1
|
Salunkhe SS, Raiker VA, Rewanwar S, Kotwal P, Kumar A, Padmanabhan S. Enhanced fluorescent properties of an OmpT site deleted mutant of green fluorescent protein. Microb Cell Fact 2010; 9:26. [PMID: 20429908 PMCID: PMC2868801 DOI: 10.1186/1475-2859-9-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30 degrees C as compared to 37 degrees C in E. coli K12 hosts. Since OmpT levels are higher at 37 degrees C than at 30 degrees C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold. RESULTS We describe the construction of two GFP variants with modified putative OmpT proteolytic sites by site directed mutagenesis (SDM). Such modified genes upon arabinose induction exhibited varied degrees of GFP fluorescence. While the mutation of K79G/R80A (SDM I) resulted in dramatic loss of fluorescence activity, the modification of K214A/R215A (SDM II) resulted in four fold enhanced fluorescence of GFP. CONCLUSIONS This is the first report on effect of OmpT protease site modification on GFP fluorescence. The wild type and the GFP variants showed similar growth profile in bioreactor studies with similar amounts of recombinant GFP expressed in the soluble fraction of the cell. Our observations on higher levels of fluorescence of SDM II GFP mutant over native GFPuv in an OmpT+ host like DH5alpha, JM109 and LE392 at 37 degrees C reiterates the role played by host OmpT in determining differences in fluorescent property of the expressed GFP. Both the WT GFP and the SDM II GFP plasmids in E. coli BL21 cells showed similar expression levels and similar GFP fluorescent activity at 37 degrees C. This result substantiates our hypothesis that OmpT protease could be a possible factor responsible for reducing the expression of GFP at 37 degrees C for WT GFP clone in K12 hosts like DH5alpha, JM109, LE 392 since the levels of GFP expression of SDM II clone in such cells at 37 degrees C is higher than that seen with WT GFP clone at the same temperature.
Collapse
|
2
|
Grossman L. Nucleotide excision repair: Dick Setlow: how he influenced my scientific life. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:144-152. [PMID: 11746748 DOI: 10.1002/em.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- L Grossman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
3
|
Hildebrand EL, Grossman L. Oligomerization of the UvrB nucleotide excision repair protein of Escherichia coli. J Biol Chem 1999; 274:27885-90. [PMID: 10488135 DOI: 10.1074/jbc.274.39.27885] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A combination of hydrodynamic and cross-linking studies were used to investigate self-assembly of the Escherichia coli DNA repair protein UvrB. Though the procession of steps leading to incision of DNA at sites flanking damage requires that UvrB engage in an ordered series of complexes, successively with UvrA, DNA, and UvrC, the potential for self-association had not yet been reported. Gel permeation chromatography, nondenaturing polyacrylamide gel electrophoresis, and chemical cross-linking results combine to show that UvrB stably assembles as a dimer in solution at concentrations in the low micromolar range. Smaller populations of higher order oligomeric species are also observed. Unlike the dimerization of UvrA, an initial step promoted by ATP binding, the monomer-dimer equilibrium for UvrB is unaffected by the presence of ATP. The insensitivity of cross-linking efficiency to a 10-fold variation in salt concentration further suggests that UvrB self-assembly is driven largely by hydrophobic interactions. Self-assembly is significantly weakened by proteolytic removal of the carboxyl terminus of the protein (generating UvrB*), a domain also known to be required for the interaction with UvrC leading to the initial incision of damaged DNA. This suggests that the C terminus may be a multifunctional binding domain, with specificity regulated by protein conformation.
Collapse
Affiliation(s)
- E L Hildebrand
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
4
|
Zou Y, Walker R, Bassett H, Geacintov NE, Van Houten B. Formation of DNA repair intermediates and incision by the ATP-dependent UvrB-UvrC endonuclease. J Biol Chem 1997; 272:4820-7. [PMID: 9030538 DOI: 10.1074/jbc.272.8.4820] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli UvrB and UvrC proteins play key roles in DNA damage processing and incisions during nucleotide excision repair. To study the DNA structural requirements and protein-DNA intermediates formed during these processes, benzo[a]pyrene diol epoxide-damaged and structure-specific 50-base pair substrates were constructed. DNA fragments containing a preexisting 3' incision were rapidly and efficiently incised 5' to the adduct. Gel mobility shift assays indicated that this substrate supported UvrA dissociation from the UvrB-DNA complex, which led to efficient incision. Experiments with a DNA fragment containing an internal noncomplementary 11-base region surrounding the benzo[a]pyrene diol epoxide adduct indicated that UvrABC nuclease does not require fully duplexed DNA for binding and incision. In the absence of UvrA, UvrB (UvrC) bound to an 11-base noncomplementary region containing a 3' nick (Y substrate), forming a stable protein-DNA complex (Kd approximately 5-10 nM). Formation of this complex was absolutely dependent upon UvrC. Addition to this complex of ATP, but not adenosine 5'-(beta,gamma-iminotriphosphate) or adenosine 5'-(beta, gamma-methylene)triphosphate, caused incision three or four nucleotides 5' to the double strand-single strand junction. The ATPase activity of native UvrB is activated upon interaction with UvrC and enhanced further by the addition of Y substrate. Incision of this Y structure occurs even without DNA damage. Thus the UvrBC complex is a structure-specific, ATP-dependent endonuclease.
Collapse
Affiliation(s)
- Y Zou
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
5
|
Kato R, Yamamoto N, Kito K, Kuramitsu S. ATPase activity of UvrB protein form Thermus thermophilus HB8 and its interaction with DNA. J Biol Chem 1996; 271:9612-8. [PMID: 8621636 DOI: 10.1074/jbc.271.16.9612] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many living organisms remove wide range of DNA lesions from their genomes by the nucleotide excision repair system. The uvrB gene, which plays an essential role in the prokaryotic excision repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence was determined, and the deduced amino acid sequence showed it possessed a helicase motif, including a nucleotide-binding consensus sequence (Walker's A-type motif), which was also conserved in other UvrB proteins. The prokaryotic UvrB proteins and eukaryotic DNA repair helicases (Rad3 and XP-D) were classified into different groups by molecular phylogenetic analysis. The T. thermophilus uvrB gene product was overproduced in Escherichia coli and purified to apparent homogeneity. The purified T. thermophilus UvrB protein was stable up to 80 degrees C at neutral pH. T. thermophilus UvrB protein showed ATPase activity at its physiological temperature, whereas the E. coli UvrB protein alone has not been shown to exhibit detectable ATPase activity. The values of K(m) and k(cat) for the ATPase activity were 4.2 mM and 0.32 s-1 without DNA, and 4.0 mM and 0.46 s-1 with single-stranded DNA, respectively. This suggests that T. thermophilus UvrB protein could interact with single-stranded DNA in the absence of UvrA protein.
Collapse
Affiliation(s)
- R Kato
- Department of Biology, Faculty of Science, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
6
|
Moolenaar GF, Franken KL, Dijkstra DM, Thomas-Oates JE, Visse R, van de Putte P, Goosen N. The C-terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3'-incision. J Biol Chem 1995; 270:30508-15. [PMID: 8530482 DOI: 10.1074/jbc.270.51.30508] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The UvrABC endonuclease from Escherichia coli repairs damage in the DNA by dual incision of the damaged strand on both sides of the lesion. The incisions are in an ordered fashion, first on the 3'-side and next on the 5'-side of the damage, and they are the result of binding of UvrC to the UvrB-DNA preincision complex. In this paper, we show that at least the C-terminal 24 amino acids of UvrB are involved in interaction with UvrC and that this binding is important for the 3'-incision. The C-terminal region of UvrB, which shows homology with a domain of the UvrC protein, is part of a region that is predicted to be able to form a coiled-coil. We therefore propose that UvrB and UvrC interact through the formation of such a structure. The C-terminal region of UvrB only interacts with UvrC when present in the preincision complex, indicating that the conformational change in UvrB accompanying the formation of this complex exposes the UvrC binding domain. Binding of UvrC to the C-terminal region of UvrB is not important for the 5'-incision, suggesting that for this incision a different interaction of UvrC with the UvrB-DNA complex is required. Truncated UvrB mutants that lack up to 99 amino acids from the C terminus still give rise to significant incision (1-2%), indicating that this C-terminal region of UvrB does not participate in the formation of the active site for 3'-incision. This region, however, contains the residue (Glu-640) that was proposed to be involved in 3'-catalysis, since a mutation of the residue (E640A) fails to promote 3'-incision (Lin, J.J., Phillips, A.M., Hearst, J.E., and Sancar, A. (1992) J. Biol. Chem. 267, 17693-17700). We have isolated a mutant UvrB with the same E640A substitution, but this protein shows normal UvrC binding and incision in vitro and also results in normal survival after UV irradiation in vivo. As a consequence of these results, it is still an open question as to whether the catalytic site for 3'-incision is located in UvrB, in UvrC, or is formed by both proteins.
Collapse
Affiliation(s)
- G F Moolenaar
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- L Grossman
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205
| |
Collapse
|
8
|
Fabisiewicz A, Janion C. Effect of heat shock on expression of proteins not involved in the heat-shock regulon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:549-53. [PMID: 1425661 DOI: 10.1111/j.1432-1033.1992.tb17319.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of heat shock on the expression of some genes of Escherichia coli was tested. To avoid side effects, promoters of the genes were fused to lacZ and their expression measured by the level of beta-galactosidase. The results show that expression of umuC, recA and polB, after induction of the SOS response, was somewhat higher in the heat-shocked than in the non-shocked cells, whereas expression of ada, alkB and alkA genes, after induction of the adaptive response, was about the same. Unexpectedly, it was found that expression of lacZ from its own promoter was drastically lowered in the heat-shocked cells. This effect, however, seems not to be dependent on the induction of heat-shock proteins.
Collapse
Affiliation(s)
- A Fabisiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
9
|
Sicard N, Oreglia J, Estevenon AM. Structure of the gene complementing uvr-402 in Streptococcus pneumoniae: homology with Escherichia coli uvrB and the homologous gene in Micrococcus luteus. J Bacteriol 1992; 174:2412-5. [PMID: 1551859 PMCID: PMC205869 DOI: 10.1128/jb.174.7.2412-2415.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The repair ability for UV-induced damage observed for Streptococcus pneumoniae proceeds through a system similar to the Uvr-dependent system in Escherichia coli. The DNA sequence of a gene complementing uvr-402, a mutation conferring UV sensitivity, was determined. Alignments of the deduced amino acid sequence revealed an extensive sequence homology of 55% with the UvrB protein of E. coli and 59% with the UvrB-homologous protein of Micrococcus luteus. Nucleotide-binding site consensus was observed. The high conservation of the uvrB-like gene among these three species suggests that the role of the UvrB protein and excision repair in general might be very important for cell survival.
Collapse
Affiliation(s)
- N Sicard
- Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
10
|
Gentry DR, Burgess RR. Overproduction and purification of the omega subunit of Escherichia coli RNA polymerase. Protein Expr Purif 1990; 1:81-6. [PMID: 2152188 DOI: 10.1016/1046-5928(90)90050-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper reports the construction of plasmids which direct the overproduction of the omega subunit of Escherichia coli RNA polymerase and the subsequent purification of omega. Useful overproduction is achieved only if the natural ribosomal binding site region of rpoZ is replaced with the ribosomal binding site region of bacteriophage T7 gene 10. Overproduction is directed by T7 RNA polymerase which is provided on a separate plasmid. omega is purified by three column steps either from the insoluble inclusion body fraction or from the soluble fractions of lysates. The final yield is approximately 2 mg omega per 10 g cells wet wt. Additionally, we found that recombinant omega is readily cleaved by an endogenous protease. Sequence analysis of the most prevalent proteolytic fragment suggested that the protease responsible was the product of the ompT gene. Cleavage of omega is greatly reduced in ompT- strains.
Collapse
Affiliation(s)
- D R Gentry
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706
| | | |
Collapse
|
11
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
12
|
Colicin cleavage by OmpT protease during both entry into and release from Escherichia coli cells. J Bacteriol 1990; 172:648-52. [PMID: 2404946 PMCID: PMC208488 DOI: 10.1128/jb.172.2.648-652.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolysis of colicins A, E1, E2, and E3 was observed after they were added to whole cells carrying a functional ompT gene. Recombinant plasmid pML19 containing the ompT gene enabled two mutant strains to cleave the added colicins. On the other hand, two colicin A recombinants were split after release from the wild-type bacteria that produced them but not from ompT mutant cells.
Collapse
|