodGEFH and part of nodP of Rhizobium meliloti 41 was cloned in pUC18 to yield pAB503. The nucleotide sequence of a 2 kb SalI-SmaI fragment of the pAB503 insert revealed an open reading frame, named ORF3, encoding a polypeptide sharing 40% identity with R. meliloti NodG. The deduced polypeptide also shared 60% identity with the Alcaligenes eutrophus NADPH-dependent acetoacetyl-CoA (AA-CoA) reductase, encoded by the phbB gene and involved in poly-beta-hydroxybutyrate (PHB) synthesis. Northern blot analysis and promoter extension mapping indicated that ORF3 is expressed as a monocistronic operon from a promoter that resembles the Escherichia coli sigma 70 consensus promoter. An ORF3-lacZ translational fusion was constructed and was very poorly expressed in E. coli, but was functional and constitutively expressed in Azospirillum. Tn5-Mob insertions in ORF3 did not affect growth, nitrogen fixation, PHB synthesis or NAD(P)H-linked AA-CoA reductase activity. An ORF3 DNA sequence was used to probe total DNA of several Azospirillum strains. No ORF3 homologues were found in A. irakense, A. amazonense, A. halopraeferens or in several A. lipoferum strains.
Collapse
Affiliation(s)
- C Vieille
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
33
|
Liang YY, Kaminski PA, Elmerich C. Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Mol Microbiol 1991; 5:2735-44. [PMID: 1779763 DOI: 10.1111/j.1365-2958.1991.tb01982.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A gene bank of Azospirillum lipoferum Br17 constructed in the vector lambda GEM11 was screened with a Bradyrhizobium japonicum nifA gene probe. A 7.3 kb EcoRI fragment carrying a nifA-like gene was thereby isolated and subsequently used to screen a gene bank of Azospirillum brasilense Sp7 constructed in pUC18. Two EcoRI fragments of 5.6 kb and 3.6 kb covering the nifA-homology region were found. Mutants with Nif- phenotype were obtained by site-directed Tn5 mutagenesis of the 5.6 kb fragment and subsequent recombination into the A. brasilense Sp7 genome. The mutations were clustered into two loci located at each extremity of the fragment. One of these loci corresponded to nifA and the other to nifB. The nucleotide sequence of nifA of A. brasilense Sp7 was determined. Comparison of the deduced amino acid sequences of NifA of A. brasilense Sp7 and NifA of B. japonicum, Rhizobium leguminosarum biovar trifolii and Klebsiella pneumoniae confirmed that it was a nifA-like gene. Construction of a nifA-lacZ fusion and mapping of the RNA transcriptional start site showed that the nifA-like gene was expressed from an unidentified promoter, under conditions of nitrogen fixation and in the presence of oxygen and ammonia.
Collapse
Affiliation(s)
- Y Y Liang
- Unité de Physiologie Cellulaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
34
|
Baker ME. Evolution of enzymatic regulation of prostaglandin action: novel connections to regulation of human sex and adrenal function, antibiotic synthesis and nitrogen fixation. PROSTAGLANDINS 1991; 42:391-410. [PMID: 1763199 DOI: 10.1016/0090-6980(91)90031-a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recent determination of the amino acid sequences of enzymes that metabolize prostaglandins and steroids has revealed interesting connections between some of these enzymes. Human placental 15-hydroxyprostaglandin dehydrogenase, which catalyzes the oxidation of the C15 alcohol on prostaglandins E2 and F2 alpha, is homologous to 11 beta-hydroxysteroid, 17 beta-hydroxysteroid, and 3 alpha, 20 beta-hydroxysteroid dehydrogenases. That is, these four enzymes are derived from a common ancestor. Moreover, enzymes important in synthesis of antibiotics and proteins synthesized by soil bacteria that form nitrogen-fixing nodules in alfalfa and soybeans are homologous to 15-hydroxyprostaglandin dehydrogenase. These homologies provide important insights into the origins of intercellular communication that is mediated by prostaglandins, steroids, and fatty acids.
Collapse
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623
| |
Collapse
|
35
|
Engel P, Trageser M, Unden G. Reversible interconversion of the functional state of the gene regulator FNR from Escherichia coli in vivo by O2 and iron availability. Arch Microbiol 1991; 156:463-70. [PMID: 1785953 DOI: 10.1007/bf00245393] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
FNR, the gene regulator of anaerobic respiratory genes of Escherichia coli is converted in vivo by O2 and by chelating agents to an inactive state. The interconversion process was studied in vivo in a strain with temperature controlled synthesis of FNR by measuring the expression of the frd (fumarate reductase) operon and the reactivity of FNR with the alkylating agent iodoacetic acid. FNR from aerobic bacteria is, after arresting FNR synthesis and shifting to anaerobic conditions, able to activate frd expression and behaves in the alkylation assay like anaerobic FNR. After shift from anaerobic to aerobic conditions, FNR no longer activates the expression of frd and reacts similar to aerobic FNR in the alkylation assay. The conversion of aerobic (inactive) to anaerobic (active) FNR occurs in the presence of chloramphenicol, an inhibitor of protein synthesis. Anaerobic FNR can also be converted post-translationally to inactive, metal-depleted FNR by growing the bacteria in the presence of chelating agents. The reverse is also possible by incubating metal-depleted bacteria with Fe2+. From the experiments it is concluded that the aerobic and the metal-depleted form of FNR can be transferred post-translationally and reversibly to the anaerobic (active) form. The response of FNR to changes in O2 supply therefore occurs at the FNR protein level in a reversible mode.
Collapse
Affiliation(s)
- P Engel
- Institut für Mikrobiologie, J.W. Goethe-Universität, Frankfurt/Main, Federal Republic of Germany
| | | | | |
Collapse
|
36
|
Rossbach S, Loferer H, Acuña G, Appleby CA, Hennecke H. Cloning, sequencing and mutational analysis of the cytochromec552gene (cycB) fromBradyrhizobium japonicumstrain 110. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04431.x-i1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Ebeling S, Kündig C, Hennecke H. Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J Bacteriol 1991; 173:6373-82. [PMID: 1717438 PMCID: PMC208969 DOI: 10.1128/jb.173.20.6373-6382.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
All of the Azorhizobium, Bradyrhizobium, and Rhizobium genes known to be involved in the development of nitrogen-fixing legume root nodules are genes that code for proteins. Here we report the first exception to this rule: the sra gene; it was discovered during the genetic analysis of a Bradyrhizobium japonicum Tn5 mutant (strain 259) which had a severe deficiency in colonizing soybean nodules. A DNA region as small as 0.56 kb cloned from the parental wild type restored a wild-type phenotype in strain 259 by genetic complementation. The sra gene was located on this fragment, sequenced, and shown to be transcribed into a 213-nucleotide RNA. Results obtained with critical point mutations in the sra gene proved that the transcript was not translated into protein; rather, it appeared to function as an RNA molecule with a certain stem-and-loop secondary structure. We also detected an sra homolog in Rhizobium meliloti which, when cloned and transferred to B. japonicum mutant 259, fully restored symbiotic effectiveness in that strain. We propose several alternative functions for the sra gene product, of which that as a regulatory RNA for gene expression may be the most probable one.
Collapse
Affiliation(s)
- S Ebeling
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Persson B, Krook M, Jörnvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:537-43. [PMID: 1889416 DOI: 10.1111/j.1432-1033.1991.tb16215.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Different short-chain dehydrogenases are distantly related, constituting a protein family now known from at least 20 separate enzymes characterized, but with extensive differences, especially in the C-terminal third of their sequences. Many of the first known members were prokaryotic, but recent additions include mammalian enzymes from placenta, liver and other tissues, including 15-hydroxyprostaglandin, 17 beta-hydroxysteroid and 11 beta-hydroxysteroid dehydrogenases. In addition, species variants, isozyme-like multiplicities and mutants have been reported for several of the structures. Alignments of the different enzymes reveal large homologous parts, with clustered similarities indicating regions of special functional/structural importance. Several of these derive from relationships within a common type of coenzyme-binding domain, but central-chain patterns of similarity go beyond this domain. Total residue identities between enzyme pairs are typically around 25%, but single forms deviate more or less (14-58%). Only six of the 250-odd residues are strictly conserved and seven more are conserved in all but single cases. Over one third of the conserved residues are glycine, showing the importance of conformational and spatial restrictions. Secondary structure predictions, residue distributions and hydrophilicity profiles outline a common, N-terminal coenzyme-binding domain similar to that of other dehydrogenases, and a C-terminal domain with unique segments and presumably individual functions in each case. Strictly conserved residues of possible functional interest are limited, essentially only three polar residues. Asp64, Tyr152 and Lys156 (in the numbering of Drosophila alcohol dehydrogenase), but no histidine or cysteine residue like in the completely different, classical medium-chain alcohol dehydrogenase family. Asp64 is in the suggested coenzyme-binding domain, whereas Tyr152 and Lys156 are close to the center of the protein chain, at a putative inter-domain, active-site segment. Consequently, the overall comparisons suggest the possibility of related mechanisms and domain properties for different members of the short-chain family.
Collapse
Affiliation(s)
- B Persson
- Department of Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
39
|
Ramseier TM, Göttfert M. Codon usage and G + C content in Bradyrhizobium japonicum genes are not uniform. Arch Microbiol 1991; 156:270-6. [PMID: 1793334 DOI: 10.1007/bf00262997] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To date, the sequences of 45 Bradyrhizobium japonicum genes are known. This provides sufficient information to determine their codon usage and G + C content. Surprisingly, B. japonicum nodulation and NifA-regulated genes were found to have a less biased codon usage and a lower G + C content than genes not belonging to these two groups. Thus, the coding regions of nodulation genes and NifA-regulated genes could hardly be identified in codon preference plots whereas this was not difficult with other genes. The codon frequency table of the highly biased genes was used in a codon preference plot to analyze the RSRj alpha 9 sequence which is an insertion sequence (IS)-like element. The plot helped identify a new open reading frame (ORF355) that escaped previous detection because of two sequencing errors. These were now corrected. The deduced gene product of ORF355 in RSRj alpha 9 showed extensive similarity to a putative protein encoded by an ORF in the T-DNA of Agrobacterium rhizogenes. The DNA sequences bordering both ORFs showed inverted repeats and potential target site duplications which supported the assumption that they were IS-like elements.
Collapse
Affiliation(s)
- T M Ramseier
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
40
|
Baker ME. Genealogy of regulation of human sex and adrenal function, prostaglandin action, snapdragon and petunia flower colors, antibiotics, and nitrogen fixation: functional diversity from two ancestral dehydrogenases. Steroids 1991; 56:354-60. [PMID: 1780951 DOI: 10.1016/0039-128x(91)90067-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metabolism of steroid hormones by dehydrogenases is an important mechanism for regulating steroid hormone action. Analysis of recently reported amino acid sequences of 11 beta-hydroxysteroid dehydrogenase, 17 beta-hydroxysteroid dehydrogenase, and 3 alpha, 20 beta-hydroxysteroid dehydrogenase reveals that they are descended from a common ancestor. Unexpectedly, this superfamily of dehydrogenases has other interesting relatives: 15-hydroxyprostaglandin dehydrogenase, proteins found in nitrogen-fixing bacteria, and enzymes important in the synthesis of antibiotics. The novel lineage of these proteins and the actions of flavonoids in regulating gene transcription in nitrogen-fixing bacteria and mammals provide new insights into the evolution of regulation of gene transcription by intercellular signals in multicellular animals.
Collapse
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623
| |
Collapse
|
41
|
Morett E, Fischer HM, Hennecke H. Influence of oxygen on DNA binding, positive control, and stability of the Bradyrhizobium japonicum NifA regulatory protein. J Bacteriol 1991; 173:3478-87. [PMID: 2045367 PMCID: PMC207961 DOI: 10.1128/jb.173.11.3478-3487.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Central to the genetic regulatory circuit that controls Bradyrhizobium japonicum nif and fix gene expression is the NifA protein. NifA activates transcription of several nif and fix genes and autoregulates its expression during symbiosis in soybean root nodules or in free-living microaerobic conditions. High O2 tensions result in the lack of nif expression, possibly by inactivation of NifA through oxidation of an essential metal cofactor. Several B. japonicum nif and fix promoters have upstream activator sequences (UAS) required for optimal activation. The UAS are located more than 100 bp from the -24/-12 promoter and have been proposed to be binding sites for NifA. We investigated the interaction of NifA with the nifD promoter region by using in vivo dimethyl sulfate footprinting. NifA-dependent protection from methylation of the two UAS of this promoter was detected. Footprinting experiments in the presence of rifampin showed that UAS-bound NifA led to the formation of an open nifD promoter-RNA polymerase sigma 54 complex. Shift to aerobic growth resulted in a rapid loss of protection of both the UAS and the promoter, indicating that the DNA-binding and the activation functions of NifA were controlled by the O2 status of the cell. After an almost complete inactivation by oxygen, the NifA protein began to degrade. Furthermore, metal deprivation also caused degradation of NifA. In this case, however, the rates of NifA inactivation and NifA degradation were not clearly distinguishable. The results are discussed in the light of a previously proposed model, according to which the oxidation state of a NifA-metal complex influences the conformation of NifA for both DNA-binding and positive control functions.
Collapse
Affiliation(s)
- E Morett
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
42
|
Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89520-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Kaminski PA, Elmerich C. Involvement of fixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol Microbiol 1991; 5:665-73. [PMID: 2046550 DOI: 10.1111/j.1365-2958.1991.tb00738.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A gene bank of Azorhizobium caulinodans DNA constructed in the bacteriophage lambda GEM11 was screened with Rhizobium meliloti fixL and fixJ genes as probes. One positive recombinant phage, ORS lambda L, was isolated. The nucleotide sequence of a 3.7 kb fragment was established. Two open reading frames of 1512bp and 613bp were identified as fixL and fixJ. Kanamycin cartridges were inserted into the cloned fixL and fixJ genes and recombined into the host genome. The resulting mutants were Nif- Fix-, suggesting that the two genes were required for symbiotic nitrogen fixation and for nitrogen fixation in the free-living state. Using pnifH-lacZ and pnifA-lacZ fusions, it was shown that the FixLJ products controlled the expression of nifH and nifA in bacteria grown in the free-living state.
Collapse
Affiliation(s)
- P A Kaminski
- Département des Biotechnologies, Institute Pasteur, Paris, France
| | | |
Collapse
|
44
|
Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol 1991; 173:1125-38. [PMID: 1991712 PMCID: PMC207233 DOI: 10.1128/jb.173.3.1125-1138.1991] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recognition of -24/-12-type promoters by RNA polymerase requires a special sigma factor, sigma 54 (RpoN NtrA GlnF). In the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum, two functional, highly conserved rpoN genes (rpoN1 and rpoN2) were identified and sequenced. The two predicted B. japonicum RpoN protein sequences were 87% identical, and both showed different levels of homology to the RpoN proteins of other bacteria. Downstream of rpoN2 (but not of rpoN1), two additional open reading frames were identified that corresponded to open reading frames located at similar positions in Klebsiella pneumoniae and Pseudomonas putida. Both B. japonicum rpoN genes complemented the succinate- and nitrate-negative phenotypes of a Rhizobium meliloti rpoN mutant. B. japonicum strains carrying single or double rpoN mutations were still able to utilize C4-dicarboxylates as a carbon source and histidine, proline, or arginine as a nitrogen source, whereas the ability to assimilate nitrate required expression of at least one of the two rpN genes. In symbiosis both rpoN genes could replace each other functionally. The rpoN1/2 double mutant induced about twice as many nodules on soybeans as did the wild type, and these nodules lacked nitrogen fixation activity completely. Transcription of a nifH'-'lacZ fusion was not activated in the rpoN1/2 mutant background, whereas expression of a fixR'-'lacZ fusion in this mutant was affected only marginally. By using rpoN'-'lacZ fusions, rpoN1 expression was shown to be activated at least sevenfold in microaerobiosis as compared with that in aerobiosis, and this type of regulation involved fixLJ. Expression of rpoN2 was observed under all conditions tested and was increased fivefold in an rpoN2 mutant. The data suggested that the rpoN1 gene was regulated in response to oxygen, whereas the rpoN2 gene was negatively autoregulated.
Collapse
|
45
|
Complex Regulatory Network for nif and fix Gene Expression in Bradyrhizobium Japonicum. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-94-015-7934-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Anthamatten D, Hennecke H. The regulatory status of the fixL- and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:38-48. [PMID: 2000090 DOI: 10.1007/bf00282640] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cloning, sequencing and mutational analysis of the Bradyrhizobium japonicum symbiotic nitrogen fixation genes fixL and fixJ are reported here. The two genes were adjacent and probably formed an operon, fixLJ. The predicted FixL and FixJ proteins, members of the two-component sensor/regulator family, were homologous over almost their entire lengths to the corresponding Rhizobium meliloti proteins (approx. 50% identity). Downstream of the B. japonicum fixJ gene was found an open reading frame with 138 codons (ORF138) whose product shared 36% homology with the N-terminal part of FixJ. Deletion and insertion mutations within fixL and fixJ led to a loss of approximately 90% wild-type symbiotic nitrogen fixation (Fix) activity, whereas an ORF138 mutant was Fix+. In fixL, fixJ and ORF138 mutant backgrounds, the aerobic expression of the fixR-nifA operon was not affected. NifA itself did not regulate the expression of the fixJ gene. Thus, the B. japonicum FixL and FixJ proteins were neither involved in the regulation of aerobic nifA gene expression nor in the anaerobic NifA-dependent autoregulation of the fixRnifA operon, rather they appeared to control symbiotically important genes other than those whose expression was dependent on the NifA protein. The fixL and fixJ mutant strains were unable to grow anaerobically with nitrate as the terminal electron acceptor. Therefore, some of the FixJ-dependent genes in B. japonicum may be concerned with anaerobic respiration.
Collapse
Affiliation(s)
- D Anthamatten
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
47
|
Chiurazzi M, Iaccarino M. Transcriptional analysis of the glnB-glnA region of Rhizobium leguminosarum biovar viciae. Mol Microbiol 1990; 4:1727-35. [PMID: 2077357 DOI: 10.1111/j.1365-2958.1990.tb00550.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report that the glnB and glnA genes of Rhizobium leguminosarum biovar viciae are preceded by promoters located upstream of each gene. We find the presence of a glnB-glnA and a glnA mRNA whose intracellular concentration changes two- to three-fold when R. leguminosarum is grown on different nitrogen sources. Primer extension analysis shows unique transcriptional initiation sites upstream of glnB and glnA. The glnB promoter is rpoN(ntrA)-dependent, while the glnA promoter does not contain a typical consensus sequence for previously described promoters. In Klebsiella pneumoniae the glnB promoter requires active ntrC and ntrA genes and a DNA fragment containing 53 nucleotides upstream of the transcription initiation site shows full promoter activity, thus indicating that no NtrC binding sites are necessary for this activation in the glnB upstream region.
Collapse
Affiliation(s)
- M Chiurazzi
- Istituto Internazionale di Genetica e Biofisica, CNR, Napoli, Italy
| | | |
Collapse
|
48
|
Abstract
The symbiotic nitrogen fixation genes (nif, fix) of Bradyrhizobium japonicum, the root nodule endosymbiont of soybean, are organized in at least two separate chromosomal gene clusters. These genes code for proteins of the nitrogenase complex, for proteins involved in their assembly with cofactors and for putative electron transport functions. One gene, nifA, codes for a transcriptional regulatory protein that plays a central role in the control of expression of the other genes in response to the cellular oxygen status. Only at low partial pressures of O2 will the target promoters be activated by NifA.
Collapse
Affiliation(s)
- H Hennecke
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
49
|
Baker ME. Sequence similarity between Pseudomonas dihydrodiol dehydrogenase, part of the gene cluster that metabolizes polychlorinated biphenyls, and dehydrogenases involved in metabolism of ribitol and glucitol and synthesis of antibiotics and 17 beta-oestradiol, testosterone and corticosterone. Biochem J 1990; 267:839-41. [PMID: 2111134 PMCID: PMC1131375 DOI: 10.1042/bj2670839] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093
| |
Collapse
|
50
|
Roelvink PW, Harmsen M, van Kammen A, van den Bos RC. The nifH promoter region of Rhizobium leguminosarum: nucleotide sequence and promoter elements controlling activation by NifA protein. Gene X 1990; 87:31-6. [PMID: 2185138 DOI: 10.1016/0378-1119(90)90492-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide (nt) sequence of the Rhizobium leguminosarum nifH promoter region contains a consensus promoter, a consensus upstream activator sequence (UAS), a pseudo (psi) promoter and a psi UAS. We mapped the transcription start point for the consensus promoter sequence by primer extension. This promoter differs from the consensus in one of the four supposedly invariant nt and can be activated by the Klebsiella pneumoniae nifA product in Escherichia coli. Under these conditions the psi promoter and psi UAS do not function. A low-copy-number plasmid construct containing the psi UAS as well as the consensus UAS delayed the onset of symbiotic nitrogen fixation in nodules induced on Pisum sativum. Studies of high-copy-number nifH promoter constructs showed that partial deletion of the consensus UAS does not alter the ability to inhibit nitrogen fixation by titration of NifA suggesting that NifA can also complex with RNA polymerase containing the alternative sigma-factor RpoN.
Collapse
Affiliation(s)
- P W Roelvink
- Department of Molecular Biology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|