1
|
Gupta R, Walvekar AS, Liang S, Rashida Z, Shah P, Laxman S. A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. eLife 2019; 8:e44795. [PMID: 31259691 PMCID: PMC6688859 DOI: 10.7554/elife.44795] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/30/2019] [Indexed: 12/21/2022] Open
Abstract
Cells must appropriately sense and integrate multiple metabolic resources to commit to proliferation. Here, we report that S. cerevisiae cells regulate carbon and nitrogen metabolic homeostasis through tRNA U34-thiolation. Despite amino acid sufficiency, tRNA-thiolation deficient cells appear amino acid starved. In these cells, carbon flux towards nucleotide synthesis decreases, and trehalose synthesis increases, resulting in a starvation-like metabolic signature. Thiolation mutants have only minor translation defects. However, in these cells phosphate homeostasis genes are strongly down-regulated, resulting in an effectively phosphate-limited state. Reduced phosphate enforces a metabolic switch, where glucose-6-phosphate is routed towards storage carbohydrates. Notably, trehalose synthesis, which releases phosphate and thereby restores phosphate availability, is central to this metabolic rewiring. Thus, cells use thiolated tRNAs to perceive amino acid sufficiency, balance carbon and amino acid metabolic flux and grow optimally, by controlling phosphate availability. These results further biochemically explain how phosphate availability determines a switch to a 'starvation-state'.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Shun Liang
- Department of GeneticsRutgers UniversityPiscatawayUnited States
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Premal Shah
- Department of GeneticsRutgers UniversityPiscatawayUnited States
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
2
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
3
|
Musladin S, Krietenstein N, Korber P, Barbaric S. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening. Nucleic Acids Res 2014; 42:4270-82. [PMID: 24465003 PMCID: PMC3985623 DOI: 10.1093/nar/gkt1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC’s presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.
Collapse
Affiliation(s)
- Sanja Musladin
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia and Molecular Biology, Adolf-Butenandt-Institut, University of Munich, Munich 80336, Germany
| | | | | | | |
Collapse
|
4
|
Hamperl S, Brown CR, Garea AV, Perez-Fernandez J, Bruckmann A, Huber K, Wittner M, Babl V, Stoeckl U, Deutzmann R, Boeger H, Tschochner H, Milkereit P, Griesenbeck J. Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 2013; 42:e2. [PMID: 24106087 PMCID: PMC3874202 DOI: 10.1093/nar/gkt891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.
Collapse
Affiliation(s)
- Stephan Hamperl
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl für Biochemie III, 93053 Regensburg, Germany and Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Veide J, Andlid T. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int J Food Microbiol 2006; 108:60-7. [PMID: 16476497 DOI: 10.1016/j.ijfoodmicro.2005.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 10/28/2005] [Accepted: 10/30/2005] [Indexed: 11/16/2022]
Abstract
Myo-inositol hexaphosphate (IP6, phytate) is a potent anti-nutritional compound occurring in many plant-based staple foods, limiting the bioavailability of important nutrients such as iron and zinc. The objective of the present study was to investigate different strategies to achieve high and constitutive extracellular IP6 degradation by Baker's yeast, Saccharomyces cerevisiae. By deleting either of the genes PHO80 and PHO85, encoding negative regulators of the transcription of the repressible acid phosphatases (rAPs), the IP6 degradation became constitutive, and the biomass specific IP6 degradation was increased manyfold. In addition, the genes encoding the transcriptional activator Pho4p and the major rAP Pho5p were overexpressed in both a wild-type and a pho80delta strain, yielding an additional increase in IP6 degradation. It has previously been proved possible to increase human iron bioavailability by degradation of IP6 using microbial phytase. A high-phytase S. cerevisiae strain, without the use of any heterologous DNA, may be a suitable organism for the production of food-grade phytase and for the direct use in food production.
Collapse
Affiliation(s)
- Jenny Veide
- Chalmers University of Technology, Department of Chemical and Biological Engineering/Food Science, Box 5401, SE-402 29 Göteborg, Sweden.
| | | |
Collapse
|
6
|
Huang S, O'Shea EK. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation. Genetics 2005; 169:1859-71. [PMID: 15695358 PMCID: PMC1360160 DOI: 10.1534/genetics.104.038695] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. One of these genes is PHO5, which encodes a secreted acid phosphatase. A phosphate-responsive signal transduction pathway (the PHO pathway) mediates this response through three central components: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. While signaling downstream of the Pho81/Pho80/Pho85 complex to PHO5 expression has been well characterized, little is known about factors acting upstream of these components. To identify missing factors involved in the PHO pathway, we carried out a high-throughput, quantitative enzymatic screen of a yeast deletion collection, searching for novel mutants defective in expression of PHO5. As a result of this study, we have identified at least nine genes that were previously not known to regulate PHO5 expression. The functional diversity of these genes suggests that the PHO pathway is networked with other important cellular signaling pathways. Among these genes, ADK1 and ADO1, encoding an adenylate kinase and an adenosine kinase, respectively, negatively regulate PHO5 expression and appear to function upstream of PHO81.
Collapse
Affiliation(s)
- Sidong Huang
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 94143-2240, USA
| | | |
Collapse
|
7
|
Wu D, Dou X, Hashmi SB, Osmani SA. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J Biol Chem 2004; 279:37693-703. [PMID: 15247298 DOI: 10.1074/jbc.m403853200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, phosphate acquisition enzymes are regulated by a cyclin-dependent kinase (Pho85), a cyclin (Pho80), the cyclin-dependent kinase inhibitor Pho81, and the helix-loop-helix transcription factor Pho4 (the PHO system). Previous studies in Aspergillus nidulans indicate that a Pho85-like kinase, PHOA, does not regulate the classic PHO system but regulates development in a phosphate-dependent manner. A Pho80-like cyclin has now been isolated through its interaction with PHOA. Surprisingly, unlike PHOA, An-PHO80 does play a negative role in the PHO system. Similarly, an ortholog of Pho4 previously identified genetically as palcA also regulates the PHO system. However, An-PHO81, a putative cyclin-dependent kinase inhibitor, does not regulate the PHO system. Therefore, there are significant differences between the classic PHO system conserved between S. cerevisiae and Neurospora crassa compared with that which has evolved in A. nidulans. Most interestingly, under low phosphate conditions, the An-PHO80 cyclin also promotes sexual development while having a negative effect on asexual development. These effects are independent of the role An-PHO80 has in the classic PHO system. However, in high phosphate medium, An-PHO80 affects development because of deregulation of the PHO system as loss of palcA(Pho4) function negates the developmental defects caused by lack of An-pho80. Therefore, under low phosphate conditions the An-PHO80 cyclin regulates development independently of the PHO system, whereas in high phosphate it affects development through the PHO system. The data indicate that a single cyclin can control various aspects of growth and development in a multicellular organism.
Collapse
Affiliation(s)
- Dongliang Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
8
|
Wang Z, Wilson WA, Fujino MA, Roach PJ. The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 2001; 506:277-80. [PMID: 11602261 DOI: 10.1016/s0014-5793(01)02914-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pho85p is a yeast cyclin-dependent protein kinase (Cdk) that can interact with 10 cyclins (Pcls) to form multiple protein kinases. The functions of most of the Pcls, including Pc16p and Pc17p, are poorly defined. We report here that Pc16p and Pc17p are involved in the metabolism of the branched storage polysaccharide glycogen under certain conditions and deletion of PCL6 and PCL7 restores glycogen accumulation to a snf1 pcl8 pcl10 triple mutant, paradoxically activating both glycogen synthase and phosphorylase. Pho85p thus affects glycogen accumulation through multiple Cdks composed of different cyclin partners.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA.
| | | | | | | |
Collapse
|
9
|
Huang S, Jeffery DA, Anthony MD, O'Shea EK. Functional analysis of the cyclin-dependent kinase inhibitor Pho81 identifies a novel inhibitory domain. Mol Cell Biol 2001; 21:6695-705. [PMID: 11533256 PMCID: PMC99814 DOI: 10.1128/mcb.21.19.6695-6705.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 07/07/2001] [Indexed: 11/20/2022] Open
Abstract
In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. A phosphate-responsive signal transduction pathway mediates this response by controlling the activity of the transcription factor Pho4. Three components of this signal transduction pathway resemble those used to regulate the eukaryotic cell cycle: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. Pho81 forms a stable complex with Pho80-Pho85 under both high- and low-phosphate conditions, but it only inhibits the kinase when cells are starved for phosphate. Pho81 contains six tandem repeats of the ankyrin consensus domain homologous to the INK4 family of mammalian CKIs. INK4 proteins inhibit kinase activity through an interaction of the ankyrin repeats and the CDK subunits. Surprisingly, we find that a region of Pho81 containing 80 amino acids C terminal to the ankyrin repeats is necessary and sufficient for Pho81's CKI function. The ankyrin repeats of Pho81 appear to have no significant role in Pho81 inhibition. Our results suggest that Pho81 inhibits Pho80-Pho85 with a novel motif.
Collapse
Affiliation(s)
- S Huang
- Department of Biochemistry & Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0448, USA
| | | | | | | |
Collapse
|
10
|
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 2001; 15:2122-33. [PMID: 11511543 PMCID: PMC312755 DOI: 10.1101/gad.204401] [Citation(s) in RCA: 869] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants have evolved a number of adaptive responses to cope with growth in conditions of limited phosphate (Pi) supply involving biochemical, metabolic, and developmental changes. We prepared an EMS-mutagenized M(2) population of an Arabidopsis thaliana transgenic line harboring a reporter gene specifically responsive to Pi starvation (AtIPS1::GUS), and screened for mutants altered in Pi starvation regulation. One of the mutants, phr1 (phosphate starvation response 1), displayed reduced response of AtIPS1::GUS to Pi starvation, and also had a broad range of Pi starvation responses impaired, including the responsiveness of various other Pi starvation-induced genes and metabolic responses, such as the increase in anthocyanin accumulation. PHR1 was positionally cloned and shown be related to the PHOSPHORUS STARVATION RESPONSE 1 (PSR1) gene from Chlamydomonas reinhardtii. A GFP::PHR1 protein fusion was localized in the nucleus independently of Pi status, as is the case for PSR1. PHR1 is expressed in Pi sufficient conditions and, in contrast to PSR1, is only weakly responsive to Pi starvation. PHR1, PSR1, and other members of the protein family share a MYB domain and a predicted coiled-coil (CC) domain, defining a subtype within the MYB superfamily, the MYB-CC family. Therefore, PHR1 was found to bind as a dimer to an imperfect palindromic sequence. PHR1-binding sequences are present in the promoter of Pi starvation-responsive structural genes, indicating that this protein acts downstream in the Pi starvation signaling pathway.
Collapse
Affiliation(s)
- V Rubio
- Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B. Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 1998; 18:3289-99. [PMID: 9584169 PMCID: PMC108910 DOI: 10.1128/mcb.18.6.3289] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Accepted: 03/18/1998] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) with multiple roles in cell cycle and metabolic controls. In association with the cyclin Pho80, Pho85 controls acid phosphatase gene expression through phosphorylation of the transcription factor Pho4. Pho85 has also been implicated as a kinase that phosphorylates and negatively regulates glycogen synthase (Gsy2), and deletion of PHO85 causes glycogen overaccumulation. We report that the Pcl8/Pcl10 subgroup of cyclins directs Pho85 to phosphorylate glycogen synthase both in vivo and in vitro. Disruption of PCL8 and PCL10 caused hyperaccumulation of glycogen, activation of glycogen synthase, and a reduction in glycogen synthase kinase activity in vivo. However, unlike pho85 mutants, pcl8 pcl10 cells had normal morphologies, grew on glycerol, and showed proper regulation of acid phosphatase gene expression. In vitro, Pho80-Pho85 complexes effectively phosphorylated Pho4 but had much lower activity toward Gsy2. In contrast, Pcl10-Pho85 complexes phosphorylated Gsy2 at Ser-654 and Thr-667, two physiologically relevant sites, but only poorly phosphorylated Pho4. Thus, both the in vitro and in vivo substrate specificity of Pho85 is determined by the cyclin partner. Mutation of PHO85 suppressed the glycogen storage deficiency of snf1 or glc7-1 mutants in which glycogen synthase is locked in an inactive state. Deletion of PCL8 and PCL10 corrected the deficit in glycogen synthase activity in both the snf1 and glc7-1 mutants, but glycogen synthesis was restored only in the glc7-1 mutant strain. This genetic result suggests an additional role for Pho85 in the negative regulation of glycogen accumulation that is independent of Pcl8 and Pcl10.
Collapse
Affiliation(s)
- D Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wickert S, Finck M, Herz B, Ernst JF. A small protein (Ags1p) and the Pho80p-Pho85p kinase complex contribute to aminoglycoside antibiotic resistance of the yeast Saccharomyces cerevisiae. J Bacteriol 1998; 180:1887-94. [PMID: 9537389 PMCID: PMC107104 DOI: 10.1128/jb.180.7.1887-1894.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We identified the AGS1 and AGS3 genes by their ability to partially complement an ags mutant (RC1707) which is supersensitive to various aminoglycoside antibiotics (J. F. Ernst and R. K. Chan, J. Bacteriol. 163:8-14, 1985). AGS1 is located in proximity to the centromere of chromosome III and encodes a small protein of 88 amino acids. The size of the AGS1 transcript, which in wild-type cells is 1 kb, is reduced to 0.75 kb in mutant RC1707. Disruption of AGS1 rendered strains supersensitive to hygromycin B and increased their resistance to vanadate. In addition, ags1delta strains underglycosylated invertase but had normal carboxypeptidase Y glycosylation, suggesting that Ags1p is required for the elaboration of outer N-glycosyl chains. AGS3 was found to be identical to PHO80 (TUP7), which encodes a cyclin activating the Pho85p protein kinase. Deletion of either PHO80 or PHO85 led to aminoglycoside supersensitivity; pho80delta ags1delta strains showed an enhanced-sensitivity phenotype compared to single mutants. pho80 and pho85 mutants were rendered resistant by deletion of PHO4, indicating that activation of the Pho4p transcription factor is required for increased aminoglycoside sensitivity. Thus, both the Pho80p-Pho85p kinase complex (by Pho4p phosphorylation) and a novel component of the N glycosylation pathway contribute to basal levels of aminoglycoside resistance in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- S Wickert
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
13
|
Gregory PD, Schmid A, Zavari M, Lui L, Berger SL, Hörz W. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol Cell 1998; 1:495-505. [PMID: 9660934 DOI: 10.1016/s1097-2765(00)80050-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone acetyltransferase (HAT) activity has been demonstrated for several transcriptional activators, formally connecting chromatin modification with gene regulation. However, no effect on chromatin has been demonstrated. We have investigated the role of the HAT Gcn5 at the nucleosomally regulated PHO5 promoter. Under conditions of constitutive submaximal activation (i.e., in the absence of the negative regulator Pho80), deletion of Gcn5 determines a novel randomized nucleosomal organization across the promoter and leads to a dramatic reduction in activity. Furthermore, mutation of amino acids critical for Gcn5 HAT activity is sufficient to generate this structure. This intermediate state in chromatin opening gives way to the fully open structure upon maximal induction (phosphate starvation), even in the absence of Gcn5. Thus, Gcn5 is shown to affect directly the remodeling of chromatin in vivo.
Collapse
Affiliation(s)
- P D Gregory
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Huang D, Farkas I, Roach PJ. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:4357-65. [PMID: 8754836 PMCID: PMC231434 DOI: 10.1128/mcb.16.8.4357] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p.
Collapse
Affiliation(s)
- D Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
15
|
Santos RC, Waters NC, Creasy CL, Bergman LW. Structure-function relationships of the yeast cyclin-dependent kinase Pho85. Mol Cell Biol 1995; 15:5482-91. [PMID: 7565699 PMCID: PMC230798 DOI: 10.1128/mcb.15.10.5482] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The PHO85 gene of Saccharomyces cerevisiae encodes a cyclin-dependent kinase involved in both transcriptional regulation and cell cycle progression. Although a great deal is known concerning the structure, function, and regulation of the highly homologous Cdc28 protein kinase, little is known concerning these relationships in regard to Pho85. In this study, we constructed a series of Pho85-Cdc28 chimeras to map the region(s) of the Pho85 molecule that is critical for function of Pho85 in repression of acid phosphatase (PHO5) expression. Using a combination of site-directed and ethyl methanesulfonate-induced mutagenesis, we have identified numerous residues critical for either activation of the Pho85 kinase, interaction of Pho85 with the cyclin-like molecule Pho80, or substrate recognition. Finally, analysis of mutations analogous to those previously identified in either Cdc28 or cdc2 of Schizosaccharomyces pombe suggested that the inhibition of Pho85-Pho80 activity in mechanistically different from that seen in the other cyclin-dependent kinases.
Collapse
Affiliation(s)
- R C Santos
- Department of Microbiology, Medical College of Pennsylvania, Philadelphia, USA
| | | | | | | |
Collapse
|
16
|
Nicolson TA, Weisman LS, Payne GS, Wickner WT. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. J Cell Biol 1995; 130:835-45. [PMID: 7642701 PMCID: PMC2199970 DOI: 10.1083/jcb.130.4.835] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Partitioning of the vacuole during cell division in Saccharomyces cerevisiae begins during early S phase and ends in late G2 phase before the yeast nucleus migrates into the bud neck. We have isolated and characterized a new mutant, vac5-1, which is defective in vacuole segregation. Cells with the vac5-1 mutation can form large buds without vacuoles. The VAC5 gene was cloned and is identical to PHO80. PHO80 encodes a cyclin which acts in a complex with a cdc-like kinase, PHO85, as a negative regulator of two transcription factors (PHO2 and PHO4) that govern the expression of metabolic phosphatases. The vacuole inheritance defect in vac5-1 cells is dependent on the presence of the Pho85 kinase and its targets Pho4p and Pho2p. As with other alleles of PHO80, phosphatase levels are elevated in vac5-1 mutants. A suppressor, the COOH-terminal half of the Gal11 transcription factor, rescues the vac5-1 phenotype of defective vacuole inheritance without altering the vac5-1 phenotype of elevated phosphatase levels. In addition, neither maximal nor minimal levels of expression of the inducible "PHO" system phosphatases causes a vacuole inheritance defect. Though vac5-1 is recessive, pho80 delta or pho85 delta strains do not show a defect in vacuole inheritance, suggesting that vac5-1 is not a complete loss-of-function allele. Sequence analysis shows that the vac5-1 allele encodes a truncated form of the Pho80 cyclin and overexpression of vac5-1 in pho80 delta cells causes a vacuole inheritance defect. We conclude that the vac5-1 allele directs the Pho85 kinase to regulate, via transcription factors Pho4 and Pho2, genes that affect vacuole inheritance but which are not known to be under normal PHO pathway control.
Collapse
Affiliation(s)
- T A Nicolson
- Molecular Biology Institute, University of California, Los Angeles 90024-1570, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Studies in vivo and in vitro have shown that the packaging of DNA into chromatin can affect gene expression. Here, binding of the yeast transcriptional activator GAL4 to DNA in chromatin has been investigated in vivo with a yeast episome. A positioned nucleosome that is present in cells grown in glucose and contains a single GAL4 binding site is disrupted by GAL4 binding in galactose. GAL4 can also bind to DNA in chromatin when the carboxyl-terminal activation domain of GAL4 is either masked by GAL80 or is absent. These results show that a transcription factor can bind to its site in vivo in what would appear to be a repressive chromatin structure.
Collapse
Affiliation(s)
- R H Morse
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Creasy CL, Madden SL, Bergman LW. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21:1975-82. [PMID: 8493108 PMCID: PMC309440 DOI: 10.1093/nar/21.8.1975] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target.
Collapse
Affiliation(s)
- C L Creasy
- Department of Microbiology and Immunology, Hahnemann University School of Medicine, Philadelphia, PA 19102
| | | | | |
Collapse
|
19
|
Schmid A, Fascher KD, Hörz W. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication. Cell 1992; 71:853-64. [PMID: 1423633 DOI: 10.1016/0092-8674(92)90560-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of the PHO5 gene in S. cerevisiae by phosphate starvation was previously shown to be accompanied by the disappearance of four positioned nucleosomes from the promoter. To investigate the mechanism, we replaced the PHO80 gene, a negative regulator of PHO5, by a temperature-sensitive allele. As a consequence, PHO5 can be activated in the presence of phosphate by a temperature shift from 24 degrees C to 37 degrees C. Under these conditions, the promoter undergoes the same chromatin transition as in phosphate-starved cells. Disruption of the nucleosomes by the temperature shift also occurs when DNA replication is prevented. Nucleosomes re-form when the temperature is shifted from 37 degrees C back to 24 degrees C in nondividing cells. Glucose is required for the disruption of the nucleosomes during the temperature upshift, not for their re-formation during the temperature downshift. These experiments prove that DNA replication is not required for the transition between the nucleosomal and the non-nucleosomal state at the PHO5 promoter.
Collapse
Affiliation(s)
- A Schmid
- Institute for Physiological Chemistry, Universität München, Germany
| | | | | |
Collapse
|
20
|
Gilliquet V, Legrain M, Berben G, Hilger F. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins. Gene 1990; 96:181-8. [PMID: 2269431 DOI: 10.1016/0378-1119(90)90251-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The negative regulatory genes, PHO80 and PHO85, involved in transcriptional regulation of the yeast repressible acid-phosphatase-encoding gene, PHO5, have been cloned. Expression of PHO80 and PHO85 has been studied by means of lacZ fusions. We show here that these expressions are inorganic phosphate (Pi) independent and that they are controlled by the PHO80 gene product; moreover, PHO80 expression is controlled by PHO85. We also present genetic evidence for an interaction between the PHO80 and PHO85 proteins: increased PHO85 gene dosage partially compensates for the pho80-1 mutation and this effect is allele-specific. The pho80-1 allele has been cloned and sequenced. The mutation changes Gly229 to Asp. This region was shown to be essential for PHO80 function by C-terminal deletion analysis.
Collapse
Affiliation(s)
- V Gilliquet
- Unité de Microbiologie, Faculté des Sciences Agronomiques, Gembloux Belgium
| | | | | | | |
Collapse
|
21
|
Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2122235 DOI: 10.1128/mcb.10.11.5950] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PHO80 and PHO85 gene products encode proteins necessary for the repression of transcription from the major acid phosphatase gene (PHO5) of Saccharomyces cerevisiae. The deduced amino acid sequences of these genes have revealed that PHO85 is likely to encode a protein kinase, whereas no potential function has been revealed for PHO80. We undertook several approaches to aid in the elucidation of the PHO80 function, including deletion analysis, chemical mutagenesis, and expression analysis. DNA deletion analysis revealed that residues from both the carboxy- and amino-terminal regions of the protein, amounting to a total of 21% of the PHO80 protein, were not required for function with respect to repressor activity. Also, 10 independent single-amino-acid changes within PHO80 which resulted in the failure to repress PHO5 transcription were isolated. Nine of the 10 missense mutations resided in two subregions of the PHO80 molecule. In addition, expression analysis of the PHO80 and PHO85 genes suggested that the PHO85 gene product was not necessary for PHO80 expression and that the PHO85 gene was expressed at much higher levels in the cell than was the PHO80 gene. Furthermore, high levels of PHO80 were shown to suppress the effect of a PHO85 deletion at a level close to full repression. Implications for the function of the negative regulators in this system are discussed.
Collapse
|
22
|
Abstract
Yeast cells produce a set of enzymes which are involved in the metabolism of phosphate, and include acid and alkaline phosphatases as well as permeases. Most of these enzymes are synthesized in response to the presence or absence of inorganic phosphate. In the past few years a considerable amount of genetic and molecular evidence has accumulated and a rather precise overall picture emerges which describes the mechanism of phosphate control at the level of gene activation. This mini-review summarizes these data. The main focus lies on the regulatory features associated with the control of transcription of PHO5, a gene coding for most of the regulated acid phosphatase activity produced by yeast cells.
Collapse
Affiliation(s)
- K Vogel
- Department of Biotechnology, Ciba-Geigy Ltd., Basel, Switzerland
| | | |
Collapse
|
23
|
Madden SL, Johnson DL, Bergman LW. Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:5950-7. [PMID: 2122235 PMCID: PMC361392 DOI: 10.1128/mcb.10.11.5950-5957.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The PHO80 and PHO85 gene products encode proteins necessary for the repression of transcription from the major acid phosphatase gene (PHO5) of Saccharomyces cerevisiae. The deduced amino acid sequences of these genes have revealed that PHO85 is likely to encode a protein kinase, whereas no potential function has been revealed for PHO80. We undertook several approaches to aid in the elucidation of the PHO80 function, including deletion analysis, chemical mutagenesis, and expression analysis. DNA deletion analysis revealed that residues from both the carboxy- and amino-terminal regions of the protein, amounting to a total of 21% of the PHO80 protein, were not required for function with respect to repressor activity. Also, 10 independent single-amino-acid changes within PHO80 which resulted in the failure to repress PHO5 transcription were isolated. Nine of the 10 missense mutations resided in two subregions of the PHO80 molecule. In addition, expression analysis of the PHO80 and PHO85 genes suggested that the PHO85 gene product was not necessary for PHO80 expression and that the PHO85 gene was expressed at much higher levels in the cell than was the PHO80 gene. Furthermore, high levels of PHO80 were shown to suppress the effect of a PHO85 deletion at a level close to full repression. Implications for the function of the negative regulators in this system are discussed.
Collapse
Affiliation(s)
- S L Madden
- Department of Chemistry, Clippinger Laboratories, Ohio University, Athens 45701-2979
| | | | | |
Collapse
|
24
|
The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol Cell Biol 1989. [PMID: 2664469 DOI: 10.1128/mcb.9.5.2050] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repressible acid phosphatase gene PHO5 of Saccharomyces cerevisiae requires the two positively acting regulatory proteins PHO2 and PHO4 for expression. pho2 or pho4 mutants are not able to derepress the PHO5 gene under low-Pi conditions. Here we show that both PHO2 and PHO4 bind specifically to the PHO5 promoter in vitro. Gel retardation assays using promoter deletions revealed two regions involved in PHO4 binding. Further characterization by DNase I footprinting showed two protected areas, one located at -347 to -373 (relative to the ATG initiator codon) (UASp1) and the other located at -239 to -262 (UASp2). Exonuclease III footprint experiments revealed stops at -349 and -368 (UASp1) as well as at -245 and -260 (UASp2). Gel retardation assays with the PHO2 protein revealed a binding region that lay between the two PHO4-binding sites. DNase I footprint analysis suggested a PHO2-binding site covering the region between -277 and -296.
Collapse
|
25
|
Vogel K, Hörz W, Hinnen A. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol Cell Biol 1989; 9:2050-7. [PMID: 2664469 PMCID: PMC362998 DOI: 10.1128/mcb.9.5.2050-2057.1989] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The repressible acid phosphatase gene PHO5 of Saccharomyces cerevisiae requires the two positively acting regulatory proteins PHO2 and PHO4 for expression. pho2 or pho4 mutants are not able to derepress the PHO5 gene under low-Pi conditions. Here we show that both PHO2 and PHO4 bind specifically to the PHO5 promoter in vitro. Gel retardation assays using promoter deletions revealed two regions involved in PHO4 binding. Further characterization by DNase I footprinting showed two protected areas, one located at -347 to -373 (relative to the ATG initiator codon) (UASp1) and the other located at -239 to -262 (UASp2). Exonuclease III footprint experiments revealed stops at -349 and -368 (UASp1) as well as at -245 and -260 (UASp2). Gel retardation assays with the PHO2 protein revealed a binding region that lay between the two PHO4-binding sites. DNase I footprint analysis suggested a PHO2-binding site covering the region between -277 and -296.
Collapse
Affiliation(s)
- K Vogel
- Biotechnology Department, CIBA-GEIGY AG, Basel, Switzerland
| | | | | |
Collapse
|